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Indoleamine-2,3-dioxygenase (IDO)1 and IDO2 are two closely related tryptophan

catabolizing enzymes encoded by linked genes. The IDO pathway is also

immunomodulatory, with IDO1 well-characterized as a mediator of tumor immune

evasion. Due to its homology with IDO1, IDO2 has been proposed to have a similar

immunoregulatory function. Indeed, IDO2, like IDO1, is necessary for the differentiation

of regulatory T cells in vitro. However, compared to IDO1, in vivo studies demonstrated

a contrasting role for IDO2, with experiments in preclinical models of autoimmune

arthritis establishing a proinflammatory role for IDO2 in mediating B and T cell activation

driving autoimmune disease. Given their potentially opposing roles in inflammatory

responses, interpretation of results obtained using IDO1 or IDO2 single knockout mice

could be complicated by the expression of the other enzyme. Here we use IDO1 and

IDO2 single and double knockout (dko) mice to define the differential roles of IDO1

and IDO2 in B cell-mediated immune responses. Autoreactive T and B cell responses

and severity of joint inflammation were decreased in IDO2 ko, but not IDO1 ko arthritic

mice. Dko mice had a reduction in the number of autoantibody secreting cells and

severity of arthritis: however, percentages of differentiated T cells and their associated

cytokines were not reduced compared to IDO1 ko or wild-type mice. These data

suggest that autoreactive B cell responses are mediated by IDO2, while autoreactive T

cell responses are indirectly affected by IDO1 expression in the IDO2 ko mice. IDO2 also

influenced antibody responses in models of influenza infection and immunization with T

cell-independent type II antigens. Taken together, these studies provide evidence for the

contrasting roles IDO1 and IDO2 play in immune responses, with IDO1 mediating T cell

suppressive effects and IDO2 working directly in B cells as a proinflammatory mediator

of B cell responses.
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INTRODUCTION

Indoleamine-2,3-dioxygenase (IDO)1 and IDO2 are two
closely related tryptophan catabolizing enzymes induced under
inflammatory conditions that contribute to immune responses.
IDO1 is widely expressed in both immune and non-immune
tissues, whereas expression of IDO2 is restricted to liver,
kidney, and antigen presenting cells (dendritic cells and B
cells) (1–3). Both IDO1 and IDO2, along with the unrelated
enzyme tryptophan dioxygenase (TDO), catalyze the first and
rate-limiting step in the catabolism of tryptophan to kynurenine
(4). However, IDO2 has much weaker tryptophan catabolizing
activity than IDO1, both as measured by enzyme activity in vitro
and by analyzing levels of serum kynurenine in the absence of
each enzyme in vivo (3, 5–8). Due to their homology, IDO1 and
IDO2 had been thought to play redundant roles in immune
responses; however, recent results from in vivo models of
cancer and autoimmunity suggest that IDO2 may play a role
in immune function distinct from IDO1 (6, 9). Understanding
the contribution of IDO1 and IDO2 to immune responses is
complicated by the fact that the genes encoding each enzyme are
linked and likely arose by gene duplication (10).

IDO1 has been shown to inhibit T cell activation and induce
T regulatory cell development in vitro (11, 12). In vivo, IDO1
is best known for its immunoregulatory role in mediating
tumor immune evasion (13–15). Elevated IDO1 expression has
been described in several human tumors and mouse tumor
models (16–18) and IDO1 deficient mice are resistant to tumor
formation in preclinical models (19). This inhibitory function
of IDO1 is thought to primarily be through the induction of T
regulatory cells, although recent studies have described a novel
function for IDO1 in inflammatory neovascularization, that
could be just as, if not more, important in some tumor settings
(20). In contrast to its link to regulating immune responses in
cancer, the effect of IDO1 on autoimmune responses has been
less clear. Some studies describe a regulatory function (21–24),
while others suggest a pro-inflammatory role (8, 25) or no role at
all (1, 26, 27).

IDO2 has been much less studied than IDO1 and its role in
immune function is still being determined. IDO2 was required
for T regulatory cell activation under the same assay conditions
that IDO1 was shown to be critical (8). However, IDO2’s effect
on tumor development is ambiguous, with data supporting
both immunoregulatory (28) and proinflammatory roles (29)
depending on the model used. Likewise, the requirement for
IDO2 in normal immune function is not known. IDO2 does
not appear to be necessary for overall immune function, as
IDO2 deficient mice do not show gross defects in immune cell
development or titers of total serum antibody (1, 8). In contrast,
IDO2 has been shown to play a pro-inflammatory role in the
development of B cell-mediated autoimmunity. This specific
pathogenic function was first described in the KRN model of
autoimmune arthritis (1) and later confirmed in the collagen
induced arthritis model (30). Both autoreactive T and B cell
responses were significantly reduced in arthritic mice lacking
IDO2 (1) and B cells were identified as the critical IDO2-
expressing cell mediating disease (31).

Taken together, IDO1 and IDO2 appear to play opposing
roles in inflammatory immune responses, with IDO1 an
important inhibitor of effector T cell-mediated responses,
especially in the context of cancer, and IDO2 a critical
proinflammatory mediator of B cell-mediated autoimmunity.
As such, interpretation of results obtained using IDO1 or
IDO2 single knockout (ko) mice could be complicated by the
remaining expression of the counteracting enzyme. To address
this issue, here we use mice in which both IDO1 and IDO2
have been deleted (double knockout, dko) to determine the
relative contribution of IDO1 and IDO2 to B cell-mediated
immune responses. Using the dko mice together with the KRN
model of arthritis, we demonstrate that IDO2 mediates the
autoreactive B cell response driving arthritis through an IDO1-
independent mechanism. In contrast, the decreased autoreactive
T cell response found in IDO2 ko mice was dependent upon
IDO1 expression, highlighting the importance of using double
ko mice to deconvolute IDO2’s functional interrelationship
with IDO1. To determine if IDO2 has the same impact on
normal B cell responses as it does in autoreactive ones, we
used IDO1 and IDO2 single and double ko mice together
with well-characterized models of in vitro and in vivo B
cell activation. IDO2 was not required in all models, but
specifically mediated B cell antibody production in response to
influenza infection and immunization with a T cell-independent
type II model antigen. In these contexts, similar reduced
responses were seen in IDO2 single and double ko mice,
confirming that IDO2 mediates B cell activation in an IDO1-
independent manner.

