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Combined Immunodeficiencies (CID) are rare congenital disorders characterized by

defective T-cell development that may be associated with B- and NK-cell deficiency.

They are usually due to alterations in genes expressed in hematopoietic precursors

but in few cases, they are caused by impaired thymic development. Athymia was

classically associated with DiGeorge Syndrome due to TBX1 gene haploinsufficiency.

Other genes, implicated in thymic organogenesis include FOXN1, associated with Nude

SCID syndrome, PAX1, associated with Otofaciocervical Syndrome type 2, and CHD7,

one of the genes implicated in CHARGE syndrome. More recently, chromosome 2p11.2

microdeletion, causing FOXI3 haploinsufficiency, has been identified in 5 families with

impaired thymus development. In this review, wewill summarize themain genetic, clinical,

and immunological features related to the abovementioned gene mutations. We will also

focus on different therapeutic approaches to treat SCID in these patients.
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INTRODUCTION

The thymus is a primary lymphoid organ which plays a pivotal role in the development of mature
T cells from immature bone marrow CD34+ precursors. Together with the parathyroid glands, it
develops from the 3 pharyngeal pouch (PP) (1). The epithelial components of the thymus derive
from the endothelial layer, while the mesenchymal capsule derives from neural crest, originated
from ectoderma (1, 2). The first stage of thymic development is independent of the transcription
factor forkhead box N1 (Foxn1) expression (3). In this phase, Paired box 1 (Pax1), Eyes absent
homolog 1 (Eya1), sine oculis homeobox (Six), homeobox A3 (Hoxa3), and T-box 1 (Tbx1) drive
the outgrowth of the thymic epithelial anlage from the 3rd PP (1, 4, 5). Hoxa3 and Eya1 are also
implicated in the development of neural crest derivedmesenchymal cells (6–8). Studies suggest that
chromodomain helicase DNA-binding 7 (Chd7) might be implicated in the development of both
neural crest cell-derived mesenchyme and pharyngeal endoderm-derived thymic epithelial cells
(TECs). Pax3 and Hoxa3 expression in mesenchymal cells allows the detachment of the thymic
lobes from the pharynx (9, 10). Thymus development in early and late stages is regulated by the
interactions among various cell types. The thymus three-dimensional (3D) architecture allows a
proper intercellular cross talk (3). In the first phase of organogenesis, mesenchymal cells release
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bone morphogenetic protein 4 (Bmp4), Bmp2, fibroblast and
insulin growth factors (Fgf, Igf), Wnt proteins, and retinoic acid
supporting the differentiation of TECs into cortical (cTECs) and
medullary (mTECs) subsets (7, 8, 11–14). In the second phase,
Foxn1 induces the expression of chemokine (C-C motif) ligand
25 (CCL25), delta like canonical Notch ligand 4 (Dll4), and
Hoxa3, allowing thymocyte recruitment and TECs differentiation
in cTECs and mTECs. Mesenchymal cells are implicated in the
recruitment of hematopoietic thymic seeding progenitors, as
well (15, 16). Thymocytes participate to TECs differentiation
process through the release of epidermal growth factor (Egf)
and lymphotoxin factors (17–19). In support of this, mice with
defective T-cell development show defective organization of
the thymic medulla (20, 21), that is restored after stem cell
transplantation (21, 22).

Bone marrow derived hematopoietic stem cells (HSCs) enter
the thymus through cortico-medullary junction, where they
proliferate (23). The V(D)J rearrangement of the double negative
(DN) thymocytes T-cell receptor β (TCRβ) gene takes place in
the thymic cortex (24, 25). Membrane expression of pre-TCR
complex is necessary for the expression of the co-receptors CD4
and CD8, as well as V-J rearrangement of the TCRα genomic
region (26). Double positive thymocytes with a functional TCR-
αβ receptor capable of binding to self-MHC ligands are positively
selected (27–29). This process is regulated by Prss16 and β5t,
which are expressed in cTECs (30–34). Into medulla, self-
reactive thymocytes are deleted through the negative selection,
a process mediated by dendritic cells and Aire-expressing mTECs
(35, 36). Mutations in genes implicated in different steps of
thymic development, including FOXN1, PAX1, TBX1, CDH7
impair T-cell development in humans (Figure 1). Alterations of
the immune system in these conditions range from an isolated
reduction of T-cell count to severe combined immunodeficiency
(SCID). This review is focused on definition of the role of
different genes implicated in thymus development and of
primary immunodeficiencies (PIDs) due to their deficiency.
Moreover, therapeutic options for PIDs with congenital athymia
are discussed.

