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COVID-19 has recently become the most serious threat to public health, and its

prevalence has been increasing at an alarming rate. The incubation period for the

virus is ∼1–14 days and all age groups may be susceptible to a fatality rate of about

5.9%. COVID-19 is caused by a novel single-stranded, positive (+) sense RNA beta

coronavirus. The development of a vaccine for SARS-CoV-2 is an urgent needworldwide.

Immunoinformatics approaches are both cost-effective and convenient, as in silico

predictions can reduce the number of experiments needed. In this study, with the aid

of immunoinformatics tools, we tried to design a multi-epitope vaccine that can be

used for the prevention and treatment of COVID-19. The epitopes were computed by

using B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) base

on the proteins of SARS-CoV-2. A vaccine was devised by fusing together the B cell,

HTL, and CTL epitopes with linkers. To enhance the immunogenicity, the β-defensin (45

mer) amino acid sequence, and pan-HLA DR binding epitopes (13aa) were adjoined

to the N-terminal of the vaccine with the help of the EAAAK linker. To enable the

intracellular delivery of the modeled vaccine, a TAT sequence (11aa) was appended to

C-terminal. Linkers play vital roles in producing an extended conformation (flexibility),

protein folding, and separation of functional domains, and therefore, make the protein

structure more stable. The secondary and three-dimensional (3D) structure of the final

vaccine was then predicted. Furthermore, the complex between the final vaccine and

immune receptors (toll-like receptor-3 (TLR-3), major histocompatibility complex (MHC-I),

and MHC-II) were evaluated by molecular docking. Lastly, to confirm the expression of

the designed vaccine, the mRNA of the vaccine was enhanced with the aid of the Java

Codon Adaptation Tool, and the secondary structure was generated fromMfold. Then we

performed in silico cloning. The final vaccine requires experimental validation to determine

its safety and efficacy in controlling SARS-CoV-2 infections.
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INTRODUCTION

In December 2019, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) was first discovered in China and has rapidly spread across the world. As of 12:00
noon on June 4, a total of 6,392,319 confirmed cases of COVID-19 have been reported globally,
including 383,318 deaths. The prevalence of the disease has been increasing at an alarming rate.
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There were 1,849,852 cases in the United States, 555,383 in Brazil,
431,715 in Russia, 281,270 in the United Kingdom, and 3,275,736
in a number of other countries (1).

The incubation period for the virus is∼1–14 days, and all age
groups are susceptible to a fatality rate of about 5.9%. The most
common clinical manifestations are low-grade fever, dry cough,
fatigue, and gastrointestinal symptoms (2). About half of all
patients with COVID-19 develop shortness of breath, and severe
cases may rapidly develop SARS, septic shock, difficult-to-correct
metabolic acidosis, and coagulation disorders (3). COVID-19
may also affect other organs, most commonly the heart and
kidneys (4–6). Some patients may have mild symptoms, without
fever, and may recover after 1–4 weeks (7). Other patients may
show signs of serious illness and some may die; however, most
patients show favorable progress (8). Male individuals with the
disease and aged patients have the worst prognosis. In children,
the disease is relatively mild (9).

COVID-19 is caused by a novel single-stranded, positive
(+) sense RNA beta coronavirus, which is a pathogen of
the Coronaviridae family, named SARS-CoV-2 (10). The
full-length genome sequences revealed that SARS-CoV-
2 has the greatest genetic similarity to bat coronavirus,
∼45–90% similarity to severe acute respiratory syndrome-
related coronavirus (SARSr-CoV), and a smaller similarity
of 20–60% to the Middle East respiratory syndrome-related
coronavirus (MERS-CoV) (10). Thus, a bat might be the
original host of SARS-CoV-2, but the intermediate host remains
undiscovered (10).

The genes of SARS-CoV-2 encode structural proteins and
non-structural proteins. Four structural proteins are absolutely
vital for viral assembly and invasion of SARS-CoV-2. Spike
protein homotrimers constitute the spikes on the viral surface,
and these spikes are responsible for attachment to host
cells by binding to their receptors (10). The M protein has
three transmembrane domains, which determine the shape of
the virion, facilitate membrane curvature, and bind to the
nucleocapsid. The E protein plays an important role in virion
assembly and release, as well as involved in viral pathogenesis.
The N protein has two different domains, both of which bind
to the viral RNA genome via totally different mechanisms. In
addition, some reports have shown that non-structural proteins
are essential for the replication of coronaviruses (10).

Vaccination is a vital tool for the control and elimination of the
virus, and the development of a vaccine for SARS-CoV-2 remains
an urgent need (11). Traditional methods of vaccine development
are time-consuming and very labor-intensive (12). The realm of
immunoinformatics tools considers the mechanism of the host
immune response to yield additional methodologies in the design
of vaccine against diseases are cost-effective and convenient,
as in silico predictions can reduce the number of experiments
needed (13, 14). Dozens of studies have generated epitope-based
peptide vaccine of SARS-CoV-2. Baruah and Bose (15) used
immunoinformatics tools to discover cytotoxic T lymphocyte
(CTL) and B cell epitopes for the spike protein of SARS-CoV-2.
Then, Abraham et al. developed a multi-epitope vaccine that was
designed using immunoinformatics tools that potentially trigger
both CD4+ and CD8+ T-cell immune responses (16).

Although there are many vaccines generated by
immunoinformatics tools, most of these are based on spike
protein. The spike protein is responsible for attachment to
host cells by binding to angiotensin-converting enzyme 2
(ACE2) (17). A vaccine based on the spike protein could induce
antibodies to block SARS-COV binding and fusion or neutralize
virus infection (18). But there are still many obstacles, spike
protein-based SARS vaccine may induce harmful immune
responses that cause liver damage of the vaccinated animals
(19). Other virus proteins are considered as the candidates for
designing vaccine with protective and less harmful immune
responses (20). Vaccine-based on structural and non-structural
proteins of the virus is revealed potential vaccine inducing
protective immune responses (20, 21). Pandey et al. reported the
more scientifically rigorous strategy of multi-epitope subunits
based on multiple proteins against parasitic and viral diseases,
such as malaria, visceral leishmaniasis, and HIV (22–24). In this
present, we employed immunoinformatics to predict multiple
immunogenic proteins from the SARS-CoV-2 proteome and
thereby design a multi-epitope vaccine. These proteins included
non-structural and structural sequences of SARS-CoV-2, their
reference sequences were retrieved from the National Center for
Biotechnology Information (NCBI) database.

MATERIALS AND METHODS

Retrieving COVID-19 Protein Sequences
The proteins of the SARS-CoV-2 have been reported and
reference could get from NCBI (25, 26). The reference sequences
of SARS-CoV-2 proteins were retrieved from NCBI Protein
Database (https://www.ncbi.nlm.nih.gov/protein) and accession
numbers in Table 1, then we stored the reference sequences
as a FASTA data type. The proteins with <100 amino acid
sequences which are too short to predict epitopes were excluded,
the remaining proteins were used for further analysis.