MATERIALS AND METHODS

Mice
KRN TCR Tg (32), IDO1 deficient (IDO1 ko) (33) IDO2 ko
(8), and IDO1/IDO2 double ko (dko) (34) mice on a C57BL/6
background have been described. Arthritic mice were generated
by breeding KRN Tg C57BL/6 mice expressing the I-Ag7 MHC
Class II molecule (KRN.g7). This process was repeated to
generate arthritic mice lacking IDO1, IDO2, or both IDO1 and
IDO2 (IDO1 ko KRN.g7, IDO2 ko KRN.g7, or dko KRN.g7).
KRN.g7 mice develop arthritis with similar kinetics as the
original K/BxN mice (35). All mice were bred and housed under
specific pathogen free conditions in the animal facility at the
Lankenau Institute forMedical Research. Studies were performed
in accordance with National Institutes of Health and Association
for Assessment and Accreditation of Laboratory Animal Care
guidelines with approval from the LIMR Institutional Animal
Care and Use Committee.

Arthritis Incidence
The two rear ankles of wt, IDO1, IDO2 ko, and dko KRN.g7 mice
were measured starting at weaning (3 wk of age). Measurement
of ankle thickness was made above the footpad axially across the
ankle joint using a Fowler Metric Pocket Thickness Gauge. Ankle
thickness was rounded off to the nearest 0.05 mm.
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ELISPOT Assay
Anti-GPI antibody secreting cells were measured by ELISpot
as described (36). Briefly, cells from the joint draining lymph
nodes (axillary, brachial, and popliteal LNs) from 6 week-
old KRN.g7, IDO1 ko KRN.g7, IDO2 ko KRN.g7, and dko
KRN.g7 mice were plated at 4 × 105 cells per well and
diluted serially 1:4 in Multiscreen HA mixed cellulose ester
membrane plates (Millipore) coated with GPI-his (10µg/ml).
The cells were incubated on the Ag-coated plates for 4 h at 37◦C.
The Ig secreted by the plated cells was detected by Alkaline
Phosphatase-conjugated goat anti-mouse total Ig secondary
Ab (Southern Biotechnology Associates) and visualized using
NBT/BCIP substrate (nitroblue tetrazolium/5-bromo-4-chloro-
3-indolyl phosphate; Sigma).

NP Immunization
Wild-type (wt), IDO1 ko, IDO2 ko, or dko C57BL/6 mice were
immunized i.p. with 50 µg (4-Hydroxy-3-Nitrophenyl)Acetyl
(NP)-Ficoll, 50 µg NP-LPS, or 100 µg NP-keyhole limpet
hemocyanin (KLH), precipitated in alum (Biosearch
Technologies). NP-KLH immunized mice were boosted 21 days
after initial immunization with 100 µg NP-KLH precipitated
in alum. NP-Ficoll and NP-LPS immunized mice were bled on
day 7 and NP-KLH mice were bled on day 10 after primary and
secondary immunizations. NP titers were measured by ELISA.

Influenza Infection
Influenza virus PR8 (A/Puerto Rico/8/34) was grown and
purified as described (37). Wt, IDO1 ko, IDO2 ko, or dko
C57BL/6 mice were infected i.n. with 200 TCID50 influenza virus
(A/PR/8/34) in 50 µl PBS. Cohorts of mice were bled on days 0,
5, 7, and 10. Titers of anti-PR8 Ig were measured by ELISA.

In vitro Stimulation
Two spleens each from wt, IDO1 ko, IDO2 ko, or dko C57BL/6
mice were pooled and naïve B cells isolated by negative selection
with anti-CD43 MACS beads (Miltenyi Biotec, purity >96%).
Purified B cells were labeled with 5µMCFSE (Fisher) for 10min,
then cultured with media alone, 0.2µg/ml PAM3CSK4, 10µg/ml
Poly I:C, 10µg/ml LPS, 100µM Loxoribine, 1µM CpG ODN
1826, 2µg/ml anti-CD40 + 50 ng/ml IL-4, or 50 ng/mL PMA +

500 ng/ml ionomycin (Invivogen and Sigma). After 48 h, the cells
were analyzed with antibodies to CD80 and CD86 (eBioscience),
CD25 and CD138 (BioLegend), and CFSE staining by flow
cytometry. The samples were acquired on a BD FACSCanto
II flow cytometer using FACSDiva Software (BD Bioscience).
Surface marker expression and division index were analyzed
using FlowJo Software (TreeStar). Secreted Ig in the supernatant
was measured by ELISA.

ELISA Assays
Serum samples were plated at an initial dilution of 1:100 and
diluted serially 1:4 on Immulon II plates coated with NP4-BSA
(Biosearch Technologies) or purified PR8 virus, respectively.
The serum titer was defined as the reciprocal of the last
dilution that gave an O.D.>3x background. To measure Ig
secretion in vitro, supernatants were plated undiluted and then

diluted serially 1:5 on Immulon II plates coated with anti-
mouse IgH+L (Jackson Immunoresearch). Ig concentration was
determined by comparison to a standard curve of IgM (BD
Bioscience). Goat anti-mouse IgM-HRP, IgG-HRP (Southern
Biotechnology), and donkey anti-mouse IgGH+L-HRP (Total Ig,
Jackson Immunoresearch) were used as secondary antibodies.
Antibody was detected using ABTS substrate (Fisher).

Immunohistochemistry
Spleens from NP-Ficoll and NP-LPS immunized mice were
harvested on day 7 and NP-KLH immunized mice on day
10, embedded in OCT, frozen in liquid nitrogen cooled
2-methyl-butane, sectioned, and fixed with acetone. Spleen
sections were stained with B220-biotin (BioLegend) and
anti-Igλ-AP (Southern Biotech). Streptavidin-HRP (Southern
Biotech) was used as a secondary antibody. AP and HRP were
detected using Fast-Blue BB base and 3-amino-9-ethylcarbazole
(Sigma), respectively. Sections were imaged using a Zeiss
Axioplan microscope with a Zeiss Plan-Apochromat 10x/0.32
objective and Zeiss AxioCam HRC camera using AxioVision
4.7.1 software. The images were then processed using Adobe
Photoshop CC software.

Analysis of B Cell Subsets
Cells were harvested from the spleens of 8–10 week old wt,
IDO1 ko, IDO2 ko, and dko ko C57BL/6 mice and stained
with antibodies to CD21 and IgM (BD Bioscience), CD23
eBioscience), B220, and CD93 (BioLegend). The samples were
acquired on a BD FACSCanto II flow cytometer using FACSDiva
Software and analyzed using FlowJo Software.

Analysis of T Helper Subsets
Joint draining LN cells from 6 week old KRN.g7, IDO1 ko
KRN.g7, IDO2 ko KRN.g7, and dko KRN.g7 mice were harvested
and stained for CD4+ T cells (BioLegend) and the following
markers to distinguish TH subsets: bcl6 (BD Bioscience),
foxP3 (Biolegend), gata3, rorγt, T-bet (all from eBioscience) as
described (1). The samples were acquired on a BD FACSCanto
II flow cytometer using FACSDiva Software and analyzed using
FlowJo Software.