GENE FUNCTION AND RELATED
SYNDROME

FOXN1 Deficiency and Nude-SCID
Syndrome
FOXN1 is located on chromosome 17q11.2 and it is composed of
eight exons (30 kb) (37, 38). This gene is a member of the Fox
gene family that comprises different Winged helix transcription
factors implicated in development, metabolism, cancer, and aging
(39). During fetal life, FOXN1 is expressed in mesenchymal and
epithelial cells including liver, lung, intestine, kidney, and urinary
tract. In postnatal life, its expression is restricted to keratinocytes
and TECs (40, 41). FOXN1 is involved in development, function
and maintenance of hair follicles, and TECs (Figure 1) (42–44).
The expression of FOXN1 in TECs leads to the production
of chemokines, such as C-X-C motif chemokine ligand 12
(CXCL12), implicated in the recruitment of hematopoietic

progenitors and of molecules, as DLL4 notch ligand, implicated
in maturation of the progenitors toward the T-cell line (Figure 1)
(45–47). Studies in mice showed that Foxn1 plays a pivotal role
in morphogenesis of the 3D architecture (48, 49) by inhibiting a
basic morphogenetic pattern of tubulogenesis and inducing the
expression of genes that drive TECs differentiation (50). FOXN1
also regulates Prss16 and β5t gene expression, implicated in
positive selection (45, 51). Knockout ofHoxa1, Pax1, Pax9, Eya1,
or Six1 affects Foxn1 expression resulting in impaired thymic
function (52). Foxn1 expression is also regulated by signals from
the surrounding endothelium and mesenchyme, including Bmp4
and Wnt (53, 54).

In epidermis, FOXN1 is expressed in keratinocytes of
suprabasal layer, where these cells stop proliferating and start the
terminal differentiation (55). In keratinocytes, FOXN1 regulates
the transcription of more than 50 genes, including protein kinase
B and C (PKB and PKC). PKC is an inhibitor of human hair
follicle growth in vitro (56–58). It is up-regulated in Foxn1–/–
mice while its activity is suppressed inmice overexpressing Foxn1
gene in which differentiation is inhibited. Studies conducted on
human keratinocytes have confirmed the role of the gene in the
differentiation of the epidermis (58).

Homozyous FOXN1 mutations cause Nude SCID
syndrome, first observed in two Italian sisters presenting
with congenital universal alopecia, nail dystrophy, and severe
T-cell immunodeficiency with rudimentary thymus (59). In
the last few years, neonatal screening and next generation
sequencing techniques have led to the identification of
subjects with novel homozygous, compound heterozygous,
and heterozygous mutations (60). Homozygous patients suffer
from immunodeficiency with susceptibility to pneumonia,
chronic diarrhea, candidiasis or mycobacterial infections, and
Omenn syndrome (59, 61–64). Most of the heterozygous patients
show nail dystrophy, usually presenting as leukonychia and
minor immunological changes (60, 65, 66). Recurrent infections
and atopic dermatitis are observed only in a minority of the
patients (60).

Immunological features in patients with homozygous FOXN1
mutations so far reported include reduction of T lymphocytes,
particularly CD4+ T cells (61–64), reduction of T-cell receptor
excision circles (TRECs) and naive T CD45RA+ lymphocytes,
with increase of T memory CD45RO+ lymphocytes (62–64).
In addition, an increase in the DN CD4-CD8- lymphocytes in
the periphery (61–63), a reduction in CD31+ cells, recently
emigrated from the thymus was observed in few cases (63).
Proliferative response to phytohemagglutinin (PHA) is usually
poor or absent and TCR repertoire is oligoclonal (59, 61–63).
Although natural killer (NK) and B cells are usually numerically
normal, they may be functionally compromised, with impaired
production of specific antibodies. Recent studies proved that
FOXN1 haploinsufficiency, caused by FOXN1 heterozygous
mutations, may be associated with T cell-lymphopenia in infants
showing low TRECs at newborn screening (60). A progressive
normalization of CD4 count is observed in adulthood in
heterozygous subjects while CD8 are usually persistently low
(60). The increase in CD4 levels is associated to persistently
low CD45RA levels suggesting a mechanism of homeostatic
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FIGURE 1 | Genes involved in thymus organogenesis. Eya1, Six, Hoxa3, Tbx1, and Chd7 take part to the first stages of thymus development from neural crest cells