Identifying Antigenicity of Protein
Sequences
VaxiJen is the first server for alignment-independent prediction
of protective antigens, which overcome the limitations of
alignment-dependent methods (27). To identify the potential
antigenicity of SARS-CoV-2 proteins, an online prediction
server, VaxiJen v2.0 (http://www.ddg-pharmfac.net/vaxijen/
VaxiJen/VaxiJen.html) was used to predict the antigenic values
of each protein (28). This identification was applied according to
the default parameters of the server. Proteins having antigenicity
were sorted according to an antigenic score of ≥ 0.5 (Threshold
for this model is 0.5) and were selected for further structural
modeling (27).

Structural Modeling of SARS-COV-2
Proteins
There are no available experimental structures of SARS-COV-2
proteins, Phyre 2 provide model regions trough a new ab initio
folding simulation with no detectable homology (29). The SARS-
CoV-2 proteins were modeled by Phyre 2 server (http://www.sbg.
bio.ic.ac.uk/phyre2/). Because the SARS-COV-2 proteins with no
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TABLE 1 | Details and antigenicity of SARS-CoV-2 proteins.

No. Accession

numbera
Protein Amino

acids

Antigenic

valueb

1 YP_009724395.1 ORF7a protein 121aa 0.6755

2 YP_009724396.1 ORF8 protein 121aa 0.6392

3 YP_009725305.1 nsp9 113aa 0.6292

4 YP_009725302.1 nsp6 290aa 0.5668

5 YP_009725299.1 nsp3 1945aa 0.5538

6 YP_009725310.1 endoRNAse 346aa 0.5436

7 YP_009724391 ORF3a protein 275aa 0.541

8 YP_009724393.1 Membrane

glycoprotein

222aa 0.5184

9 YP_009724397.2 Nucleocapsid

phosphoprotein

419aa 0.5133

10 YP_009725295.1 ORF1a polyprotein 4405aa 0.4813

11 YP_009725300.1 nsp4 500aa 0.4759

12 YP_009724390.1 Surface glycoprotein 1273aa 0.4707

13 YP_009724389.1 ORF1ab polyprotein 7096aa 0.4624

14 YP_009725297.1 Leader protein 180aa 0.4497

15 YP_009725309.1 3′-to-5′ exonuclease 527aa 0.4219

16 YP_009725308.1 Helicase 601aa 0.4219

17 YP_009725307.1 RNA-dependent

RNA polymerase

932aa 0.4123

18 YP_009725306.1 nsp10 139aa 0.4091

19 YP_009725304.1 nsp8 198aa 0.4063

20 YP_009725298.1 nsp2 638aa 0.4043

21 YP_009725301.1 3C-like proteinase 306aa 0.4037

22 YP_009725311.1 2′-O-ribose 298aa 0.3917

23 YP_009724394.1 ORF6 protein 61aa 0.5719

24 YP_009725296.1 ORF7b protein 43aa 0.5505

25 YP_009725255.1 ORF10 protein 38aa 0.622

26 YP_009725312.1 nsp11 13aa 0.2878

27 YP_009724392.1 Envelope protein 75aa 0.6243

aThe accession number is the National Center for Biotechnology Information (NCBI)

reference sequence number.
bThe antigenic value threshold was > 0.5000.

detectable homology protein to finish the modeling, we chose
the intensive search and output the accurate alignment by the
alignment of hidden Markov models.

ModRefiner was used by the GalaxyRefine server (http://
galaxy.seoklab.org /cgi-bin/submit.cgi?type=REFINE) (30). The
structure assessment was performed by the SWISS-MODEL
workspace (https://swissmodel.expasy.org/assess) (31). The three
dimensional (3D) models were used for the conformational
(discontinuous) B-cell epitope predictions while the sequences
were utilized in linear B-cell and T-cell epitope predictions.

Prediction of CTL Epitopes
NetCTL-1.2 is demonstrated to have a high predictive
performance (32). The NetCTL 1.2 server (http://www.cbs.
dtu.dk/services/NetCTL/) was applied to predict CTL epitopes
for the SARS-CoV-2 at the threshold value of 0.75 with high
sensitivity and specificity (32). To cover ∼90% of the world’s
population, three supertypes (A2, A3, and B7) were selected

based on artificial neural networks, to predict MHC class I
binding epitopes (33). The best candidates for the SARS-CoV-2
vaccine construction were sorted for further prediction, based
on a half-maximal inhibitory concentration (IC50) < 500 nm
and an integrated score. The IC50 < 500 nm represents epitope
has a high affinity to receptor. The integrated score indicated
the transporter of antigenic peptides (TAP) transport efficiency,
class I binding, and proteasomal cleavage prediction (34–36).
Then the specific Treg epitopes were screened and excluded by
the EpiToolKit (https://epivax.com/).

Prediction of Helper T Lymphocyte (HTL)
Epitopes
ForMHC class II T cell epitope predictions, The Immune Epitope
Database server predicted binders based on the percentile rank or
MHC binding affinity (37). The Immune Epitope Database server
(IEDB; http://tools.iedb.org/mhcii/) was used to predict helper
T lymphocyte (HTL) epitopes (37). We chose the combinatorial
approach which recommended by IEDB to predict HTL epitopes.
The combinatorial approach combined NN-align, SMM-align,
CombLib, Sturniolo, and NetMHCIIpan methods (38–42). The
17 alleles of the human leukocyte antigen (HLA) were selected
for the prediction at α and β chains, separately (43). For final
construction, epitopes were selected based on their scores (low
scores indicated favorable binding), the release of interferon-
gamma (IFN-γ), induction of emergent properties, and the IC50
< 500 nm.

Prediction of IFN-γ Inducing Epitopes
The IFN-γ cytokine makes a major contribution to antiviral
mechanisms. It excites both native and specific immune
responses by activating macrophages and natural killer cells (44).
Further, IFN-γ augments the response of MHC to antigens. The
IFN-γ epitope server (http://crdd.osdd.net/raghava/ifnepitope/
scan.php) was used to recognize IFN-γ epitopes (45). We entered
the HTL epitopes with low scores into the IFN-γ epitope server.
Positive IFN-γ induction was predicted based on the support
vector machine (SVM) hybrid approach. The final HTL epitopes
were determined based on IFN-γ induction and MHC Class
II binding, both of which facilitate the stimulation of T-helper
cells (46).

Prediction of Line and Conformational B
Cell Epitopes
The ABCpred (http://crdd.osdd.net/raghava/abcpred/) and
BepiPred linear epitope prediction (http://tools.iedb.org/bcell/
result/) servers were utilized to predict linear B cell epitopes.
The ABCpred server is based on an artificial neural network
(ANN) (47, 48). The linear B cell epitopes of the SARS-CoV-2
protein were predicted at a threshold of 0.5. The BepiPred
linear epitope prediction server is based on seven methods:
(a) Bepipred-1.0 Linear Epitope Prediction; (b) BepiPred-2.0:
Sequential B cell Epitope Predictor; (c) Chou and Fasman
beta-turn prediction; (d) Emini surface accessibility scale;
(e) Karplus and Schulz flexibility scale; and the (f) Kolaskar
and Tongaonkar antigenicity scale (49–54). We used these
seven methods separately to predict the average threshold. The
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overlap between ABCpred and BepiPred severs was selected to
determine the candidate epitopes for the SARS-CoV-2 vaccine
construction (55).