Intracellular IL-21
Cells from the joint draining LNs of 6 week old KRN.g7, IDO1 ko
KRN.g7, IDO2 ko KRN.g7, and dko KRN.g7 mice were harvested
and cultured for 4 h with 50 ng/ml PMA, 500 ng/ml ionomycin,
and 3µg/ml brefeldin A. After 4 h, cells were harvested, surface
stained for CD4 (eBioscience), fixed and permeabilized (IC
Fixation and Permeabilization Buffer, eBioscience), then stained
for intracellular IL-21 (eBioscience). The samples were acquired
on a BD FACSCanto II flow cytometer using FACSDiva software
and analyzed with FlowJo software.

Cytokine Secretion
Cells from the joint draining LNs of 6 week old KRN.g7,
IDO1 ko KRN.g7, IDO2 ko KRN.g7, and dko KRN.g7
mice were harvested and cultured in with PMA (50 ng/ml)
+ ionomycin (500 ng/ml) for 24 h. The supernatants were
then harvested and analyzed for the levels of IL-17, TNFα,
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and IFNγ by cytometric bead array (BD Biosciences). The
samples were stained according to manufacturer instructions
and analyzed on a BD FACSCanto II flow cytometer using
FACSDiva software. Cytokine concentrations were calculated by
comparing to standard curves using FACS array analysis software
(BD Biosciences).

Antigen Presenting Cell (APC) Assay
CD4+ T cells were purified by positive selection with anti-
CD4 MACS beads (Miltenyi Biotec) from the spleen and lymph
nodes of KRN tg B6 mice. 2 × 105 KRN T cells were cultured
with 1 × 105 irradiated (2Gy) splenocytes from wt, IDO1 ko,
IDO2 ko, or dko C57BL/6.g7 mice at varying concentrations
of GPI peptide (LSIALHVGFDHFE) in a final volume of 100
µL. After 68 h, 20 µL MTS assay reagent (Promega CellTiter96
AQueous One Solution Cell Proliferation Assay) was added
and cultures read at A490 after 4 h (72 h total). To measure
upregulation of activation markers, a 2:1 ratio of T cells:APCs
were cultured with 3.16µM GPI peptide for 48 h and stained
with anti-CD25 (BioLegend) and anti-CD69 (eBiosciences) by
flow cytometry.

Western Blotting
Liver and epididymis tissue were harvested from individual
wt, IDO1 ko, IDO2 ko, and dko C57BL/6 mice. Spleens
from C57BL/6 wt, IDO1 ko, IDO2 ko, or dko mice were
harvested from 3mice/genotype and pooled prior to purification.
T cells were purified by MACS bead magnetic purification
(Miltenyi Biotec) using CD90.2 microbeads for total T cell
purification by positive selection and B cells were purified using
CD43 microbeads beads (Miltenyi) by negative selection. T cell
purity was >93% and B cell purity >96%. Naïve cells were
used immediately. Activated T cells were stimulated 48 h with
5µg/mL plate-bound αCD3 (clone 145-2C11, BioLegend) and
2µg/ml soluble αCD28 (clone 37.51, BioLegend). Activated B
cells were stimulated 48 h with 25µg/ml LPS (Sigma-Aldrich)
+ 50 ng/mL IL-4 (BioLegend). Liver, epididymis, and naïve
and activated B/T cells were homogenized with a Beadbug
microtube homogenizer (Sigma) in the presence of RIPA
buffer containing protease and phosphatase inhibitors. Cell
and tissue lysates were centrifuged and protein concentrations
determined. Equal protein per sample (30 µg/lane) was used
for liver and epididymis. Due to the low expression level of
IDO1/2 in lymphocytes, the maximum protein obtained (naïve
cells: 25–36 µg; activated cells: 60–80 µg) was used to help
visualize any potential expression. Protein was fractioned using
standard SDS-PAGE and blotted to Immobilon-NC membranes
(Millipore, USA). After blocking, blots were incubated at 4◦C
overnight with primary antibody, either conjugated directly
to HRP, or followed by incubation with an HRP-conjugated
secondary antibody. Blots were developed with HYGLO
Quickspray chemiluminescent HRP reagent (Denville Scientific)
and analyzed using a ChemiDoc System with Image Lab
Software (Biorad). Primary antibodies to the following antigens
were used: IDO1 (Millipore Sigma); IDO2 (Santa Cruz); and
GAPDH (Invitrogen). HRP-conjugated anti-mouse Igκ (Jackson

Immunoresearch) was used as a secondary antibody to detect
IDO1 and GAPDH.

IDO1 and IDO2 RNA Expression
Liver and epididymis tissue were harvested from individual
wt, IDO1 ko, IDO2 ko, and dko C57BL/6 mice. Spleens
from C57BL/6 wt, IDO1 ko, IDO2 ko, or dko mice were
harvested from 3mice/genotype and pooled prior to purification.
T cells were purified by MACS bead magnetic purification
(Miltenyi Biotec) using CD90.2 microbeads for total T cell
purification by positive selection and B cells were purified
using CD43 microbeads beads (Miltenyi) by negative selection.
T cell purity was >93% and B cell purity >96%. Cells were
cultured in media alone (unstimulated), 5µg/mL plate-bound
αCD3 + 2µg/ml soluble αCD28 (T cells), or 25µg/ml LPS
(Sigma-Aldrich) + 50 ng/mL IL-4 (B cells). After 48 h, cells
were harvested, RNA was extracted with the RNEasy mini kit
(Qiagen), and first strand cDNA synthesized using oligo-dT
primer (Promega GoScript). IDO1 and IDO2 expression were
measured by real time PCR using SYBR Green (Sigma-Aldrich).
Expression of target gene IDO2 was determined relative to β-2-
microglobulin (β2M) and calculated as 2∧−(CtTargetgene-Ctb2M)
as primers had similar efficiencies. Primers: IDO1, 5′-CCCACA
CTGAGCACGGACGG-3′ and 5′-TTGCGGGGCAGCACCTTT
CG-3′, IDO2, 5′-CAATCCAGCCATGCCTGTGGGG-3′ and 5′-
TGGGCTGCACTTCCTCCAGAGT-3′, and β2M 5′-CTCGGT
GACCCTGGTCTTTC-3′ and 5′-TTGAGGGGTTTTCTGGAT
AGCA-3′.

Kynurenine Assay
Serum and spleens were harvested from C57BL/6 wt, IDO1
ko, IDO2 ko, or dko mice Spleens were pooled from 3
mice/genotype prior to purification. T cells were purified
by MACS bead magnetic purification (Miltenyi Biotec) using
CD90.2 microbeads for total T cell purification by positive
selection and B cells were purified using CD43 microbeads beads
(Miltenyi) by negative selection. T cell purity was >93% and B
cell purity >96%. Cells were cultured for 48 h in media alone
(unstimulated), 5µg/mL plate-bound αCD3 + 2µg/ml soluble
αCD28 (T cells), or 25µg/ml LPS (Sigma-Aldrich) + 50 ng/mL
IL-4 (B cells). Human 293-T-RExTM cells stably transfected with
murine IDO1, IDO2, or untransfected controls (parental) under
the control of the Tet repressor were used as positive controls
for enzyme activity. IDO1 and IDO2 expression in 293-T-RExTM

cells was induced with 2µg/ml doxycycline for 48 h. Serum
and harvested supernatants were analyzed for kynurenine levels
using the IDK high sensitivity Kynurenine ELISA kit according
to manufacturers instructions (Immunodiagnostik). Kynurenine
levels were calculated by comparison to a standard curve.