(NCCs) in the posterior part of the 3rd pharyngeal pouch (PP). This step is independent from Foxn1 expression. In the second stage, Foxn1 regulates the expression

of Hoxa3, Dll4, Ccl25, and Cxcl12, necessary for the thymic epithelial cells (TECs) differentiation. During this phase, cTECs (expressing K8 and K18 keratin type) and

mTECs (expressing K5 and K14 keratin type) originate from the same bi-potential TECs progenitor. Chd7 is also critical for the development of cortical and medullary

TECs from pharyngeal endoderm. The crosstalk between TECs and developing thymocytes is required to generate mature TECs and functional T cells.

proliferation. A more significant homeostatic expansion in CD4
than CD8 might explain the difference in CD4 and CD8T cells.
Alternatively, another hypothesis is that FOXN1 dosage plays a
stricter role in the expression of CD8 development genes (60).

PAX1 DEFICIENCY AND
OTOFACIOCERVICAL SYNDROME TYPE 2

PAX1 is a member of a family of genes that encodes transcription
factors implicated in embryogenesis in vertebrates (67). It is
located on chromosome 20p11.22 and contains 5 exons (10Kb)
(67, 68). This gene is expressed in fetal mesenchymal cells in
the body of intervertebral disks and plays an important role
in formation of the segmented vertebral column in humans
(69). In mice, it is also expressed in cochlea and has a role
in hearing process (70). PAX1 is also implicated in thymus
organogenesis by contributing to the outgrowth of the thymic

epithelial anlage from the 3rd PP and to the regulation of
TECs differentiation/survival balance (Figure 1) (71, 72). During
pre-natal life, it is expressed in the 3rd PP from E9.5, while in the
post-natal thymus it is only expressed in cTECs (72) (Figure 1).
In mice, Pax1 deficiency is associated with moderate thymic
hypoplasia (72) that is more severe only when it is associated
with Hoxa3 haploinsufficiency (73). On the contrary, in humans,
PAX1 deficiency is associated with severe thymic hypoplasia,
leading to SCID (74). The difference between human and mouse
phenotype may be due to a compensatory contribution by
murine Pax9 when Pax1 is lacking (75).

Otofaciocervical syndrome (OTFCS) is an autosomal
dominant disorder characterized by short stature, facial
dysmorphism (long face, narrow mandible), shoulder girdle
abnormalities, hearing loss, and mild intellectual disability (76).
Two different forms of OTFCS have been described but thymus
development is only affected in OTFCS2, caused by PAX1
mutations. Different biallelic deleterious PAX1 variants cause

Frontiers in Immunology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 1837

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Giardino et al. Congenital Alterations of Thymic Development

OTFCS2 and SCID, characterized by absent thymic shadow,
chronic diarrhea, recurrent respiratory infections, pneumonia,
and also Omenn Syndrome (74). Different severity of OTFCS2
phenotype is described in different families (70, 71, 77).

The immunological phenotype of patients with OTFC2
was described very recently in six patients who showed
T-cell lymphopenia, impaired proliferative response to
mitogens, and normal levels of B and NK cells. In one of
them, 98% of CD4 and CD8T cells were CD45RO+ cells,
while CD45RA+CD31+ cells and TRECs were undetectable.
TCRVβ analysis showed an oligoclonal spectrum. Lymph
node biopsy of another patient showed absence of germinal
centers and almost total absence of CD3+ T cells. Patients with
Omenn Syndrome also showed eosinophilia and increased IgE
levels (74).