Unlike T-cell epitopes that are linear continuous stretches
of residues, B-cell epitopes are generally conformational
(discontinuous) (56). In this study, the ElliPro servers
(http://tools.iedb.org/ellipro/) were applied to predict the
conformational B-cells epitopes (57). The server predicts
epitopes based on PI (Protrusion Index) value. The epitope with
PI = 0.9 would include 90% of residues with 10% being outside
the ellipsoid, discontinues B-cells epitopes with the top PI value
was selected for vaccine designing (57).

Multi-Epitope Subunit Vaccine Design
To develop the final vaccine, epitopes determined by various
immunoinformatics software were linked together with the aid of
separate linkers. The CTL epitopes were linked by the AAY linker,
HTL epitopes by the GPGPG linker, and B cells were linked by the
KK linker (48, 58, 59). To increase the vaccine immunogenicity,
the β-defensin (45 mer) amino acid sequence was adjoined to
the N-terminal of the vaccine with the help of the EAAAK
linker (60). The β-defensin peptides provoke innate immunity
cells and recruit naive T cells through the chemokine receptor-
6 (CCR-6) (61). The pan-HLA DR binding epitopes (13aa) as
well as added to the N-terminal of the vaccine with the aid of the
same linker (59). The pan-HLA DR binding epitopes in vaccine
construct facilitating binding to many different types of mouse
and human MHC-II alleles to induce CD4-helper cell responses
(59). To enable the intracellular delivery of the modeled vaccine,
a TAT sequence (11aa) was appended to C-terminal (62). Linkers
(AYY, KK, and GPGPG) play vital roles in producing an extended
conformation (flexibility), protein folding, and separation of
functional domains, and therefore, make the protein structure
more stable (59).

Prediction of Allergenicity, Antigenicity
The allergenic proteins induce a harmful immune response,
allergenicity of the vaccine should be non-allergic (63). The
non-allergic character of the vaccine sequence was evaluated by
the AlgPred server (http://www.imtech.res.in/raghava/algpred/)
(63). We predicted allergenicity of vaccine sequences choosing
a hybrid approach (SVMc+IgE epitope+ARPs BLAST+MAST)
with the highest accuracy and sensitivity (63).

The Vaxijen v2.0 server (http://www.ddgpharmfac.net/
vaxijen/VaxiJen/VaxiJen.html) was applied to evaluate the
antigenicity of the vaccine (27). The antigenicity prediction
method was solely based on the physicochemical properties of
proteins without recourse to sequence alignment. The precision
rate of the server ranged from 70 to 89%.

Immune Simulations
To determine immune response profile of this multi-epitope
vaccine, computational immune simulations were performed
by the C-ImmSim online server at (http://kraken.iac.rm.cnr.it/
C-IMMSIM/) (64). The C-ImmSim utilizes the Celada-Seiden
model for describing both humoral and cellular profiles of a
mammalian immune system against designed vaccine. As per

the literature, three injections were administrated at different
intervals of 1 month. The simulation was performed with default
parameters. The vaccine sequence was administered 4 weeks
apart. The simulation volume was 1,000, simulation steps was
1,000, random seed was 12,345, and the vaccine injection with
no LPS (64).

Prediction of Various Physicochemical
Properties
The ProtParam tool (http://web.expasy.org/protparam/)
was used to evaluate the physicochemical properties of the
final vaccine protein (65). The physicochemical properties
included the number of amino acids, molecular weight,
theoretical isoelectric point (pI), amino acid composition,
atomic composition, formula, extinction coefficients, estimated
half-life, instability index, aliphatic index, and grand average
of hydropathicity (GRAVY) (66). The molecular weight and
theoretical pI were computed by user-entered sequences. The
amino acid and atomic compositions were self-explanatory. The
extinction coefficient of a protein was based on information
about its amino acid composition. The instability index of a
protein indirectly indicated the stability of the protein. If the
computed instability index of protein was <40, it was regarded
as a stable protein, while values >40 were regarded as unstable.
In vivo half-life evaluation of proteins was based on the principle
of the “N-end rule.” Furthermore, GRAVY is a measurement of
the hydrophobic nature of the protein, which is calculated by
determining the total hydropathy of all amino acids divided by
the number of amino acid residues in the protein.

To avoid inducing pathogenic priming and autoimmunity, the
sequence homology of the final vaccine to human protein was
screened by BLASTp online server (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) (67). An ideal vaccine should have non-sequence
to human proteins.

Prediction, Refinement, and Quality
Assessment of the Tertiary Structure of the
Developed Vaccine Construct
The designed vaccine was a reconstructed protein with no
detectable homology (29). Phyre2 incorporates an ab initio
folding simulation to model regions of proteins with no
detectable homology. The Phyre 2 server (http://www.sbg.bio.
ic.ac. uk/phyre2/) was used to predict the three-dimensional
structure of the designed vaccine. The server generates a full-
length 3D model of a protein sequence by employing both
multiple template modeling and simplified ab initio folding
simulation (29).

To enhance the overall and partial structural quality of the
protein, the output 3D structure of the final vaccine from the
Phyre 2 server was further refined by the GalaxyRefine server
(http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE)
(30). The GalaxyRefine server predicted five refined models of
our developed vaccine construct, in which Model 1 was made
by the structural perturbation based simply on the clusters of
the side chains; whereas, Models 2–5 were generated by deeper
perturbations of loops and secondary structural elements (30).
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For the assessment of the tertiary structure of the final
vaccine protein, a Ramachandran plot was performed by
the SWISS-MODEL workspace (https://swissmodel.expasy.org/
assess) (31). The Ramachandran plot illuminates favored regions
for backbone dihedral angles against amino acid residues in
protein structure (31). The Structure Assessment page shows
the most relevant scores provided by Molprobity and help we
easily identify where residues of low quality lie in their model
or structure (31). Then, ProSA-web (https://prosa.services.came.
sbg.ac.at/prosa.php) was employed in the final vaccine protein
structure validation. A positive Z-score commonly means an
erroneous or erratic section found in the generated 3D protein
model (68).

Molecular Docking of the SARS-CoV-2
Vaccine Construct With the Related
Antigenic Recognition Receptor
To revealing the binding affinity between the vaccine construct
and antigenic recognition receptors of toll-like receptor-3
(TLR3, 2A0Z) and major histocompatibility complex (MHC-
I, 4WUU, and MHC-II, 3C5J) present on the surface of
immune cells (69). Docking analysis was performed using the
ClusPro server (https://cluspro.bu.edu/login.php?redir/queue.
php). TLR3 act as receptors for antigenic recognition. The
ClusPro server computed the models based on electrostatic
interactions and desolvation energy (69). To reconfirm the
binding affinity of the designed vaccine construct between these
receptors, the PatchDock server (https://bioinfo3d.cs.tau.ac.il/
PatchDock/) was used for docking (70). The server predicted the
potential complex with the help of three algorithm-molecular
shape representations, surface patch matching, filtering, and
scoring (70). After the acquisition of the output from the
PatchDock server, the complexes were refined by the FireDock
algorithm, which predicted the optimal complex with the aid of
energy functions (70).

