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During the current corona pandemic, new therapeutic options against this viral disease

are urgently desired. Due to the rapid spread and immense number of affected individuals

worldwide, cost-effective, globally available, and safe options with minimal side effects

and simple application are extremely warranted. This review will therefore discuss the

potential of zinc as preventive and therapeutic agent alone or in combination with other

strategies, as zinc meets all the above described criteria. While a variety of data on

the association of the individual zinc status with viral and respiratory tract infections are

available, study evidence regarding COVID-19 is so far missing but can be assumed as

was indicated by others and is detailed in this perspective, focusing on re-balancing of

the immune response by zinc supplementation. Especially, the role of zinc in viral-induced

vascular complications has barely been discussed, so far. Interestingly, most of the risk

groups described for COVID-19 are at the same time groups that were associated

with zinc deficiency. As zinc is essential to preserve natural tissue barriers such as the

respiratory epithelium, preventing pathogen entry, for a balanced function of the immune

system and the redox system, zinc deficiency can probably be added to the factors

predisposing individuals to infection and detrimental progression of COVID-19. Finally,

due to its direct antiviral properties, it can be assumed that zinc administration is beneficial

for most of the population, especially those with suboptimal zinc status.
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INTRODUCTION

The importance of the trace element zinc for the development and function of the immune
system across all kinds of species has been proven in numerous studies (1–3). As zinc deficiency
results in altered numbers and dysfunction of all immune cells, subjects with suboptimal zinc
state have an increased risk for infectious diseases, autoimmune disorders, and cancer (3–6). In
addition to malnutrition, risk groups for zinc deficiency include the elderly and patients with
various inflammatory and autoimmune diseases, which will be discussed in detail later in the article
(7, 8). As mild zinc deficiency is largely sub-clinical, it is unnoticed in most people. However,
the World Health Organization (WHO) assumes that at least one third of the world population
is affected by zinc deficiency (9). The fact that zinc deficiency is responsible for 16% of all deep
respiratory infections world-wide (9) provides a first strong hint on a link of zinc deficiency
with the risk of infection and severe progression of COVID-19 and suggests potential benefits of
zinc supplementation.
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The most common symptoms of COVID-19 are impaired
smell and taste, fever, cough, sore throat, general weakness, pain
as aching limbs, runny nose, and in some cases diarrhea (10).
In the subsequent chapters, we will associate most of those
symptoms with altered zinc homeostasis and explain how zinc
might prevent or attenuate those symptoms, as summarized
in Figure 1, and thus should be regarded as promising cost-
effective, globally available therapeutic approach for COVID-19
patients, for which minimal to no side effects are known.

ZINC PROTECTS THE HUMAN BODY
FROM ENTERING OF THE VIRUS

The entry of infectious agents into the human body is prevented
by tissue barriers equipped with cilia and mucus, anti-microbial
peptides like lysozymes and interferons. Regarding SARS-CoV2,
the angiotensin-converting enzyme 2 (ACE2) and the cellular
protease TMPRSS2 are the major mechanism for entering the
cells (11).

a) Mucociliar clearance of viruses is affected by zinc
Infections with coronaviruses go along with damage of
the ciliated epithelium and ciliary dyskinesia consecutively
impairing the mucociliar clearance (12). It was shown that
physiological concentrations of zinc increase ciliary beat
frequency (13). Moreover, zinc supplementation in zinc
deficient rats had a positive effect on the number and the
length of bronchial cilia (14) (Figure 1.4). Improved ciliary
clearance does not only improve the removal of virus particle,
it also reduces the risk of secondary bacterial infections,
as discussed later. Alterations of the extracellular matrix,
as monitored by increased epidermal growth factor and
proliferating cell nuclear antigen (PCNA) immunostaining of
rat lungs during zinc deficiency have also been described (15).

b) Zinc is essential for preserving tissue barriers
Disturbances in the integrity of the respiratory epithelia
facilitate the entry of the virus as well as co-infecting
pathogens and can lead to pathogens entering the blood
stream. An ex-vivo model of the chronic obstructive
pulmonary disease (COPD) showed that decreasing zinc levels
raised the leakage of the epithelium of the respiratory tract
(16), while zinc supplementation improved lung integrity
in a murine model of acute lung injury in vivo (17).
Increased apoptosis and E-cadherin/beta-catenin proteolysis
were amongst the underlying mechanisms (17–19). The
expression of tight junction proteins like Claudin-1 and ZO-1
was found to be zinc-dependent, offering another explanation
for zinc’s positive effects on lung integrity (16). In addition,
an inhibitory effect of zinc on LFA-1/ICAM-1 interaction
weakened inflammation in the respiratory tract via reduction
of leukocyte recruitment (20). Furthermore, high zinc levels
improved the tolerance of the lung towards damage induced
by mechanical ventilation (21) (Figure 1.4).