DIGEORGE SYNDROME AND 22Q11.2
DELETION

DiGeorge syndrome (DGS) is usually associated with 3 or
a 1.5Mb de novo microdeletion of 22q11.2 (78, 79). In the
central region of deletion maps TBX1 gene containing 9 exons
(80) and encodes a Tbx transcription factor, implicated in
the regulation of nearly 2,000 genes (81, 82). It is strongly
expressed in the 3rd and 4th PP endoderm and in the 4th
pharyngeal arch arteries (83, 84), in the otic vesicle, vertebral
column, later in tooth bud and, at a lower extent, in the
brain (85). It is implicated in pharyngeal arch segmentation
and outgrowth of the TECs from the 3rd PP (Figure 1).
However, it should be noted that Tbx1 is not expressed in the
thymic anlage and thus it is not directly implicated in TECs
development (86). On the contrary, Tbx1 enforced expression
within the 3rd PP represses TECs development (86). Reduced
levels of Tbx1 in 22q11.2 deletion syndrome (22q11.2DS)
impair the development of neural crest-derived mesenchymal
cells that surround the 3rd PP, leading to thymic hypoplasia
(87). TBX1 regulates the expression of secreted Fgfs molecules,
namely Fgf8 and Fgf10, implicated in the control of TECs
proliferation, differentiation, migration, and survival (88). Ffg
receptor IIIb (FgfR2-IIIb) regulates the cascade of Hox3 paralogs
transcription factors, Pax1/Pax9, and winged helix nude (Whn)
(Figure 1) (89). Moreover, TBX1 interferes with the ability
of small mother against decapentaplegic 1 (SMAD1) to bind
SMAD4, preventing effective Bmp4 signaling (82). Bmp4 also
contributes to early thymus and parathyroid morphogenesis
(90). Isolated TBX1 mutations may be rarely reported in
patients with DGS (91) and TBX1 gain-of-function mutations
can result in the same phenotypic spectrum of loss-of-function
mutations (92).

An embryonic phenocopy of DGS with impaired thymus
development can be observed because of the lack of retinoic
acid during gestation (79, 93, 94). Retinoic acid is able to
regulate the expression of Tbx1 and other molecules implicated
in thymus organogenesis including Pax1, Pax9, Hoxa3, Fgf8,
and Bmp4 (95). Other epigenetic factors, including maternal
diabetes (93) or prenatal exposure to retinoic acid or alcohol

may also explain the alteration of thymus development in
DGS (96–101). Recently, we reported on a 7-year-old DGS
patient born to a mother with gestational diabetes mellitus in
whom a 371 Kb-interstitial deletion of 3p12.3, involving the
Zinc Finger Protein 717 (ZNF717), MicroRNA-1243 (MIR-1243),
and MIR-4273 genes was identified (102). MiRNAs are small,
non-coding RNAs involved in the modulation of gene expression
by targeting messenger RNAs for degradation, translational
repression, or both (103). miRNA-4273 regulates the expression
of Bmp3, a member of the transforming growth factor β

superfamily, involved in thymus and kidney development (104).
The expression of other miRNAs, including MIR-185, and MIR-
150 can be impaired in 22q11.2DS patients (105). MIR-185
reduction increases Bruton’s tyrosine kinase (Btk) expression
leading to autoantibody production while MIR-185 increase
leads to dose-dependent T-cell lymphopenia (105, 106). Reduced
MIR-150 expression contributes to the reduction of T and B
cells (107). Dysregulation of miRNA biogenesis, due to DiGeorge
Critical Region Gene 8 (DGCR8) haploinsufficiency, is implicated
in the pathogenesis of immunological, cardiac, endocrinological,
and neurological phenotype (105, 108). Other genes implicated
in the immune response are included in the deleted region.
Alterations of CrK-like (CRKL), a gene encoding a 39-kDa
adapter protein belonging to the Crk family, implicated in many
cellular functions, including cell migration and adhesion, are
associated with impaired T-cell proliferation in response to TCR
triggering (109).

DGS has a prevalence of 1:4,000 newborns (79, 110). Most of
these patients present with thymic and parathyroid hypoplasia,
congenital heart defects, and craniofacial dysmorphisms (78,
79). Thymic development ranges from athymia in complete
DGS (cDGS) to a completely normal thymus development
in partial DGS (pDGS), resulting in a variable spectrum of
T-cell deficiency (78, 79, 111). cDGS is reported in about
1.5% of the patients (111). Patients with DGS show a wide
spectrum of T-cell alterations ranging from completely normal
T-cell development to cDGS with absent thymic development
(112, 113). In 22q11.2DS patients, thymus is usually small
or hypoplastic. The size of the thymus does not predict the
levels circulating T cells. In fact, microscopic rests of TECs
may be present at aberrant locations (114). Low CD3+ T-
cell percentage is the most common T-cell defect, followed
by low CD3 number (78). CD4 and CD8 compartments are
similarly affected (78). T-cell number and percentage tend to
increase during the follow up starting from the first year
of life (78). Naive CD4 and CD8 lymphocytes are lower in
pDGS patients compared to controls independently of age and
they decline more rapidly with age (78). The improvement
of the lymphopenia with age is not due to a recovery of the
thymic function but to the peripheral homeostatic expansion
of the available T cells, as suggested by the evidence that T
cells are predominantly or almost exclusively of a memory
phenotype, TRECs are low and the repertoire is oligoclonal
(78, 115, 116). T-cell proliferation, total immunoglobulins, and
specific antibody response to vaccines are typically normal. IgM
levels are often low, and some patients may show selective
IgA deficiency (78). The study of the thymic architecture and
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thymocyte development in thymi obtained from pediatric pDGS
patients revealed a reduction of mature CD4+ and CD8+ T cell
frequency, associated with reduced proportion and function of T
regulatory cells (Tregs) (117).