Molecular Dynamic Simulation
The pdb file of vaccine protein and receptor complex (TLR3,
MHC-I, and MHC-II) were used to start the molecular
dynamic (MD) simulations. The complexes were placed in a
octahedron box of water molecules represented by the three-
point charge SPC model, whose boundary is at least 10 Å
from any protein atoms. The solvated protein was subsequently
neutralized by chloridions. Covalent bonds involving hydrogen
atoms were constrained using the LINCS algorithm, and long-
range electrostatic interactions were treated with particle-mesh
Ewald employing a real-space cutoff of 10 Å. The system
was first briefly minimized with backbone atoms restrained
to the initial coordinates to remove close contacts, and
the restrained system was gradually heated to 300K under
constant volume conditions in 100 ps. Each system was
equilibrated for 1 ns using the constant isothermal-isobaric
ensemble at 1 atm and 300K without any restraints. The
Parrinello-Rahman barostat and a V-rescale thermostat were
used with an integration time step of 2 fs. Production run
MD simulations were performed for 10 ns with coordinates

recorded every 10 ps. All simulations were performed using
GROMACS 2018.2 along with the GROMOS96 54a7 force
field (16, 24).

Codon Adaptation and in silico Cloning
For the purpose of cloning, codon adaptation of the designed
vaccine was performed for analyzing the codon usage by
the prokaryotic organism (Escherichia coli, E. coli). The
Java Codon Adaptation tool (http://www.jcat.de/) was used
to optimize codon (71). Then the secondary structure of
mRNA was predicted by Mfold (http://unafold.rna.albany.edu/?
q=mfold) (72). For raising the expression efficiency of the
final vaccine protein, the E. coli K12 strain was chosen. For
the valid translation of the vaccine gene, we proofread and
avoided rho-independent transcription termination, prokaryote
ribosome binding site, and cleavage site of restriction enzymes.
Restriction endonuclease sites XhoI and BamHI were appended
to N and C terminals of vaccine, respectively. Then, it was
inserted into the pET28a (+) vector between the XhoI and
BamHI. The flow chart of the designed work is shown
in Figure 1.

RESULTS

The strategy of vaccine construction is presented in Figure 1.

Antigenicity Analysis of SARS-CoV-2 and
Selection of Protein Sequences for Vaccine
Construction
The proteome of SARS-CoV-2 was retrieved, which comprised
27 proteins. The reference sequences of those proteins
were retrieved in the FASTA format and their details are
presented in Table 1. Five proteins with <100 amino acid
sequences are too short to predict epitopes (ORF6 protein,
ORF10 protein, ORF7b protein, nsp11, and envelope protein)
were excluded.

In order to develop a subunit vaccine, it is critical to
identify candidate proteins that are important for inducing a
protective immune response (27). The remaining 22 proteins
sequence were relayed to the VaxiJen server to determine their
antigenicity based on the antigenic scores (Table 1). Proteins
with antigenic scores >0.5 were selected for further analysis (28).
Nine proteins, namely ORF7a protein, ORF8 protein, nsp9, nsp6,
nsp3, endoRNAse, ORF3a protein, membrane glycoprotein, and
nucleocapsid phosphoprotein were finally selected for further
epitope prediction.

There is no available experimental structures of these nine
proteins, we predicted homology models for the nine proteins
applying the normal mode of phyre2 online server. The most
suitable templates for the nine proteins were identified to be
the PBD entries (Table S1). All of the modeled structures were
showed over 90% residues in the Ramachandran favored region
Figure S1 and Table S2.

Identification of Cytotoxic T Cell Epitopes
The prediction of CTL epitopes (9 mer) was performed by the
NetCTL server. The binder sites were determined based on
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FIGURE 1 | Flow diagram of design strategy, representing the steps of the construct of the multi-epitope subunit vaccine.

three supertypes (A2, A3, and B7), with a 95% coverage rate
of the world’s population. Nine proteins were selected based
on antigenicity. One epitope of each supertype was selected
based on the highest score and an IC50 value < 500 nm.
Then the specific Treg-inducing epitopes were excluded by
Epitoolkit. A total of 18 epitopes were selected from nine
proteins as the candidates for the construction of the vaccine
(Table 2).

Identification of Helper T Lymphocyte
Epitopes
The HTL epitopes (15 mer) were evaluated for three HLA
supertypes: HLA-DR (DRB1∗01:01, DRB1∗07:01, DRB1∗09:01,
DRB3∗01:01, DRB4∗01:01); HLA-DQ (DQA1∗01:01/DQB1∗

05:01, DQA1∗01:02/DQB1∗06:02, DQA1∗03:01/DQB1∗

0:02, DQA1∗04:01/DQB1∗04:02, DQA1∗05:01/DQB1∗02:01,
DQA1∗05:01/DQB1∗03:0 1); and HLA-DP (DPA1∗01/DPB1∗

04:01, DPA1∗01:03/DPB1∗02:01, DPA1∗02:01 /DPB1∗01:01,
DPA1∗02:01/DPB1∗05:01, DPA1∗03:01/DPB1∗04:02). We sorted
the top epitopes with the lowest scores (low scores indicated
the highest binding capability) from three supertypes. The best
candidate was then selected based on positive IFN-γ induction
and an IC50 < 500 nm. Then the specific Treg-inducing epitopes
were excluded by Epitoolkit. Thus, a total of 14 epitopes were
selected for vaccine design (Table 3).

Identification of Line and Conformational
B-Cell Epitopes
We used the ABCpred and BepiPred servers to identify the line B
cell candidate epitopes. All predicted epitopes from both servers
were compared, and only the overlapping epitopes were selected
for the development of the vaccine. The line epitopes identified
by ABCpred had prediction scores ranging from 0.52 to 0.93,
and line epitopes identified by BepiPred had prediction scores
ranging from 0.5 to 1. Among these line epitopes, only 12 (16
mer) were found to be common or partly common in both
servers (Table 4). These 12 line epitopes were selected for vaccine
construction (Table 4).

The non-continuous B cell epitopes were predicted by the
ElliPro severs, a total number of 27 non-continuous B cell
epitopes were generated from ElliPro. Amino acid residues,
sequence location, the number of residues, and the PI scores
of the predicted conformational epitopes are shown in Table 5

and the graphical depiction of these epitopes can be seen in
Figure S2. Twenty-four epitopes were excluded because it added
the allergenicity of vaccine, three epitopes were marked red and
selected for vaccine construction.

Construction of the Subunit Vaccine
The best candidate epitopes were used for the construction of
the vaccine. A total of 18 CTL epitopes, 14 HTL epitopes, 12
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TABLE 2 | Predicted cytotoxic T lymphocyte (CTL) epitopes of SARS-CoV-2

proteins utilized for the construction of a multi-epitope subunit vaccine.