c) Zinc-dependent alterations in gene expression by
pneumocytes could affect viral entering
ACE-2, mainly expressed on pneumocytes type 2, is a
zinc-metalloenzyme. Zinc binds to its active center and is

thus essential for its enzymatic activity. If zinc binding also
affects the molecular structure of ACE-2 and thereby its
binding affinity to the virus, remains to be tested (22, 23).
However, this is likely as zinc is important for stabilizing
protein structures and altering substrate affinity of various
metalloproteins (24, 25). Finally, zinc homeostasis might
affect ACE-2 expression, as zinc-dependent expression
was reported for other zinc-metalloenzyme such as
metallothionein and matrix metalloproteinases (26). This
suggestion is strengthened by the finding that ACE-2
expression is regulated by Sirt-1 (27, 28). As zinc decreases
Sirt-1 activity (27), it might decrease ACE-2 expression and
thus viral entry into the cell (Figure 1.2).

A lack of adequate secretion of type I and type II
interferons was reported for COVID-19 patients (29).
For human interferon alpha (IFN-α) it was shown that
zinc supplementation can reconstitute its expression by
leukocytes and potentiates its anti-viral effect via JAK/STAT1
signaling as observed for rhinovirus-infected cells (30, 31).
However, as it was suggested that SARS-CoV2 might
take advantage of the interferon-dependent expression of
ACE2, which was recently addressed by Ziegler et al. (32),
the overall effects of zinc need to be carefully evaluated in
future studies.

ZINC DIRECTLY INHIBITS VIRAL
REPLICATION

As a virus, SARS-CoV2 is highly dependent on the metabolism
of the host cell. Direct antiviral effects of zinc have been
demonstrated in various cases, which was reviewed in great
detail (33–37). Examples include coronaviridae, picornavirus,
papilloma virus, metapneumovirus, rhinovirus, herpes simplex
virus, varicella-zoster virus, respiratory syncytial virus, human
immunodeficiency virus (HIV), and the hepatitis C virus (34,
35, 37–39). It was suggested that zinc can prevent fusion with
the host membrane, decreases the viral polymerase function,
impairs protein translation and processing, blocks viral particle
release, and destabilizes the viral envelope (35, 37, 40). Low-dose
zinc supplementation together with small concentrations of the
zinc ionophores pyrithione or hinokitol decreased RNA synthesis
in influenza, poliovirus, picornavirus, the equine arteritis virus,
and SARS-CoV by directly inhibiting the RNA-dependent RNA
polymerase of the virus (34, 41). There is evidence that
zinc can enhance the effect of chloroquine, another known
zinc ionophore, while zinc ionophores like epigallocatechin-
gallate or quercetin remain to be tested (42–45). There
are close similarities of SARS-CoV2 and other coronaviridae
like SARS-CoV and Middle East respiratory syndrome-related
coronavirus (MERS-CoV) (46). Also, the alcohol-aversive drug
disulfiram can bind the papain-like proteases of SARS-CoV
and MERS-CoV resulting in release of cysteine-bound zinc
that results in protein destabilization (47). Detailed studies
on zinc’s effect specifically on SARS-CoV2 are highly required
(Figure 1.3).
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FIGURE 1 | Viral mechanism of COVID-19 and how they might be opposed by zinc data. (1) There is an impressive intersection of known risk factors for zinc

deficiency (blue circle) and the predisposition for a severe COVID-19 infection (red circle). (2,3) Zinc (Zn) supplementation might already prevent the viral entry and also

suppresses its replication, while it supports the anti-viral response of the host cells. (4) As zinc is known to increase ciliary length and movements and also sustains

tissue integrity, entrance of the virus is impeded. (5−10) The importance of zinc on the development and function of the immune cells is manifold. It should be

underlined, that zinc’s effects should not generally be described as activating or inhibiting, as zinc in various cases normalizes overshooting immune reactions and