Statistical Analysis
Statistical significance was determined using one or two way-
ANOVA followed by comparison of means with Tukey’s post-hoc
multiple comparison correction, an unpaired Student’s t-test, or
the Mann-Whitney non-parametric test using GraphPad Prism
Software (GraphPad Software, Inc).
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RESULTS

IDO2 Expression Is Reduced in IDO1 ko
Mice
KRN.g7 mice develop a joint-specific inflammatory autoimmune
response mediated by autoantibodies to the glycolytic enzyme
glucose-6-phosphate isomerase (38–40). Using this model, we
previously demonstrated reduced autoantibody production and
a significantly attenuated course of disease in IDO2 ko, but
not IDO1 ko, KRN.g7 mice (1). This suggests that IDO2
plays a fundamentally different role than IDO1 in mediating
inflammatory immune responses. However, the reduced arthritis
in IDO2 ko mice could be due to alterations in the expression or
activity of IDO1 in the mice. Because of the conserved physical
proximity of the IDO1 and IDO2 genes, it has been proposed
that deletion of one gene could affect the expression of the
other (41). In wt C57BL/6 mice, IDO1 mRNA is expressed
at high levels in the epididymis and low levels in activated
B cells (Figure 1A), whereas IDO2 is expressed at high levels
in the liver and low levels in the epididymis and activated
B cells (Figure 1B). Overall IDO2 expression relative to the
housekeeping gene was much lower than IDO1 (Figures 1A,B).
IDO1 is not expressed in the liver and neither IDO1 nor IDO2
mRNAwere detectable in unstimulated B cells or unstimulated or
activated T cells (Figures 1A,B). To determine if IDO1 deletion
altered the expression of IDO2 or if IDO2 deletion affected
the expression of IDO1, IDO1 and IDO2 mRNA and protein
were measured in IDO1 ko, IDO2 ko, and dko mice. At the
mRNA level, IDO1 ko mice have reduced levels of IDO2 in the
epididymis and activated B cells, but not in the liver, potentially
due to an increase in alternatively spliced transcripts in certain
tissues [Figure 1B and refs. (1, 8)]. In contrast, IDO1 mRNA
levels were elevated in the epididymis and activated B cells in
IDO2 ko mice (Figure 1A).

To determine if these changes in mRNA were also present
at the protein level, we first measured IDO1 and IDO2 in the
tissues with the highest mRNA expression of IDO1 (epididymis)
and IDO2 (liver) (Figures 1C,D and Supplementary Figure 1).
In the epididymis, IDO1 protein is expressed in IDO2 ko mice
at similar levels to that in wt mice. In contrast, IDO2 levels
in the liver are decreased in IDO1 ko mice to about 40% of
the level in wt mice. To determine if differences in IDO1/IDO2
protein were also found in lymphocytes, we measured IDO1 and
IDO2 protein levels in unstimulated and activated B and T cells
(Figures 1E–H and Supplementary Figure 2). IDO1 protein is
expressed at higher levels in activated B cells from IDO2 ko
mice compared to C57BL/6 mice, similar to its elevation at
the RNA level (Figures 1E,G). Although IDO2 mRNA is clearly
present in activated B cells from C57BL/6 mice, the level of
IDO2 protein was below the level of detection by Western
blotting (Figures 1E,H). Consistent with the mRNA results,
neither IDO1 nor IDO2 protein is detectable in unstimulated
B cells or unstimulated or activated T cells (Figures 1E–H). As
expected, control IDO1 ko and IDO2 ko mice lack IDO1 and
IDO2, respectively, and dko mice lack both IDO1 and IDO2
protein in all tissues/cell types tested (Figures 1C–H). These data
demonstrate that deletion of one IDO gene affects the expression

of the other. IDO1 ko mice have reduced levels of IDO2, whereas
IDO2 ko mice have increased levels of IDO1 in some tissues/cell
types. Importantly, the reduced level of IDO2 in IDO1 ko mice
was still sufficient to drive arthritis in the KRN model, as no
differences were seen between wt and IDO1 ko KRN.g7 mice in
arthritis onset or severity [Figure 2A and ref. (1)].

Functionally, IDO1 and IDO2 are best known as tryptophan
catabolizing enzymes, responsible for the first and rate-limiting
step in the catabolism of tryptophan to kynurenine (4). To assess
enzymatic activity, kynurenine levels weremeasured in the serum
and culture supernatants from unstimulated and activated B and
T cells from wt, IDO1 ko, IDO2 ko, and dko C57BL/6 mice
(Figure 1I). Human 293-T-RExTM cells stably transfected with
murine IDO1, IDO2, or untransfected controls (parental) under
the control of the Tet repressor were used as positive controls for
enzyme activity. Higher levels of kynurenine were produced by
IDO1 (51.09 ± 2.7µM) than IDO2 (2.812 ± 0.2µM) expressing
T-RExTM cells, consistent with previous reports demonstrating
that IDO1 hasmuch stronger enzymatic activity than IDO2 (3, 5–
8). Supernatants from unstimulated B cells and unstimulated
or activated T cells did not have levels of kynurenine above
background. Kynurenine was elevated in the serum and activated
B cell supernatant from wt and IDO2 ko, but not IDO1 ko or dko
mice, suggesting that the kynurenine was due to IDO1, but not
IDO2, enzymatic activity (Figure 1I).

Joint Inflammation and Autoantibody
Production Are Reduced in IDO1/IDO2
Double ko Mice
To determine if eliminating IDO1 would reverse the effect
of IDO2 deficiency, the KRN.g7 model was bred onto an
IDO1/IDO2 double knockout (dko) background and compared
to IDO1 ko, IDO2 ko, or IDO wt KRN.g7 mice. Disease was
monitored in the mice by measuring swelling in the rear ankles
as an indication of arthritis. KRN.g7 mice begin to develop
arthritis starting around 4 weeks of age, with peak inflammation
between 5 and 6 weeks of age. As shown previously, deletion of
IDO2, but not IDO1, delayed the time of onset and decreased
the overall severity of joint inflammation [Figure 2A and ref.
(1)]. Arthritis in dko KRN.g7 mice was indistinguishable from
that in IDO2 ko KRN.g7 mice (Figure 2A). At 6 weeks of age,
the number of autoantibody secreting cells in the joint draining
lymph nodes was quantified by ELISpot. Autoantibody secreting
cells were prevalent in the joint draining LNs of wt and IDO1 ko
KRN.g7 mice, whereas they were significantly decreased in IDO2
ko mice. Autoantibody secreting cells were also decreased in dko
KRN.g7 mice, consistent with their overall reduced severity of
arthritis (Figure 2B). This indicates that absence of IDO2 alone,
independent of the presence or absence of IDO1 expression,
was responsible for the reduced autoreactive B cell response and
alleviation of arthritis in the IDO2 ko mice.