Protein CTL epitopes predicted using the NetCTL server

A2 supertype

(IC50)

A3 supertype

(IC50)

B7 Supertype

(IC50)

ORF7 protein KLFIRQEEV

(58.81)

TLCFTLKRK

(219.46)

SPIFLIVAA

(231.29)

nsp9 ALLSDLQDL

(8.28)

nsp6 FLLPSLATV (2.7) SAFAMMFVK

(92.76)

MPASWVMRI

(171.46)

nsp3 VMYMGTLSY

(72.50)

endoRNAse LLLDDFVEI

(21.12)

SPFGHSLTL

(10.75)

ORF3a protein IMRLWLCWK

(98.03)

IPIQASLPF (13.56)

Membrane

glycoprotein

GLMWLSYFI

(11.32)

LSYFIASFR

(138.74)

LPKEITVAT

(244.01)

Nucleocapsid

phosphoprotein

LLLDRLNQL

(84.26)

KTFPPTEPK

(69.08)

FPRGQGVPI

(3.82)

The half-maximal inhibitory concentration (IC50) value was > 500 nm, which ensured a

higher binding capability of the selected epitopes to MHC molecules.

linear, and three non-continuous B cell epitopes were fused
together with the aid of linker sequences. The CTL epitopes
were linked by AYY (The AAY liner helps the epitopes produce
suitable sites for binding to TAP transporter and enhances
epitope presentation), the HTL epitopes were combined with
the aid of GPGPG (The GPGPG linker stimulate HTL responses
and conserve conformational dependent immunogenicity of
helpers as well as antibody epitopes), and B cell epitopes
were merged with the aid of KK. The final to enhance
vaccine immunogenicity, the human β-defensin-3 sequence
(45aa) and pan-HLA DR binding epitopes (The pan-HLA DR
binding epitopes in vaccine construct facilitating binding to
many different types of mouse and human MHC-II alleles
to induce CD4-helper cell responses.) was added to the N-
terminal of the vaccine with the aid of the EAAK linker.
To enable the intracellular delivery of the modeled vaccine, a
TAT sequence (11aa) was appended to C-terminal. The vaccine
was developed to be 864 amino acids in length (Figure S3).
The sequence homology of final vaccine protein to human
protein sequence shown that there were no significant alignments
(Figure S4).

Evaluation of Allergenicity, Antigenicity,
and Physiochemical Parameters of the
Vaccine
The allergenic character of the vaccine was determined by the
AlgPred server and was based on the hybrid approach (SVMc +
IgE epitope + ARPs BLAST + MAST) with a 93.5% coverage.
The vaccine was non-allergen with 84% accuracy and 82.78%
sensitivity at threshold value was −0.2. Similarly, the antigenic

TABLE 3 | Predicted Helper T lymphocyte (HTL) epitopes of SARS-CoV-2

proteins utilized for the construction of a multi-epitope subunit vaccine.

Epitope Allele (score) IC50

ORF8 protein

HFYSKWYIRVGARKS HLA-DRB1*07:01 (0.06)

HLA-DRB1*01:01 (0.07)

32.2

39.5

DFLEYHDVRVVLDFI HLA-DQA1*05:01/DQB1*02:01 (0.01)

HLA-DQA1*01:01/DQB1*05:01 (0.5)

276

101.9

IHFYSKWYIRVGARK HLA-DPA1*02:01/DPB1*01:01 (0.01)

HLA-DPA1*03:01/DPB1*04:02 (0.02)

HLA-DPA1*01:03/DPB1*02:01 (0.09)

281.8

42.8

79.4

nsp9

KGLNNLNRGMVLGSL HLA-DQA1*05:01/DQB1*03:01 (0.04)

HLA-DQA1*01:02/DQB1*06:02 (0.62)

62

95

GPKVKYLYFIKGLNN HLA-DPA1*01:03/DPB1*02:01 (0.01)

HLA-DPA1*02:01/DPB1*05:01 (0.02)

HLA-DPA1*02:01/DPB1*01:01 (0.52)

61

79.7

109.3

nsp3

TAFGLVAEWFLAYIL HLA-DQA1*05:01/DQB1*02:01 (0.01)

HLA-DQA1*01:01/DQB1*05:01 (0.14)

50

46.4

AAIMQLFFSYFAVHF HLA-DPA1*01:03/DPB1*02:01 (0.01)

HLA-DPA1*01/DPB1*04:01 (0.01)

HLA-DPA1*02:01/DPB1*01:01 (0.02)

8.7

78.5

110.8

endoRNAse

MEIDFLELAMDEFIE HLA-DQA1*03:01/DQB1*03:02 (0.01)

HLA-DQA1*05:01/DQB1*02:01 (0.03)

HLA-DQA1*01:01/DQB1*05:01 (0.07)

97.6

12.9

37.9

GLAKRFKESPFELED HLA-DPA1*01/DPB1*04:01 (0.02)

HLA-DPA1*02:01/DPB1*05:01 (0.12)

108.6

453

ORF3a

ACFVLAAVYRINWIT HLA-DRB1*07:01 (0.01)

HLA-DRB1*01:01 (0.02)

19.9

12.4

membrane glycoprotein

ACFVLAAVYRINWIT HLA-DQA1*05:01/DQB1*02:01 321.4

KLIFLWLLWPVTLAC HLA-DPA1*03:01/DPB1*04:02 (0.01)

HLA-DPA1*02:01/DPB1*01:01 (0.52)

HLA-DPA1*01:03/DPB1*02:01 (0.75)

187.6

133.8

21.3

DDQIGYYRRATRRIR HLA-DRB1*01:01 (0.01)

HLA-DRB1*07:01 (0.01)

HLA-DRB3*01:01 (0.01)

223

43

79.2

nucleocapsid phosphoprotein

GKMKDLSPRWYFYYL HLA-DPA1*01:03/DPB1*02:01 (0.08) 194.7

The half-maximal inhibitory concentration (IC50) value was < 500 nm, which ensured a

higher binding capability of selected epitopes to MHC molecules.

nature of the vaccine construct was evaluated and showed that
the protein was a favorable antigen with a global prediction
score of a protective antigen of 0.5308 (Probable antigen).
The default threshold value for antigenicity was 0.4 in the
virus model.

Moreover, the vaccine constructs contained 864 amino acids,
and its molecular weight was 95.4 kDa. The theoretical pI
was predicted to be 9.71. The vaccine contained 63 negatively
charged residues and 125 positively charged residues. The vaccine
construct was composed of 13,541 atoms, and its chemical
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TABLE 4 | Predicted line B cell (BCL) epitopes of SARS-CoV-2 proteins utilized for

construction of a multi-epitope subunit vaccine.

Protein Sequence Start position Score

ORF7 protein SGTYEGNSPFHPLADN 37 0.92

ORF8 protein KSPIQYIDIGNYTVSC 68 0.88

HFYSKWYIRVGARKSA 40 0.87

nsp9 KGPKVKYLYFIKGLNN 81 0.93

AGTTQTACTDDNALAY 16 0.91

endoRNAse DFLELAMDEFIERYKL 212 0.76

ORF3a protein TSPISEHDYQIGGYTE 176 0.93

Membrane HVQIHTIDGSSGVVNP 243 0.91

glycoprotein YRIGNYKLNTDHSSS 199 0.69

NGTITVEELKKLLE 5 0.61

Nucleocapsid phosphoprotein KSAAEASKKPRQKRTA 249 0.93

EGALNTPKDHIGTRNP 136 0.93

formula was C4395H6791N1153O1174S28. The computed instability
index was 32.84, which was <40, classifying the vaccine as a
stable protein. The estimated half-life was 1 h in vitro. In vivo,
the estimated half-lives in yeast and Escherichia coli are greater
30min and 10 h, respectively. The aliphatic index of the vaccine
construct was 79.29, which suggests a high thermostability.
The GRAVY value of the vaccine construct was −0.215, which
indicated the hydrophobicity of the protein.