balances the ratios of the various immune cell types. Zinc thus prevents for example that high levels of inflammatory mediators including reactive oxygen and nitrogen

species destroy the host tissue. (11) On first view it appears contradicting, that zinc increases activation induced production of reactive oxygen species in platelets,

while it is generally considered as anti-oxidative. However, in case of platelets, up to a certain threshold, ROS production is essential, as it can prevent the formation of

platelet aggregates. In summary, zinc therefore might be able to prevent vascular complications observed in COVID-19 patients. Details for each point can be found in

the text. ACE2, angiotensin converting enzyme 2; AG, antigen; IFN, interferon; IFNR, interferon receptor; ISRE, interferon-sensitive response element; APC, antigen

presenting cell; IKK, IκB kinase; IL, interleukin; iNOS, inducible nitric oxide synthase; IRF3, IFN regulatory factor 3; MHC, major histocompatibility complex; MEK1/2,

mitogen-activated protein kinase kinase 1/2; NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase; NFAT, nuclear factor of activated T-cells; NF-κB,

nuclear factor kappa B; PKR, protein kinase R; Akt, protein kinase B; PI3K, phosphatidylinositol-3 kinases; ROS, reactive oxygen species; RdRP, RNA-dependent

RNA polymerase; RNase L, ribonuclease L; Sirt-, Sirtuin 1; STAT, signal transducer and activators of transcription; TCR, T cell receptor; Tc, cytotoxic T cell; TH, helper

T cell; TGF, transforming growth factor; TRAM, TRIF-related adaptor molecule; TRIF, TIR-domain-containing adapter-inducing interferon-β; TLR, toll-like receptor; TNF,

tumor necrosis factor; Zip, Zrt- and Irt-like protein; ZO-1, zona occludens.

ZINC BALANCES THE IMMUNE
RESPONSE DURING INFECTIOUS
DISEASES

One of the hallmarks of COVID-19 is an imbalanced immune
response (48). Due to hyper-inflammation, immune products
including pro-inflammatory cytokines like interleukin (IL)-6, C-
reactive protein (CRP), tumor necrosis factor (TNF)α and IL-1β
(summarized as cytokine storm or cytokine release syndrome),
reactive oxygen, and nitrogen species in connection with the
recruitment of high numbers of strongly activated immune cells
to the lungs, the destruction of the tissue, permanent lung
damage and death due to systemic inflammation, and organ
failure are expected, while the anti-inflammatory response is
insufficient (48–52). A high number of patients develop an acute
respiratory distress syndrome (ARDS) accompanied by high

alveolar leakage leading to alveolar and interstitial edema with
severely limited oxygen exchange (53). Advanced SARS-CoV2

infections are characterized by a systemic involvement with
organ complications and accompanying cytokine storm (52, 54).

There is no doubt on the anti-inflammatory and anti-

oxidative properties of zinc and underlying mechanisms have
been the focus of numerous studies (1–3, 6, 55–60). A detailed

description of zinc metabolism in airway epithelium and during
inflammation of the airways has been published by Zalewski
et al. (61). On the other hand, zinc deficiency was associated
with elevated levels of pro-inflammatory mediators, increased
reactive oxygen species (ROS) levels and pre-disposing for
severe progression of inflammatory diseases, especially those
affecting the lung, often reversible by zinc supplementation
(6, 17, 56, 62–66) (Figures 1.5,1.6). As one example, exposure
to organic dust increased lung damage, inflammation and
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macrophage hyper-activation in animals with zinc deficiency,
predisposing these animals to pulmonary fibrosis, while zinc
supplementation 24 h before induction of acute lung injury
significantly attenuated the inflammatory reaction and tissue
damage (17, 67). Regarding systemic inflammatory diseases the
number of studies showing benefits of especially preventive
zinc supplementation is constantly increasing (17, 18, 58, 65,
68). Amongst the underlying mechanism, zinc’s role as second
messenger and importance in regulating intracellular signaling as
detailed in Figure 1 were described as well as zinc’s effects on the
epigenome (56, 57, 69–74).