The majority of DGS patients suffer from chronic otitis
media, which correlates with primarily conductive hearing
impairment (78). Most patients have increased susceptibility to
mild infections and only rarely to atypical or severe infections
(78). Abnormalities of PP derivatives, predisposing to bacterial
colonization, more than immune defects are implicated in this
susceptibility (78). Autoimmune diseases, mainly presenting as
rheumatoid diseases and idiopathic thrombocytopenia purpura,
are reported in ∼10% of DGS patients (113, 116, 118).
Predisposition to autoimmunity in DGS patients is partially
explained by the mechanism of lymphopenia induced T-cell
homeostatic proliferation together with the reduction of natural
Tregs (nTregs) (117, 119).

CHD7 HAPLOINSUFFICIENCY AND
CHARGE SYNDROME

CHARGE (coloboma, heart defects, atresia choanae, growth
retardation, genital abnormalities, and ear abnormalities)
syndrome is associated to haploinsufficiency in CHD7 gene,
located on chromosome 8q12 (120). CHD7 is implicated
in chromatin organization of mesenchymal cells, derived
from the cephalic neural crest (121). Impaired CHD7 expression
correlates with defects in neural crest cells, cephalic mesenchyme,
pharyngeal arches, brain, otic vesicle and, in the mesoderm of
the developing heart, especially in the outflow tract of the heart
(122, 123). CHD7 is critical for the development of cTECs
and mTECs from pharyngeal endoderm by regulating Bmp4,
which in turn regulate Foxn1 expression (Figure 1) (124). Chd7
deficiency is also associated with down-regulation of Ikaros,
Interelukin 7 receptor (Il7r), recombinase activating gene 1
(Rag1) (124). Studies suggest that CHD7 can also regulate TBX1
expression (74, 125).

CHARGE syndrome is characterized by different degrees of
thymic alterations and even by complete thymic aplasia, resulting
in combined immune deficiency (126). A wide spectrum of
T-cell deficiency and isolated humoral immune deficiency
may be observed in patients with CHARGE syndrome (126).
They may show severe T-cell deficiency resembling SCID or,
similarly to DGS, they may present transient lymphopenia,
that usually normalizes over time. A close association between
lymphopenia and hypocalcemia has been identified (115).
Severity of the T-cell lymphopenia relates to the degree
of thymic hypoplasia (127). CHARGE patients also show
decreased naive CD4 and CD8 T-cells, peripheral T cells, and
TRECs. Peripheral B-cell differentiation and immunoglobulin
production are normal but in a 3rd of the patients an
abnormal expression of IgM on class-switched memory B
cells and diminished production of specific antibodies may be
observed (127). Selective antibody deficiency tends to resolve
spontaneously over time (127). In a recent paper, immunological
features were compared between CHARGE and DGS patients.

Total lymphocyte count was slightly lower in DGS patients
compared to CHARGE patients and persistent lymphopenia
was more common in DGS patients than in CHARGE. IgM
levels were significantly lower in DGS patients compared to
CHARGE (128).