Decreased Autoreactive T Cell Activation
in IDO2 ko Mice Is Mediated by IDO1
In addition to diminished autoreactive B cell responses and
joint inflammation, IDO2 ko KRN.g7 mice had an overall
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FIGURE 1 | Differential expression of IDO1 and IDO2 in knockout mice. Purified B and T cells were cultured for 48 h either unstimulated (unstim.) or activated (activ.)

with LPS + IL-4 (B cells) or anti-CD3 + anti-CD28 (T cells). (A) IDO1 and (B) IDO2 mRNA expression in liver, epididymis, and unstimulated/activated B and T cells

isolated from C57BL/6, IDO1 ko, IDO2 ko, and dko mice was measured by qRT-PCR. Symbols represent individual pools of 3 mice and histograms show the

(Continued)
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FIGURE 1 | mean ± SEM of IDO1 and IDO2 relative to β2M for n = 6 pools/genotype. (C,D) Protein lysates from (C) epididymis, (D) liver, (E) unstimulated/activated

B cells, and (F) unstimulated/activated T cells from IDO1 ko, IDO2 ko, dko, or wt C57BL/6 mice were immunoblotted with antibodies to IDO1 and IDO2. Blots were

then probed with anti-GAPDH as a loading control. Representative blot of 3 total. Molecular weights are indicated. The IDO2-specific band is indicated with an arrow.

Symbols represent individual mice and histograms show the mean ± SEM ratio of (G) IDO1 or (H) IDO2, normalized to GAPDH, relative to the C57BL/6 control for

n = 3 blots. (I) Serum and unstimulated/activated B and T cells supernatants (48 h) were analyzed for kynurenine (Kyn) by ELISA. 293-T-RExTM cells stably transfected

with murine IDO1, IDO2, or untransfected controls (parental) were used as positive controls for enzyme activity. Symbols respresent individual mice (serum) or pools of

3 mice (B and T cells) and histograms show the mean ± SEM for n = 6/genotype (serum) and n = 3/genotype (B and T cells). P-values were calculated by two-way

ANOVA with post-hoc testing by Fisher’s LSD test. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant.

FIGURE 2 | Deletion of both IDO1 and IDO2 inhibits autoantibody production and alleviates arthritis, phenocopying IDO2 single knockout mice. (A) Rear ankles were

measured as an indication of arthritis and represented as mean ankle thickness ± SEM from n = 14 wt, n = 10 IDO1 ko, n = 12 IDO2 ko, and n = 9 IDO1/IDO2 (dko)

KRN.g7 mice. (B) The number of anti-GPI ASCs from the joint draining lymph node was determined using an ELISpot assay. Symbols represent individual mice and

histograms show the mean number of ASC ± SEM from n = 25 wt, n = 21 IDO1 ko, n = 13 IDO2 ko, and n = 18 dko KRN.g7 mice, pooled from a minimum of 4

independent litters of each genotype. P-values were calculated by one way-ANOVA followed by comparison of means with Tukey’s post-hoc multiple comparison

correction. **p < 0.01, n.s., not significant.

reduction in autoreactive T cell responses (1). In particular,
percentages of CD4+ T cells expressing the T helper (Th)
transcription factors Tbet (Th1), Gata-3 (Th2), Rorγt (Th17),
and Bcl-6 (Tfh) were consistently lower in IDO2 ko compared
to wt KRN.g7 mice. Likewise, the percentage of IL-21+ CD4+

T cells was also reduced [ref. (1) and Figures 3A,B and
Supplementary Figure 3], whereas levels of inflammatory
cytokines IL-17a, TNFα, and IFNγ were similar to wt KRN.g7
mice [ref. (1) and Figures 3C–E]. Effects of IDO2 on T cell
responses are indirect, as IDO2, like IDO1, is expressed in
antigen presenting cells (APCs), but not in T cells [Figures 1A,B
and refs. (1–3)]. To determine the relative contribution of
IDO1 and IDO2 to the decreased T cell responses seen in IDO2
ko KRN.g7 mice, T cells and APCs from wt, IDO1 ko, IDO2
ko, and dko KRN.g7 mice were examined. To measure APC
function, KRN T cells were stimulated with GPI peptide and
I-Ag7-expressing wt, IDO1 ko, IDO2 ko, or dko APCs. KRN T
cells proliferate and upregulate the activation markers CD25 and
CD69 in response to stimulation with peptide + wt APCs. No
difference in T cell response was found when IDO1 ko, IDO2
ko, or dko APCs were used, demonstrating that the reduced
T cell responses in IDO2 ko mice were not due to diminished
APC function (Figure 4 and Supplementary Figure 4). To
measure T cell subsets, KRN T cells were examined for
expression of transcription factors and secretion of cytokines

associated with Th subset differentiation. Percentages of
CD4+ T cells expressing Th cell subset transcription factors
(Tbet, Gata3, Rorγt, Bcl-6, Foxp3) (Figure 3A), the Tfh
cytokine IL-21 (Figure 3B), and inflammatory cytokines IL-17a
(Figure 3C and Supplementary Figure 3), TNFα (Figure 3D
and Supplementary Figure 3), and IFNγ (Figure 3E and
Supplementary Figure 3) were statistically indistinguishable
in IDO1 ko and wt KRN.g7 mice, consistent with the lack of
significant differences in numbers of autoantibody secreting cells
and joint inflammation. Unexpectedly, dko KRN.g7 mice also
had levels of differentiated autoreactive CD4+ T cells that were
indistinguishable from wt KRN.g7 mice, despite their reduced
arthritis and autoantibody production. Together, these data
suggest that unlike the reduced autoreactive B cell response
observed in IDO2 ko mice, which is strictly dependent on the
loss of IDO2, the corresponding reduction of autoreactive T cell
responses requires the retention of IDO1.