The Immune Response Profile in silico

Immune Simulation
The immune stimulation of the final vaccine was performed
using C-ImmSim online server, which gives the immune profiles
of the designed vaccine. The proliferation in the secondary
and tertian immune response were identified by IgG1 + IgG2
and IgM, as well as, the decreasing of the antigen count IgG
+ IgM showed the proliferated (Figure 2A). The stimulation
result revealed the development of immune response after
immunization. B cell population was highly stimulated upon
immunization (Figure 2B). Similarly, the cytotoxic and helper
T cell levels were proliferated that suggested the development of
secondary and tertian immune response (Figures 2C,D). During
the exposure time, it was also observed that the production
of IFN-γafter immunization (Figure 2E). These results were
significant for the immune response against SARS-CoV-2. Hence,

Prediction, Refinement, and Quality
Assessment of the Tertiary Structure of the
Developed Vaccine Construct
The tertiary structure of the full-length vaccine sequence was
predicted by Phyre 2, and it was applied for refinement
and further analysis. Twenty-five templates were employing
modeling as Figure S5 shown. There were three templates
from human defensin which were we added in to enhance the
immunogenicity, others from virus (Figure S5). The immune
epitopes were not structural homology to human proteins that
could avoid inducing autoimmune. The secondary structure of

the predicted model contained 18% alpha-helix, 21%TM helices
44% beta-sheets, and 27% disordered Figure S6.

To optimize the 3D structure of the modeled protein, the
initial model was refined in the GalaxyRefine server. The
GalaxyRefine server-generated five models based on the root-
mean-square deviation (RMSD) and MolProbity algorithm. The
details of the five models are shown in Table S3. Model 1
with the top Ramachandran favored, therefore selected for
docking purposes (Figure 3). A model with more residues in
the Ramachandran favored region, less in outliers region and
rotamer region was considered as a more ideal one. The initial
model generated from Phyre 2 server and refine model from
GalaxyRefine were evaluated with the aid of the SWISS-MODEL
workspace. The initial model was 63.46% of residues in the
Ramachandran favored region, 19.49% in the Ramachandran
outliers region, and only 10.22% in the rotamer region (Figure 4).
The refine model was 89.1% of residues in the Ramachandran
favored region, 2.09% in the Ramachandran outliers region, and
only 0.15% in the rotamer region (Figure 3). Other favorable
parameters of the refined model were as follows: GDT score of
0.9922, RMSD value of 0.260,MolProbability of 2.049, clash score
of 8.9, and poor rotamers totaling 0.3 (Table S1).

The quality and potential errors in the final vaccine 3D model
were verified by ProSA-web. The Z-score indicates overall model
quality, the model with a lower Z-score was considered as the
higher quality one. The z-score of the initial model was −2.81,
refine model is−3.64 (Figure 5).

Molecular Docking of Final Vaccine
Construct With the Relatively Antigenic
Receptor
To further evaluate the binding affinity between the developed
vaccine construct and the relative antigenic receptors (TLR3,
MHC-I, and MHC-II), molecular docking was performed. The
server yielded 44 candidate models with different binding
energies. Twenty-nine model complexes of TLR3 and COVID-
19 vaccine were determined, from which just one complex with
the lower binding energy score of −1156.2 was selected to
show (Table 6 and Figure 6). A total of 29 model complexes of
MHC-I and the COVID-19 vaccine were discovered, and the
lowest binding energy score was−1346.8 (Table 6 and Figure 6).
A total of 29 complex models of MHC-II and the COVID-
19 vaccine were predicted, among which, one model complex
with the lowest binding energy score of −1309.1 was chosen to
show (Table 6 and Figure 6). Further, the vaccine construct was
evaluated using the PatchDock server, which identified different
models and produced a score table. The top 10 complexes
identified were refined by the FireDock algorithm. Among those
top 10 models, the model with the lowest binding energy was
further selected to show in this paper. The refinement outcomes
of TLR3 and the vaccine complex was solution number 1 with
global energy of −38.40, attractive van der Waals energy (VdW)
of−26.02, repulsive (VdW) of 8.62, and atomic contact energy of
−11.06 (Table 6 and Figure 6). The complex of MHC-I and the
vaccine was ranked number nine, with global energy of −22.97,
attractive VdW of −26.84, repulsive VdW of 12.82, and atomic
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TABLE 5 | Predicted conformational B cell (BCL) epitopes of SARS-CoV-2 proteins.

R Residues NO. score

ORF7a protein

1 R25, G26, T27, T28, L30, K32, E33, P34, C35, S36, S37, G38, P45, H47, P48, L49, A50, D51, N52, K53, C58, C67, P68, D69,

G70, V71, R80, S81, V82, S83, P84, K85, L86, F87, I88, R89, E91, E92, E95, L96

40 0.675

ORF8 protein

2 C37, P38, I39 3 0.558

3 Q23, S24, C25, T26, Q27, H28, Q29, P30 8 0.556

nsp9

4 K58, S59, D60, G61, T62, G63, T64 7 0.831

5 D47, V76, D78, T79, P80, K81, G82, P83, K84, V85, G104, A107, A108, T109, V110, R111, 17 0.729

6 N1, N2, E3, L4, S5, P6, V7, A8, L9, T34, T35, K36, G37, G38, E70, K92, G93, L94, N95, N96, L97 21 0.659

7 T18, T19, Q20, T21, A22, C23, T24, D25, L48, Q49, D50, L51 12 0.647

nsp6

8 G258, L259, L260, P261 4 0.786

9 L275, L276, G277, V278, G279, G280, K281, P282, C283, I284 10 0.641

nsp3

10 S675, S676, K677, T678, P679, E680, E681, H682, F683, I684, E685, T686, I687, S688, L689, A690, G691, S692, Y693, K694,

D695, W696, S697, Y698, S699, G700, Q701, S702, T703, Q704, L705, G706, I707, E708, F709, L710, K711, R712, G713, D714,

K715, S716, V717, Y718, Y719, T720, S721, N722, P723, T724, T725, F726, H727, L728, D729, G730, E731, V732, I733, T734,

F735, D736, N737, L738, L741, R745

66 0.818

11 N922, L923, D924, S925, C926, K927, R928, V929, L930, N931, V932, V933, C934, K935, T936, C937, G938, Q939, Q940,

Q941, T942, T943, L944, K945, G946, K962, K963, G964, V965, Q966, I967, P968, C969,T970, C971, G972, K973, Q974, A975,

T976, K977, Y978, L979, V980, Q981, Q982, E983, S984, P985, F986

50 0.719

12 K839, P841, Q842, V843, N844, G845, L846, T847, W851, A852, D853, N854,N855, C856, L956, S957, A991, P992, P993, A994,

Q995, Y996, E997, L998, K999, H1000, G1001, T1002, F1003, T1004, E1008, Y1009, T1010, G1011, N1012, Y1013, Q1014,

C1015, G1016, H1017, K1019, T1022, S1023, K1024, E1025, T1026, L1027, Y1028, C1029, I1030, D1031, G1032, A1033,

L1034, L1035, T1036, K1037, S1038, S1039, E1040, Y1041, K1042, G1043, P1044, I1045

65 0.648

13 D806, D807, T808, L809, V811, E812, F814 7 0.62

14 K1051, E1052, N1053 3 0.602

endoRNAse

15 S1, L2, E3, N4, V5, A6, F7, N8, V9, V10, N11, K12, G13, H14, F15, D16, G17, Q18, Q19, G20, E21, V22, P23, V24, S25, I26, I27,