Most of the patients have increased risk of recurrent
infections, including recurrent otitis media, sinusitis,
conjunctivitis, dermatitis, respiratory tract infections,
pneumonia, and sepsis (127). Severe or atypical infections may
also be reported including recurrent oral candidiasis, recurrent
severe infections, septic shock, and chronic viral infections (129).
As for partial DGS also in CHARGE syndrome the frequent need
of invasive operative procedures and anatomical alterations,
including extensive ear, sinus, nasal and palatal malformations,
altered Eustachian tube anatomy, gastroesophageal reflux, or
neurological abnormalities with compromised drainage and
aspiration may help explain the susceptibility to infections
(127). Immune defects including impaired thymus development
and subsequent humoral deficiency may also contribute to
the susceptibility to infections but at a lower extent (128).
Patients with CHARGE syndrome also show increased risk
of atopy, reported in 65% of the patients, usually presenting
as food allergy (128). Increased susceptibility to autoimmune
disorders may also feature this syndrome (129). Patients with
complete athymia may present with atypical SCID (Omenn-like)
phenotype (130).

2P11.2 MICRODELETION AND FOXI3

HAPLOINSUFFICIENCY

A microdeletion at 2p11.2 has been identified in five families
presenting with DGS features, including hypocalcaemia,
asymmetric crying face, low TRECs and T-cell lymphopenia,
without typical facial dysmorphism, and heart abnormalities.
FOXI3, a member of FOX family transcription factors, implicated
in development of brachial arch-derived structures was
considered the candidate gene for this phenotype (131). Early
in embryonic development Foxi3 is broadly expressed in the
pre-placodal ectoderm surrounding the neural plate, from which
all craniofacial sensory organs derive (132, 133). Subsequently,
its expression is restricted to the region from which otic and
epibranchial placodes derive and finally to the ectoderm and
endoderm of the pharyngeal arches. A deletion of FOXI3 gene
has been recently identified in a patient with left congenital
aural atresia and ipsilateral internal carotid artery agenesis (134).
Foxi3 is also implicated in the differentiation of the epithelial
cells within the epidermis as suggested by the identification of
Foxi3 heterozygous mutations in several hairless dog breeds
with hair follicle and teeth defects (135) and in thymic cortico-
medullary differentiation. Foxi3 is implicated in segmentation
of the pharyngeal apparatus and LOF of Foxi3 alone or in
combination with Tbx1 LOF, leads to failure of the pharyngeal
arch segmentation due to the inability of the epithelia to properly
invaginate with subsequent thymic hypoplasia/aplasia (136).

The main clinical features of the different syndromes are
compared in Table 1.
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TABLE 1 | Comparison of the main clinical features among different congenital disorders of thymic development.

DGS FOXN1 OTFC2 syndrome CHARGE syndrome

Dysmorphic features Low ears, telecanthus,

down/up slanting palpebral

fissures, short philtrum,

velopharingeal insufficiency

Epicanthal folds Ear malformations,

preauricular fistulas, vertebral

malformations, lacrimal ducts

abnormalities, abnormal

clavicles and scapulae,

retrognathia, downslanting

palpebral fissures, long

eyelashes, blue sclerae,

epicanthal folds, small nose

Ear abnomalities, coloboma,

choanal atresia, cleft palate

Cutaneous alterations – Alopecia, nail distrophy – –

Thymic alterations Aplasia (cDGS),

hypoplasia/normal (pDGS)

Aplasia (homozygous

mutations), hypoplasia

(heterozygous mutations)

Aplasia/hypoplasia Aplasia/hypoplasia

Cardiopathy Tetralogy of fallot, ventricular

septal defect, type B

interrupted aortic arch,

truncus arteriosus, right aortic

arch, aberrant right subclavian

artery

– – Atrial septal defects,

ventricular septal defect,

patent ductus arteriosus

Infections Recurrent/severe infections

(cDGS)

recurrent infections (pDGS)

Recurrent/severe infections

(homozygous mutations),

recurrent infections

(heterozygous mutations)

Recurrent/severe infections Recurrent/severe infections

Omenn syndrome +

(cDGS)

+

(homozygous mutations)

+ +

DGS, DiGeorge syndrome; cDGS, complete DGS; pDGS, partial DGS; OTFC2 syndrome, Otofaciocervical syndrome type 2; CHARGE syndrome, coloboma, heart defects, atresia

choanae, growth retardation, genital abnormalities, and ear abnormalities syndrome.