IDO2 Does Not Influence B Cell Maturation
or Response to in vitro Stimulation
Diminished B cell activation and autoantibody secretion in
arthritic IDO2 ko and dko, but not IDO1 ko, mice demonstrated
an important role for IDO2 in driving autoreactive B cell
responses. However, the requirement for IDO2 in normal B
cell development and function is less clear. Previously, we
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FIGURE 3 | Decreased autoreactive T cell activation in IDO2 ko mice is mediated by IDO1. (A) Frequency of CD4+ T helper cell subpopulations were measured by

flow cytometry by intracellular staining for the transcription factors T-bet (Th1), GATA-3 (Th2), RORγt (Th17), Bcl-6 (Tfh), and FoxP3 (Treg). Symbols represent

individual mice and histograms show mean % ± SEM of each subpopulation out of total CD4+ T cells. (B) Cells from the joint dLNs were cultured for 4 h in PMA +

(Continued)
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FIGURE 3 | ionomycin + brefeldin A. Intracellular IL-21 was measured by flow cytometry. Symbols represent individual mice and histograms show mean % IL-21+

cells ± SEM out of total CD4+ T cells. N = 32 wt, n = 21 IDO1 ko, n = 18 IDO2 ko, and n = 18 dko KRN.g7 mice, pooled from 9 independent experiments. (C–E)

Cells from the joint dLNs were cultured for 24 h in PMA + Ionomycin. (C) IL-17a, (D) TNFα, and (E) IFNγ were measured in the supernatants by cytometric bead array.

Symbols represent individual mice and histograms show mean concentration ± SEM from n = 33 wt, n = 21 IDO1 ko, n = 21 IDO2 ko, and n = 15 dko KRN.g7

mice, pooled from 9 independent experiments. P-values were calculated by one way-ANOVA followed by comparison of means with Tukey’s post-hoc multiple

comparison correction. *p < 0.05, **p < 0.01, n.s., not significant.

FIGURE 4 | Antigen presenting function is not affected by deletion of IDO1 or IDO2. Naive KRN T cells were cultured with irradiated splenocytes from wt, IDO1 ko,

IDO2 ko, or dko C57BL/6.g7 mice and GPI peptide. (A) Proliferation was measured by the MTS assay at 72 h. Graph is from a representative experiment of 3 total

showing mean O.D. ± SD from 3 replicate wells. (B,C) Upregulation of the activation markers CD25 and CD69 were measured by flow cytometry at 48 h. Symbols

represent individual mice and histograms show mean fluorescence intensity (MFI) ± SEM from 3 individual experiments. P-values were calculated by one way-ANOVA

followed by comparison of means with Tukey’s post-hoc multiple comparison correction. *p < 0.05, n.s., not significant.

demonstrated that IDO2 ko mice have normal populations of
developing B cells in the bone marrow, mature follicular and
marginal zone B cells in the spleen and B-1 and B-2 B cells in
the peritoneal cavity (8). These subpopulations of B cells were
also shown to be unaffected in IDO1 ko mice (42). Within the
spleen, autoreactive B cells reside in a population of functionally
immature transitional B cells and undergo a selection process
prior to development into mature B cells (43–45). Transitional
B cells are defined by expression of B220 and the early B lineage
marker CD93 and can be divided into three subpopulations:
T1 (CD93+IgMhiCD23−), T2 (CD93+IgMhiCD23+), and T3
(CD93+IgMlowCD23+) (43). To determine if transitional B cell
populations were affected by deletion of the IDO genes, spleens
from IDO1 ko, IDO2 ko, and dkoC57BL/6mice were analyzed by
flow cytometry (Figure 5 and Supplementary Figure 5). IDO1
ko mice had decreased percentages of T1 and T2, but not T3, B
cells, compared to wt mice. In contrast, percentages of T1, T2,
and T3 populations were unchanged in IDO2 ko, and dko mice,
suggesting that IDO2 does not play a role in B cell maturation in
the spleen (Figure 5).

To better define the role IDO2 plays in normal B cell
responses, we measured the ability of ko and wt B cells to
proliferate, upregulate activation and costimulatory markers, and
secrete antibody in response to stimulation in vitro. B cells
can be activated by both antigen-specific and antigen non-
specific stimuli like toll like receptors (TLRs), pattern recognition
receptors expressed by immune cells that act as sensors to induce
both innate and adaptive immune responses to infection and
immunization. B cells express high levels of six TLRs, TLR1-4,
TLR7, and TLR9 (46). To determine if IDO1 or IDO2 mediate
B cell activation in response to TLR stimulation, purified B
cells from wt, IDO1 ko, IDO2 ko, and dko C57BL/6 mice

FIGURE 5 | IDO2 does not affect maturation of B cells in the spleen. The

frequency of transitional B cell subsets in wt, IDO1 ko, IDO2 ko, and dko

spleens were measured by flow cytometry. Transitional B cell subpopulations

were defined as T1 (B220+CD93+ IgMhiCD23−), T2

(B220+CD93+ IgMhiCD23+), and T3 (B220+CD93+ IgMlowCD23+). Symbols

represent individual mice and histograms show the mean percentage out of

total B cells ± SEM from 6 mice per genotype in 2 independent experiments.

P-values were calculated by one way-ANOVA followed by comparison of

means with Tukey’s post-hoc multiple comparison correction. *p < 0.05, **p <

0.01, ***p < 0.001, n.s., not significant.

were cultured in vitro with the Toll-like receptor (TLR) ligands
Pam3CSK4 (TLR1/2), Poly I:C (TLR3), LPS (TLR4), loxoribine
(TLR7), and CpG (TLR9). Their responses were compared to
stimulation with anti-IgM + anti-CD40 (B cell receptor +

T cell help), PMA + ionomycin (positive control) or media
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alone (negative control). In agreement with published reports,
B cells did not respond equally to the different modes of
stimulation [Figure 6, Supplementary Figure 6, and ref. (46)].
Anti-IgM + anti-CD40 and PMA + ionomycin induced strong
B cell proliferation, but not antibody secretion. The activation
marker CD25, costimulatory molecules CD80 and CD86, and
differentiationmarker CD138 were strongly upregulated by PMA
+ ionomycin and all but CD86 were moderately upregulated
by anti-IgM + anti-CD40. Stimulation with Pam3CSK4, LPS,
and CpG induced B cells to proliferate, upregulate CD25, CD80,
and CD86, and secrete antibody. Poly I:C induced modest
proliferation, but not antibody secretion and loxoribine induced
antibody secretion without proliferation. No differences were
detected between IDO1 ko, IDO2 ko, dko, or wt B cells,
suggesting that IDO2 does not affect the overall activation,
proliferation, or differentiation of B cells to TLR stimulation in
vitro (Figure 6 and Supplementary Figure 6).