N28, N29, T30, V31, Y32, T33, K34, V35, D36, G37, V38, D39, V40, E41, L42, E44, N45, K46, T47, T48, L49, P50, V51, N52

51 0.755

16 E145, G146, S147, V148, K149, G150, L151, G169, E170, A171, V172, K173 12 0.707

17 L200, P205, S207, M209, I211, D212, L214, E215, L216, A217, M218, D219, E220, F221, I222, E223, R224, Y225, L227, E228,

G229, Y230, A231, F232, E233, H234, I235, Y237, G238, D239, F240, S241, H242, S243, Q244, L245, G246, K256, R257, F258,

K259, E260, S261, P262, E264, F279, T281, D282, A283, Q284, T285, G286, S287, S288, K289, C290, K307, S308, Q309, D310,

L311, S312, V313, V314, S315, K316, V317, M330, L331, W332, C333, K334, D335, G336, H337, V338, E339

77 0.699

18 T98, I99, G100, C102, S103, M104, T105, D106, I107, A108, K109, K110, P111, T112, E113, T114, I115, C116, A117, P118,

L119, T120, G125, R126, V127, D128, G129, V131, D132, L133, F134, R135, N136, A137, R138, N139, K181, V182, D183, G184,

V185, V186, Q187

45 0.655

19 Q152, P153, S154 3 0.581

ORF3a

20 H78, C81, N82, L83, L84, L85, L86, F87 8 0.69

21 V97, A98, A99, G100, L101, E102, F105, Y109 8 0.668

22 Q70, L71, K75 3 0.613

Membrane glycoprotein

23 N21, L22, V23, I24 4 0.731

24 N5, G6, T7, I8, T9, V10, E11, K 8 0.588

Nucleocapsid phosphoprotein

25 K338, L339, D340, D341, K342, D343, P344, N345, F346, K347, D348, V350, I351, N354, I357 15 0.747

26 G316, M317, S318, R319, I320, G321, M322, E323, V324, T325, P326, S327, G328, T329, W330, L331, G335 17 0.689

27 A252, E253, A254, S255, K256, K257, P258, K261, R262, A264, T265, K266, A267, Y268, N269, Q272, G278, P279, E280, T282,

Q283, N285, G287, D288, Q289, E290, R293, Q294, D297, Y298, K299, H300, D358, A359, Y360, K361, T362, F363, P364

36 0.567
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FIGURE 2 | Immune Simulation results by C-ImmSim. (A) The immunoglobulins production represent proliferation of immune response after the vaccine

administration. Various subtypes of immunoglobulin are represented as colored peaks. (B) The active B-cell population is observed with the administration of vaccine.

(C) The generation of Helper-T cells. (D) The generation of cyototoxic-T cells were found after the vaccine injection. The RESTING indicates to the cells, which were

not shown to the antigens while ANERGIC indicates the tolerance level of antigen. (E) The cytokine profile shows that the induced IFN-γlevel upon administration of

vaccine. The inset graph indicating the Simpson Index, D of IL- 2. Simpson Index, D was inferred as the measurement of diversity.

contact energy of −1.79 (Table 6 and Figure 6). The complex
of MHC-II and the vaccine was ranked number three, with
global energy of −27.52, attractive VdW of −26.86, repulsive
VdW of 10.93, and atomic contact energy of 0.77 (Table 6
and Figure 6).

Molecular Dynamic Simulation
To accomplish the estimate of the stability of the vaccine-
receptor complex, we performed the simulation of the docked
complexes (vaccine and TLR-3, MHC-I, and MHC-II) with
the help of GROMACS. Then, various analysis like energy
minimization, pressure assessment, temperature, and potential
energy calculations were performed. The temperature and
pressure of the simulation system during the production run
was around 300K and 1 atmosphere, respectively, indicating
a stable system and successful md run. The temperature and
pressure of the three simulation systems (vaccine and TLR-3,
MHC-I, and MHC-II complexes) during the production run
were around 300K and 1 atmosphere, respectively, indicating
the stable systems and successful MD run (Figures 7A–F). The
complex root mean square deviation (RMSD) plot represents
the structural fluctuation of the overall structure of the complex
of vaccine and immune receptor. The RMSD of vaccine-TLR3
complex has large fluctuation during 0–6 ns simulation. After 6
ns, the RMSD value was kept around 1.25 nm, indicating that the

FIGURE 3 | Refinement of the SARS-CoV-2 vaccine construct. Representative

3D image of the tertiary structure of the 2019nCOV vaccine after modeling.

conformation of this complex was stable (Figure 7G). Otherwise,
the RMSD of vaccine-MHC-I and -MHC-II complexes has large

Frontiers in Immunology | www.frontiersin.org 10 July 2020 | Volume 11 | Article 1784

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Dong et al. Contriving COVID-19 Vaccine by Immunoinformatics

FIGURE 4 | Ramachandran plots to initiate and refine the 3D structure of the vaccine construct illustrated using the SWISS-MODEL/Structure Assessment. (A)

Shows the Ramachandran plot of initiate model, (B) shows the Ramachandran plot of refining the model.

FIGURE 5 | Z-Score plot for the 3D structure of the final vaccine. The Z-score of (A) the initial model is 2.81 and (B) The z-score of the refined model is 3.64, both of

two models not in the range of native protein conformation. Z-Score plot contains z-scores of all experimental protein chains in PDB determined by NMR

spectroscopy (dark blue) and X-ray crystallography (light blue).

fluctuation during 0–4 ns simulation. After 4 ns, the RMSD
value were kept around 1 nm, indicating that the conformation
of the two complexes were stable (Figures 7H,I). Next, the

root medium square fluctuation (RMSF) indicates the flexibility
of the residue in the docking complex. From the results of
vaccine-TLR3, MHC-I, andMHC-II complexes, residue 200–600
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TABLE 6 | Molecular docking of final vaccine constructs with TLR3, Mda5, and MHC-II.

Receptor ClusPro FireDock

Center Lowest energy Globa aVdWb rVdWc ACEd

TLR3 −1156.2 −1416.4 −38.40 −26.02 8.62 −11.06

MHC-I −1346.8 −1379.8 −22.97 −26.84 12.82 −1.79

MHC-II −1309.1 −1389.3 −27.52 −26.86 10.93 0.77

aGlob, Global Energy.
baVdW, attractive van der Waals energy.
crVdW, repulsive van der Waals energy.
dACE, atomic contact energy.