TREATMENT OPTIONS FOR ATHYMIC
CONDITIONS

Hematopoietic stem cell transplantation (HSCT) represents the
cornerstone for the treatment of SCID. However, in SCID
due to genetic defects that impair development and function
of the thymic epithelium, theoretically thymus transplantation
would represent the most appropriate therapy. Thymic tissue
is obtained from infants undergoing to median sternotomy
for open heart surgery. Cultured postnatal human thymic
tissue is then transplanted in thin slices into the quadriceps
muscle (137). In cases with successful transplant, few months
after the transplant the graft is colonized by host stem cells
and is able to support normal thymopoiesis (138) leading to
the development of mature naive T-cell with diverse TCRVβ

repertoire and able to proliferate in response to mitogens. T-
cell levels in surviving patients are usually low for age but
are sufficient to respond to viral, disseminated, and other
infections leading to a resolution of the immunodeficiency
(139). In some cases, reduced thymic output may be explained
by other comorbidities, such as heart failure and hypoxia
stress, that may cause hypoperfusion of the graft (139). The
success of the transplant may be also limited in patients with
active viral infections since the virus itself, its treatment, or
both might inhibit the thymopoiesis (139). In patients with
successful transplant, naive T-cells are usually detected within
6 months after the transplant (139, 140). Antibody responses

and immunoglobulin levels normalize (62) even though numbers
of class-switched memory B cells may remain relatively low.
The success of the transplant is not correlated with the amount
of tissue transplanted, HLA matching, culture conditions or
immunosuppression of the recipient (141). Immunosuppression
can be used to delete reactive oligoclonal T cells and mature T
cells responsible of graft-versus-host disease and graft rejection
(137, 139). Overall survival in DGS is 75% and mortality is
usually related to pre-transplantation morbidity, mainly viral
infections, and chronic lung disease (115, 140, 142). Thymus
transplantation has been recently used to treat 2 patients with
FOXN1 deficiency and both survived (62, 143, 144) while
its use in athymic CHARGE and OTFC2 patients has never
been reported. Autoimmune disorders, including thyroiditis and
severe cytopenia, represent the most common complication after
thymus transplant (139, 140).

Adoptive transfer of mature T cells from human leukocyte
antigen identical siblings through bone marrow transplantation
represents an alternative to thymus transplant to treat SCID in
athymic patients (145). However, only post-thymic T cells engraft
in this case and naive T cells do not develop. Survival after
matched unrelated donor and matched sibling transplantations
in cDGS were reported as being 33 and 60%, respectively (145)
while in CHARGE out of six patients treated with HSCT three
had graft vs. host disease and three died post-transplant (125, 130,
146, 147). Long-lasting survival patients after matched sibling
donor transplantation are reported (148). Four FOXN1 deficient
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patients underwent HSCT and two survived (59, 63, 64, 149).
One of them is currently well at 22 years of age (unpublished
data). The study of the T cell compartment in this patient, 5 years
after HSCT showed a marked reduction of CD4CD45Ra levels
with normal CD8CD45Ra levels. However, TCRVβ repertoire,
was largely impaired in the CD8 subset (150). Six patients with
OTFC2 were treated with allogeneic HSCT. T-cell reconstitution
was not observed in any of the patients, despite successful
engraftment in three of them. In one of the cases with successful
engraftment all the T cells showed a memory (CD45R0+)
phenotype, but no de novo generation of a polyclonal repertoire
of naive T cells was observed. The remaining 2 patients showed
persistent T cell lymphopenia leading to severe and recurrent
infections, and death for septic shock in one patient and to severe
autoimmune hemolytic anemia in the other (74). Together, these
data indicate that HSCT may be unable to correct the profound
T cell immunodeficiency of this disease.

CONCLUSIONS

In conclusion, in this review we described different pathways
involved in thymus development and the clinical phenotypes
associated with their impairment. We also summarized the
outcome related to different therapeutic approaches to these
disorders. We highlighted the clinical importance of the early
detection of a defect in the pathways involved in T-cell
development.With the recent introduction of newborn screening
programs a timely identification of patients affected with defects
of the T-cell development before the onset of the symptoms

is now possible, and this prompted the definitive treatment
with HSCT. This has been proven effective in improving the
prognosis. However, in some cases HSCT is not required for the
management of infants with T-cell lymphopenia at birth, since
the T-cell development tend to improve with age (prematurity,
FOXN1 haploinsufficiency). In other cases, HSCT may not
be curative since the defect involves thymus development.
However, genome-wide association studies have shown that a
large proportion of variants likely to cause human disease are
located outside of the protein-coding domains, so whole genome
wide approaches might lead to proper identification and thus
correct treatment plans for immunodeficiency disorders resulting
from aberrant expression of some of the genes discussed in the
present review.
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