Furthermore, leukocytosis with neutrophilia and
lymphopenia, especially affecting CD8+ T cells, were associated
with poor prognosis of COVID-19 and the recovery of
lymphocyte counts lead to clinical recovery (75, 76). Similar
changes in lymphopoiesis and myelopoiesis have been described
in zinc deficient rodents, which were normalized when zinc
was supplemented (17, 19). Circulating and lung-resident T
cells from COVID-19 patients showed increased expression of
markers for T cell exhaustion like Tim-3 and PD-1 (77). The
extent of these changes had an impact on the patient’s prognosis
(50). During the past decades, an immense literature was
generated on the need of zinc for lymphocyte development and
function and that zinc supplementation (6, 19, 63, 64, 78, 79) can
reverse lymphopenia. Enumerating all findings and underlying
mechanisms is beyond the scope of this article, and a lot of
aspects have been discussed in related publications (36) but
as one of the many key roles of zinc in the context of T cell
function, zinc is indispensable in the signal cascade of the T cell
receptor and IL-2 as a second messenger (78, 80) (Figure 1.9).
The B cell compartment also strongly benefits from a balanced
zinc homeostasis, as zinc is required for B cell maturation and
function (72, 81) (Figure 1.8). Also important to mention, but
neglected by previous related articles, is that there is evidence
(82, 83) that SARS-CoV2 can directly infect T cells as well as B
cells and impair their cell specific function. This could explain
the impact of SARS-CoV2 infection on lymphoid tissues like
the human spleen and lymph nodes (84). However, as data are
limited to in vitro experiments, this needs to be verified in vivo as
well as if zinc affects the virus-induced changes in T and B cells.

Additionally, granulocytes play a vital role during the
inflammation-induced destruction of the lung (85). Recent
evidence suggests that lipopolysaccharide-induced hyper-
activation, recruitment and formation of neutrophil extracellular
traps are attenuated by zinc supplementation in vivo and that
cytokine expression, phagocytosis and burst, chemotaxis and
degranulation, and intracellular signaling are zinc regulated
(17, 86, 87) (Figure 1.5). Important defense mechanisms of the
innate immunity include the toll like receptors. For instance, in
silico data suggest that toll-like receptor (TLR)-4 can potentially
recognize outer components of SARS-CoV2’s like the viral spikes
(88), while intracellular receptors including TLR3, TLR7/8, and
TLR9 can recognize viral dsRNA, ssRNA, and unmethylated
CpG DNA respectively (89–92). Intranasal pretreatment with
a TLR3 agonist and, to a lesser extent, with TLR9, TLR7/8,
or TLR4 agonists, provided a high level of protection against
infections by SARS coronavirus and influence virus in mice,

suggesting that TLR signaling can induce protective antiviral
immunity (93). This might be a completely novel approach
to consider regarding COVID-19 as well. Zinc is an essential
regulator in TLR-4- and TLR-3-induced signaling in innate
immune cells (94). Thus, zinc deficiency potentially disturbs
the innate immune response toward SARS-CoV2, enabling the
virus to easily spread throughout the host without an adequate
immune response (Figure 1.6).

Clinical improvement of COVID-19 patients was correlated
to an increase of CD14+ monocytes and NK cells in the recovery
phase (48). For a physiological inflammatory response and
phagocytic activity macrophages need sufficient intracellular zinc
levels (1). In addition, for NK cells and cytotoxic T cells it was
shown that zinc supplementation increased their cytotoxicity
toward target cells (1, 2, 95) (Figures 1.7,1.10).

In summary zinc’s (re-)balancing power regarding immune
cell numbers and functions might be highly beneficial in regard
to therapy of COVID-19.

ZINC SUPPLEMENTATION IN
RESPIRATORY INFECTIONS

Our suggested benefits of zinc supplementation to prevent
and treat COVID-19 are supported by a row of successful
supplementation studies focusing on respiratory tract infection,
of which we listed some selected publications in Table 1. In
most cases, prophylactic zinc supplementation wasmore effective
than therapeutic proceedings (106–108, 111). Up to 30% of the
everyday respiratory infections, briefly named “common cold,”
are due to infections with coronaviruses (112). Studies showed
reduced symptom severity, reduced frequency, and duration of
the common cold after zinc administration (99, 100, 113, 114)
depending on dosage, zinc compound and the start time after
initial symptoms (115). Most importantly, zinc supplementation
of children revealed significant benefits in various studies (96,
106) and reduced 15% pneumonia-specific morality and 19% of
pneumonia morbidity in developing countries (116).