FIGURE 6 | Representation of the ligand-receptor docked complex. (A,C,E) show the molecular docking of the vaccine construct (red color) and TLR-3, MHC-I, and

MHC-II receptors (other colors) illustrated using the ClusPro software. (B,D,F) show the molecular docking of the vaccine construct (red color) and TLR-3, MHC-I, and

MHC-II receptors (other colors) illustrated using PatchDock to verify the stability of the docked complex.
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FIGURE 7 | The results of molecular dynamics simulation of vaccine and immune receptors. (A–C) show the equilibration phase ensembles-temperature (constant at

300 k for 100 ps) of the complex of vaccine-TLR3, MHC-I, and MHC-II, respectively. (D–F) represent the pressure (displaying fluctuations at 1 bar value for 100 ps) of

the complex of vaccine-TLR3, MHC-I, and MHC-II, respectively. (G–I) suggest the RMSD (root mean square deviation) plots reflect the stability between the vaccine

and TLR-3, MHC-I, and MHC-II receptor, separately. Whereas, (J–L) RMSF (root mean square fluctuation) reflect the flexibility and fluctuation of the amino-acids

residues in the side chain of docked complexes (the complex of vaccine-TLR3, MHC-I, and MHC-II), separately.

has low RMSF value, indicating these residues has low structural
flexibility. By contrast, residue 0–200 and 600–800 has relatively
higher RMSF value, indicating the larger flexibility during those
regions (Figures 7J–L).

In silico Cloning and Prediction of RNA
Secondary Structure
To fuse the final vaccine to an expression vector, codon
conversion of the vaccine protein was performed by the Java
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FIGURE 8 | In silico cloning of the SARS-CoV-2 vaccine in the vector, pET28a (+). Red areas represent the COVID-19 vaccine, while the black areas represent the

expression vector, pET28a (+).

Codon Adaptation tool. Restriction site XhoI and Bam HI were
added to N and C terminals of the codon sequence, then was
inserted into the pET28a (+) vector between the XhoI and
BamHI (Figure 8). The RNA secondary structure using the
Mfold program was generated foldings contain 4,381 base pairs
out of 2.3% in the energy dot plot. Mfold predicted an identical
secondary structure of 4,381 bp formed by nucleotide fragments
(Figure S7).

DISCUSSION

SARS-CoV-2 is characterized by high infectivity and high
transmission speed; thus, a prophylactic vaccine is needed
(11). The availability and advantages of the multi-peptide

vaccine developed by immunoinformatics methods have been
confirmed by previous studies (73, 74). Ojha et al. used the
immunoinformatics methods to develop a multiepitope subunit
vaccine to Epstein-Barr virus-associated malignancy (73). In
recent studies, genomics and proteomics information of SARS-
CoV-2 have been retrieved, stored, and utilized (75, 76). In
the present research, we tried to develop a multi-epitope
subunit prophylactic vaccine of SARS-CoV-2, with the help of
immunoinformatics tools.

A line of research have tried to develop the vaccine of SARS-
CoV-2 by immunoinformatics tools. Baruah and Bose (15) used
immunoinformatics tools to discover cytotoxic T lymphocyte
(CTL) and B cell epitopes for the spike protein of SARS-CoV-2.
Then, Abraham et al. developed a multi-epitope vaccine that was
designed using immunoinformatics tools that potentially trigger
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both CD4+ and CD8+ T-cell immune responses (16). Most of
those research just focus on the spike protein-based vaccine.
A vaccine based on the spike protein could induce antibodies
to block SARS-COV-2 binding and fusion or neutralize virus
infection (18), as well as induce harmful immune responses
that cause liver damage (19). Other proteins should be ideal
candidates for designing vaccines.

In the present report, we selected nine proteins with positive
antigenicity for further epitope prediction. All proteins from
SARS-CoV-2 with <100 amino acid sequences were excluded,
and the antigenic nature of the remaining proteins was evaluated.
This method can facilitate the discovery of potential antigens
of SARS-CoV-2 when the precise immunity mechanisms are
unknown. To design an effective vaccine, we selected the
SARS-CoV-2 protein through the above-mentioned methods for
epitope prediction. In recently, Asaf et al. reported that identify
multiple epitopes for CD4 + 12 and CD8 + T cells based on
muti-protein (77). Their protein list was the same as this in our
research. In Asaf ’s report, they just predicted the T cell epitopes,
non-B cell, B cell peptide was not predicted (77).

The B cell epitopes are antigenic determinants from the
antigen that are recognized by the B cell surface membrane
receptor and evoke the production of specific antibodies. The
persistent challenge in immunological prediction tools is the
prediction of epitopes to a higher level of accuracy (78). To
determine accurate linear B cell epitopes from the antigenic
proteins, we used two bioinformatics tools based on different
algorithms of prediction. We identified nine overlapping linear
B cell epitope candidates from two different bioinformatics tools.
This method was superior to the prediction of epitopes from
a single tool (78). Moreover, we also have predicted the non-
continue B-cell epitopes.

The B cell immune response is preferred in the design
of a vaccine. However, T cells may also elicit a strong
immunoreaction. The vaccine that activates both CTLs andHTLs
should be more effective than a vaccine that only targets CTL
responses (79). To generate amore effective vaccine, we predicted
both CTL epitopes and HTL epitopes. The T cell epitopes were
decomposed fragments from the antigen presented by the MHC
molecules of T cells and stimulated the production of effector
T cells, immunological memory T cells, and IFN-γ. The cell-
mediated immune response induced by CTLs plays a vital role
in the defense against viral infections through the recognition of
intracellular viral pathogens by MHC class I molecules.

In the present report, MHC-I binding epitopes were predicted
by choosing A2, A3, and B7 alleles, which cover∼95% of world’s
population. We selected 18 CTL epitopes. The HTLs play a
vital role in the antiviral immune response by producing IFN-γ.
Moreover, HTLs are able to induce and maintain CTL responses.
Furthermore, 14 HTLs epitopes were chosen based on both
the binding capability and IFN-γ induction. Bhattacharya et al.
also used the spike protein sequence predicted for MHC-I and
MHC-II epitopes of SARS-CoV-2, but not predicted capability
of producing IFN-γ (80). The T cell epitopes enhanced IFN-γ
inducing capability, which evokes both the native and specific
immune responses by activating macrophages and natural
killer cells, and augmenting the response of the MHC to the
antigen (81, 82).

In this study, the immunogenic epitopes from B cells, CTLs,
and HTLs were chosen to develop a more valid, reliable, and
effective vaccine against SARS-CoV-2. A multiepitope approach
was used by splicing together epitopes with the aid of their
respective linkers. To improve the immunogenicity of this
multiepitope vaccine, an adjuvant β-defensin and pan-HLA DR
binding epitopes (13aa) were fused to the N-terminal with
the aid of an EAAAK linker, then A TAT sequence (11aa)
was appended to C-terminal with the added of KK. The
final vaccine constituted 864 amino acids. The allergenicity,
antigenicity, and stability of the designed vaccine constructs
were then evaluated. The tertiary structure of the generated
vaccine was predicted by using the Phyre 2 server and then
refined by the GalaxyRefine server. The binding affinity of
complexes of the developed vaccine and receptors, in which
TLR-3, MHC-I, and MHC-II (present on the surface of the
immune cell) were confirmed by the ClusPro server was based
on molecular docking.

Furthermore, to ensure the translation efficiency of the
designed vaccine in a specific expression system, themRNAof the
vaccine was enhanced with the aid of the Java Codon Adaptation
Tool. The restriction enzyme cutting sites of Xho? and BamH?
were then appended to the N and C terminals, respectively.
The vaccine sequence was subsequently cloned in pET28a (+),
the expression vector. Further experimental validation of the
safety and efficacy of the designed vaccine for SARS-CoV-2
is warranted.
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