IDO2 Mediates in vivo B Cell Responses to
Influenza Infection and Immunization With
T Independent Type II Antigens
Given the dichotomy between IDO2’s critical role in mediating
the autoreactive B cell response in the in vivo KRN model
of autoimmune arthritis and the lack of effect on responses
to in vitro stimuli, we used two well-characterized models to
measure normal B cell responses in vivo, the PR8 influenza
infection model (47) and (4-hydroxy-3-nitrophenyl) acetyl (NP)
immunization model (48, 49). Previous studies of anti-influenza
B cell responses have characterized a burst of low affinity
IgM and high affinity IgG B cells in the 10 days following
initial viral challenge (37). To determine if IDO2 affects these
antibody response to flu infection, IDO1 ko, IDO2 ko, dko,
and wt C57BL/6 mice were infected intranasally with A/PR/8/34
influenza virus (PR8) and titers of anti-PR8 Ig were measured
in the serum on days 0, 5, 7, and 10. Anti-PR8 Ig titers were
detectable at d5 and increased through d10 in wt B6 mice. No
differences in anti-PR8 Ig titers were found in IDO1 ko mice.
In contrast, anti-PR8 Ig titers were consistently lower in IDO2
ko and dko B6 mice (Figure 7A), signifying that IDO2 plays
an important role in immune responses outside of the context
of autoimmunity. These reduced anti-PR8 Ig titers were due
to a reduction in both IgM and IgG anti-PR8 Ig (Figure 7B).
Together, these data suggest an IDO1-independent role for IDO2
in the antibody response to influenza.

The NP model can be used to distinguish factors that mediate
B cell function in the context of both T cell dependent (TD)
and independent (TI) responses (50). Our previous studies
demonstrated normal primary and secondary antibody responses
in IDO2 ko mice challenged with the TD antigen NP-KLH (1).
IDO1 ko mice have also been shown to respond normally to the
TD antigen NP-OVA, but to have an elevated response to the
TI antigens NP-LPS and NP-Ficoll (42). To determine if IDO2
impacts B cell function differently in TD and TI responses, wt,
IDO1 ko, IDO2 ko, and dko mice were immunized i.p. with NP-
LPS (TI type I), and NP-Ficoll (TI type II) and compared to mice
immunized with NP-KLH (TD). Serum anti-NP IgM and IgG

titers were measured 7 days after immunization with NP-Ficoll
or NP-LPS. IDO2 ko and dko mice generated reduced titers of
IgM in response to the TI-type II antigen NP-Ficoll (Figure 8A),
whereas their anti-NP titers in response to the TI type I antigen
NP-LPS were similar to wt levels (Figure 8B). In contrast, IDO1
ko mice trended toward higher IgM anti-NP titers in response
to NP-Ficoll and IgG anti-NP titers to NP-LPS, as had been
previously reported [Figures 8A,B and ref. (42)]. Consistent with
our previously published work, wt, IDO1, and IDO2 ko mice
generated robust primary and secondary antibody responses to
immunization with the TD antigen NP-KLH [Figure 8C and
ref. (1)]. No differences were detected in either the IgM or IgG
anti-NP titers. Dko mice also generated robust anti-NP titers
following primary and secondary immunization, indicating that
there was no compensatory effect of IDO1 in the IDO2 ko in
response to NP-KLH (Figure 8C). The anti-NP response can be
characterized histologically by the presence of Igλ expressing
antibody secreting cells (ASCs) localized in the bridging channels
and red pulp (51). These Igλ ASCs were prevalent in wt and
IDO1 ko mice immunized with NP-Ficoll, but were reduced in
IDO2 ko and dko mice, consistent with their reduced serum
anti-NP titers (Figure 9). No differences in Igλ ASCs were found
in wt, IDO1 ko, IDO2 ko, or dko mice immunized with NP-
LPS or NP-KLH (Figure 9). Together, these data demonstrate
that IDO2 does not affect all B cell responses, but specifically
mediates antibody responses to influenza and T cell independent
type II antigens.

DISCUSSION

IDO1 and IDO2 are closely linked, homologous genes.
Despite their genetic and structural similarities, clear functional
differences between IDO1 and IDO2 have been observed, both
in their roles as potential tryptophan catabolic enzymes and
in their connection to immune function. Teasing apart the
individual contributions of IDO1 and IDO2 in immunity has
been a challenge for the field, a problem conflated with the
use of mouse model deletion systems, where the effect of
deletion of one IDO gene may have unknown consequences on
the expression and potential compensatory role of the other.
Exaggerated inflammatory responses in IDO1 ko mice and
reduced autoimmune responses in IDO2 ko mice have been
used to ascribe immune regulatory vs. proinflammatory roles for
IDO1 and IDO2, respectively. Here, we demonstrate that IDO1
ko mice have reduced levels of IDO2 and IDO2 ko mice have
increased levels of IDO1 in certain cells/tissues. This suggests
that care must be taken in interpreting results from studies of
immunity conducted using single ko mice, as the effect could be
due to altered expression of the other IDO protein. Initial studies
using mice genetically deficient in both IDO1 and IDO2 showed
that for at least one of these responses (elevated IL-10 production
in IDO1 deficient macrophages), the phenotype was not seen
when IDO2 was also deleted (34). This highlights the need to use
both IDO1 and IDO2 single and double ko mice to distinguish
the individual impact of IDO1 and IDO2 in immune responses.
In this study, we used both single and double ko’s to definitively
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FIGURE 6 | IDO2 ko B cells respond normally to stimulation with TLR ligands in vitro. Purified IDO1 ko, IDO2 ko, dko, or wt B cells were labeled with CFSE and

stimulated in vitro with Pam3CSK4 (TLR1/2), Poly I:C (TLR3), LPS (TLR4), loxoribine (TLR7), CpG (TLR9), anti-IgM + anti-CD40, PMA + ionomycin, or media alone for

48 h. The cultured cells were then analyzed for (A) proliferation and the upregulation of activation markers (B) CD25, (C) CD80, (D) CD86, and (E) differentiation

marker CD138 by flow cytometry. (F) The amount of Ig secreted into the supernatant was measured by ELISA. Symbols represent individual mice and histograms

show mean ± SEM, pooled from a minimum of 3 independent experiments. P-values were calculated by one way-ANOVA followed by comparison of means with

Tukey’s post-hoc multiple comparison correction. n.s., not significant.

determine the role of each enzyme in models of B cell-mediated
autoimmunity and inflammation.