RISK GROUPS AND SYMPTOMS OF
COVID-19 AND ZINC DEFICIENCY REVEAL
A LARGE OVERLAP

As illustrated in Figure 1.1, the intersection between risk groups
of COVID-19 and zinc deficiency is impressive. In patients
with chronic obstructive pulmonary disease (COPD), bronchial
asthma, cardiovascular diseases, autoimmune diseases, kidney
diseases, dialysis, obesity, diabetes, cancer, atherosclerosis, liver
cirrhosis, immunosuppression, and known liver damage low
serum zinc levels are regularly observed (4, 117). At the same
time, these groups are particular at risk for COVID-19 (10,
51, 118, 119). For example 57.5% elderly and nursing home
residents in the U.S., for which high incidence of respiratory
tract infections is described, showed significantly decreased zinc
intake levels and are considered subjects with high risk regarding
COVID-19 (120). Moreover, other studies showed that serum
zinc levels were inversely correlated with pneumonia and cystic
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TABLE 1 | Selected zinc supplementation studies in respiratory infections.

Compound Conc. [mg/d] Duration Disease Effect References

Treatment

Zinc bis-glycinate 30 (elemental) Max 7 days/dis-charge

from the hospital

Lower RTI (Children) Reduction of days of

ALRI and shorter

hospital stay

(96)

Zinc acetate 20 5d Lower RTI (children) Increased recovery

rates (boys)

(97)

Zinc gluconate 10 6 mo Lower RTI (children) Decreased episodes of

infection, more

infection free days

(98)

Zinc gluconate

Zinc actetate

Gluconate nasal gel

SULFITE nasal spray

60–313

76.8–102.4

2.1

0.044

Until symptoms are

gone

Common cold Variable results but

generally reduced

duration if

supplementation

started within first 24 h

Meta-study of 16

studies (99)

Zinc acetate vs. zinc

gluconate

80–92

192–207

Until symptoms are

gone

Common cold <75 mg/day: reduced

duration; zinc acetate

better than gluconate

Meta-study of 7 studies

(100)

Zinc gluconate 30 (elemental) 12 mo Cystic fibrosis (children) Reduced duration of

antibiotics

(101)

Prophylactic

Zinc sulfate 20 (elemental) 2 wk/6 mo follow-up Lower RTI (children) Reduced morbidity (102)

Zinc sulfate 20 to ZD children 14d, 6 mo follow-up Upper and lower RTI

(children)

Decreased incidence

and duration of upper

and lower RTI

(103)

Zinc oxide 5 12 mo Upper RTI (children) Decreased incidence (104)

Zinc gluconate 10 6 mo Lower RTI Decreased incidence (105)

Zinc acetate,

gluconate, methionine,

sulfate

Min 70 mg/wk >3 mo Lower RTI Decreased incidence

(depending on criteria)

Meta-study of 10

studies (106)

Zinc in mineral mix 6 (f)−7.5 (m) 12 mo Naturally occurring

pneumonia

Decreased incidence

and duration,

decreased duration of

antimicrobial therapy

(107)

Zinc sulfate 60–90 12 mo Ventilation associated

pneumonia

Decreased incidence (108)

Zinc gluconate Up to 12x 23 mg/d Until symptoms are

gone

Common cold Decreased clinical

score

(109)

Zinc sulfate 15 7 mo Common cold Decreased incidence (110)

Murine models

Zinc-enriched rodent

diet

ZD: 50 ppm–ZS: 100

ppm

18d ZD followed by 3d

ZS

Sepsis-induced ALI Decrease in

inflammation, lung

damage, and mortality

(vs. ZD mice)

(68)

Zinc aspartate 30 µg/ mouse 24 h Acute lung injury (LPS

inhalation), mice

Decreased

hyper-inflammation,

tissue damage

(17)

Conc, concentration; d, day; mo, months; ref, reference; RTI, respiratory tract infection; ZD, zinc deficiency; ZS, zinc supplementation; wk, week.

Single studies are not included in the meta-studies.

fibrosis (121, 122). On the other hand, zinc supplementation was
able to reconstitute immune function in elderly and zinc deficient
individuals (107, 123), which remains to be addressed for SARS-
CoV2 infections (36). In this regard, the low response of older
patients with low serum zinc to a 23-valent pneumococcal
polysaccharide vaccination compared to those with higher zinc
level (124), should be mentioned. However, zinc’s role in the

response to vaccination is generally discussed controversially and
no data are available for vaccination against any corona virus.