Our previous work demonstrated reduced autoreactive B and
T cell responses and attenuated disease in IDO2 ko, but not
IDO1 ko, KRN.g7 mice, suggesting that IDO2 was an important
mediator of both B and T cell responses driving autoimmunity
(1). Here, we find that autoantibody levels and arthritis were
also reduced in IDO1/IDO2 dko mice, confirming that IDO2
mediates autoreactive B cell responses in an IDO1-independent
manner. However, autoreactive T cell responses were not reduced
in dko mice, indicating that the autoreactive T cell defect in
IDO2 ko mice was indirectly associated with the expression of
IDO1. This is consistent with enhanced T cell responses reported

when IDO1 was deleted in other models, including induced
models of cancer (19, 52) and T cell-mediated autoimmunity
(24, 53). In addition to having reduced autoreactive B cell
responses, IDO2 ko mice generated reduced serum antibody
titers in response to influenza infection and immunization with
the T cell independent type II antigen, NP-Ficoll. These reduced
B cell responses were also observed in dko mice, demonstrating
a direct effect for IDO2 in normal B cell responses. These
reduced antibody responses were not due to differences in B
cell maturation, as B cell development in the bone marrow and
maturation in the spleen were normal in IDO2 ko and dko
mice. T-independent type I (NP-LPS) and T-dependent (NP-
KLH) responses were not affected in IDO2 ko or dko mice.
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FIGURE 7 | IDO2 deficient mice generate reduced antibody response to influenza. Wt, IDO1 ko, IDO2 ko, and dko C57BL/6 mice were infected with 200 TCID50

influenza virus (A/PR/8/34). (A) Titers of anti-PR8 Ig were measured on days 0, 5, 7, and 10 by ELISA. Symbols represent individual mice and histograms show mean

serum anti-PR8 Total Ig titer ± SEM for a minimum of n = 10 mice per group. (B) Symbols represent individual mice and histograms show mean serum anti-PR8 IgM

vs. IgG titers ± SEM on day 10 from n = 20 wt, n = 15 IDO1 ko, n = 20 IDO2 ko, and n = 20 dko B6 mice. Data are pooled from 4 independent experiments.

P-values were calculated by one way-ANOVA followed by comparison of means with Tukey’s post-hoc multiple comparison correction. **p < 0.01, ***p < 0.0001,

n.s., not significant.

Similar to previous studies, IDO1 komice showed a trend toward
elevated antibody titers in response to immunization with T cell
independent antigens (42). This correlated with a decrease in T1
and T2 B cells in our study; however, T1 and T2 B cell populations
were not found to be reduced in another report (42). Prior to
this study, antibody responses to influenza infection had not been
evaluated in IDO1 ko mice, though T cell responses were shown
to be elevated following infection (54).

While IDO2was clearly necessary for full B cell responsiveness
in the in vivo models of NP-Ficoll immunization, influenza, and
autoimmunity, in vitro tests of B cell function did not show
differences between IDO1 ko, IDO2 ko, or dko responses. The
difficulty of replicating IDO2’s role in these in vitro systems
suggests that the function of IDO2 is not solely intrinsic to B
cells, and it may require feedback or interactions from other
components of the immune system to exert it’s proinflammatory
effects. Alternatively, since the immune pathways modulated by
IDO2 are not known, it may simply be that stimuli applied
in vitro, such as TLR agonists or B cell receptor stimuli, are
bypassing the pathways in which IDO2 plays a role. Either way, it
is important that the immune mechanisms associated with IDO2
be assessed in a full immune context and serves as a reminder of
the limitations of in vitro studies when assessing gene function.

Our work shows a clear connection between IDO2 and B
cell-mediated autoimmunity, however, themolecular mechanism
by which IDO2 directs autoimmune and other inflammatory
B cell responses is not known. In addition, the role of the
other tryptophan catabolizing enzymes, IDO1 and TDO, in B
cell processes are little studied. Historically, the IDO enzymes
have been linked to immune modulation through their ability
to both deplete the local tryptophan concentration and generate
immunomodulatory tryptophan catabolites. The amino acid
sensing enzymes GCN2 and mTOR may both play a part in
detecting IDO-mediated tryptophan depletion, signaling cell

cycle arrest as well promoting the differentiation of CD4+ T
cells into regulatory T cells (55–57). In addition, tryptophan
catabolites have been shown to induce both regulatory T and B
cells through activation of the aryl hydrocarbon receptor (AhR)
(58–60). Enhanced AhR activity is associated with disease in
autoimmune patients and preclinical models of disease, and AhR
agonists have been shown to inhibit inflammation in models of
inflammatory bowel disease, systemic lupus erythematosus, and
rheumatoid arthritis (61–63). The three tryptophan catabolizing
enzymes (IDO1, IDO2, and TDO) can each initiate the
kynurenine pathway, and as such, could modulate inflammatory
immune function through an AhR-dependent mechanism (64).
However, unlike IDO1 and TDO which have robust tryptophan
catabolizing activity, IDO2’s enzymatic activity is extremely weak
and IDO2 deletion does not affect circulating levels of tryptophan
catabolites (1, 8, 41, 65). This has led us and others to propose
that IDO2’s main function is not through tryptophan catabolism,
but through an as yet unidentified pathway. In support of this,
IDO1 has also been shown to have signaling roles outside of
its tryptophan catabolizing function (66–68). Ongoing work to
determine the downstream effector pathway mediated by IDO2
will be important to understand the differential effects of IDO1
and IDO2 loss on the inflammatory B cell responses examined in
the current study.

In summary, IDO1 and IDO2 appear to have contrasting roles
in immunity, with IDO1 mediating T cell suppressive effects and
IDO2 working directly in B cells as a proinflammatory mediator
of autoimmune processes. IDO2’s immunological effects are
not limited to autoimmune model systems but influence some
aspects of normal B cell function as well. IDO2 seems to be the
dominant player in many B cell-mediated immune responses,
with dko mice generally phenocopying the IDO2 ko in models of
autoimmune arthritis, influenza, and NP-immunization. Finally,
findings from studies using IDO1 or IDO2 single ko mice should
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FIGURE 8 | IDO2 ko and dko mice generate reduced antibody responses to T-independent type II, but not T-independent type I or T cell dependent responses. Wt,

IDO1 ko, IDO2 ko, and dko C57BL/6 mice were immunized with (A) NP-Ficoll, (B) NP-LPS, or (C) NP-KLH and high affinity anti-NP titers measured by ELISA on day

7 (NP-Ficoll, NP-LPS) or day 10 after the primary and secondary responses (NP-KLH). Symbols represent individual mice and histograms show mean ± SEM of the

reciprocal of serum anti-NP IgM and IgG titers from n = 20 mice per group for NP-Ficoll, pooled from 4 independent experiments; n ≥ 15 mice per group for NP-LPS,

pooled from 3 independent experiments, and n = 10 mice per group for NP-KLH, pooled from 2 independent experiments. Individual symbols may overlap for mice

with identical titers. P-values were calculated using a Mann-Whitney non-parametric test. *p < 0.05, **p < 0.01, n.s., not significant.
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FIGURE 9 | Localization of antibody secreting cells in immunized mice. Wt, IDO1 ko, IDO2 ko, and dko C57BL/6 mice were immunized with (A) NP-Ficoll, (B)

NP-LPS, or (C) NP-KLH. Spleens were harvested on day 7 (NP-Ficoll and NP-LPS) or day 10 following primary immunization (NP-KLH). Sections were stained with

B220 (red) and Igλ (blue). Representative images are shown from n = 3 mice per genotype from each immunogen. Antibody secreting cells (ASCs) are marked with

arrows. Scale bar = 200µm.

be confirmed in double knockout mice, as deletion of one IDO
gene affects the expression of the counteracting gene.
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