Several studies indicate that there is an association between
chemosensory dysfunctions and COVID-19 (125–133). Smell
or taste is largely decreased, which might be a good disease
biomarker (133). It was suggested that this might either be due to
direct destruction of sensory cells by the virus, as ACE-2 is highly
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expressed by the oral mucosa, or by viral entry into the brain and
neuronal pathologies as was described for other SARS-CoV (133,
134). Zinc deficiency was related to significantly reduced taste
sensitivity and impaired saliva secretion in humans and animals,
which might involve zinc’s importance for the action of carbonic
anhydrase (135–140). Results from supplementation studies
largely describe improvements in chemosensory functions (140,
141), but some studies did not find any effects (142) or even more
severe disturbances when very high zinc concentrations were
used (143). This is possibly due to investigating olfactory diseases
of various origins, the lack of controlled trials and inclusion of
observable studies. Thus, the benefits of zinc supplementation
alone or in combination with common medical strategies should
be tested for taste and smell diseases according to the available
guidelines (144).

About 50% of patients that died of COVID-19 had bacterial
or fungal co-infections (145), underlining the importance of
sustaining the immune function by a sufficient zinc supply
(1, 2, 36). In animal experiments it was shown that zinc
restriction made mice highly susceptible to bacterial infection
with streptococcus pneumoniae (146). As mentioned earlier,
marginal zinc deficiency affects one third of the worldwide
population and most subjects with COVID-19 are at risk of
zinc deficiency (Figure 1). During physiological inflammatory
responses, zinc is additionally redistributed to the tissues,
resulting in serum hypozincemia (1, 65). In combination with the
pre-existing suboptimal zinc supply, this will decrease serum zinc
levels to critically low values and thereby significantly increase the
susceptibility for co-infections with detrimental progression. In
critically ill patients persistent low serum zinc was associated with
recurrent sepsis and serum zinc levels were inversely correlated
withmortality from sepsis (62), underlining the potential benefits
of monitoring the zinc status of the patients and implementing
zinc supplementation into therapy of COVID-19.

Vascular complications resulting from atherosclerosis
development, microangiopathic organ failure, and venous
thromboembolism were found as a major cause of death in
COVID-19 patients (147–149), suggesting an important role of
disease-induced coagulopathy, which, however, needs further
investigation. Zinc influences thrombocyte aggregation and
coagulation (150). Recently, a functional association between
zinc and ROS production in platelets was described, indicating
that zinc could decrease thrombus formation in a clinical
context (151). Complications of SARS-CoV2 infections also
include tissue damage affecting the gastrointestinal system
(152), the liver (153), heart (154), nervous system (155), kidneys
(156), blood vessels (149), and the skin (157). In this regard
it should be mentioned that a balanced zinc homeostasis is

essential for wound healing and tissue recovery after mechanical
and inflammation-mediated damage (158, 159), adding more
potential benefits of zinc supplementation of COVID-19 patients
(Figure 1.11).

CONCLUSION

In this perspective, we reviewed the most important literature
on the role of zinc homeostasis during viral infections,
focusing on the potential benefits of zinc supplementation
to prevent and treat SARS-CoV2 infections. Although data
specifically on SARS-CoV2 are unfortunately still pending
and randomized controlled studies have not been conducted,
the enumerated evidence from the literature strongly suggests
great benefits of zinc supplementation. Zinc supplementation
improves the mucociliary clearance, strengthens the integrity
of the epithelium, decreases viral replication, preserves antiviral
immunity, attenuates the risk of hyper-inflammation, supports
anti-oxidative effects and thus reduces lung damage and
minimized secondary infections. Especially older subjects,
patients with chronic diseases and most of the remaining
COVID-19 risk groups would most likely benefit. Although
studies are needed testing the effect of zinc as therapeutic
option for established disease, preventive supplementation of
subjects from risk groups should begin now, as zinc is a
cost-efficient, globally available and simple to use option
with little to no side effects. The first clinical trials on
zinc supplementation alone and in combination with other
drugs such as chloroquine have been registered (124, 160–
162). Thus, first results and treatment regimens regarding zinc
supplementation for COVID-19 risk groups and patients can be
anticipated soon.
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