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BACKGROUND OF HOST IMMUNE RESPONSES

Although a number of host immunological pathways have been discovered including the
traditional TH1/TH2, TH3, TH17, TH22, Tfh, Treg, TH9, and Tr1 (THαβ) pathways, they are not
logically organized. In this article, I have described a detailed and complete picture of the host
immunological pathways (Figure 1).

The traditional TH1/TH2 paradigmwas proposed byMosmann in 1986 (1). TH1 responses were
considered to provide host immunity against intracellular pathogens such as viruses, intracellular
bacteria, and protozoa whereas TH2 responses were considered to provide host immunity against
multicellular parasites (helminths). In my PhD thesis, I proposed a new THαβ immunological
pathway against viruses, derived from the traditional TH1 responses (2), which is associated with
intracellular bacteria and protozoa. The TH3 and Tr1 immunological pathways were identified
after TH1 and TH2 (3, 4). Additional immune responses including the TH17, TH22, Tfh, Treg, and
TH1-like immunological pathways have been discovered recently (5–7).

Initiatory Immune Response
Follicular helper T cells (Tfh) are considered as the key helper cells for B-cell germinal centers
in lymph nodes and are characterized as IL-21-producing T cells (8). Follicular dendritic cells
(CD14+) are antigen presenting cells (9), whereas lymphoid tissue inducer cells (LTi) are the innate
lymphoid cells for Tfh (10). BCL6 is a key transcription factor in Tfh development (11). TGF-β
induced by a STAT5 signal can constrain the differentiation of IL-21-producing helper T cells
(12). IL-21 production is related to STAT1and STAT3 activation. IL-21 production is also related
to STAT5 activation because immunosuppressive prolactin can cause STAT5a to suppress BCL6
expression (13). In contrast, STAT5b can upregulate BCL6 (14). STAT5a and STAT5b have distinct
target genes in immune responses (15), and STAT5b is the transcription factor that induces Tfh. Tfh
can induce B-cells to produce IgM antibodies and IL-21 produced by Tfh facilitates B cell isotype
switching to IgG (16, 17). Besides the protein antigen recognized by B cells and T cells, natural
killer T (NKT) cells also recognize lipid antigens. The subtype iNKTfh plays a role in Tfh responses
(18). Thus, T lymphocytes are the first to initiate adaptive host immunity (19–21), wherein different
STAT proteins regulate different immunological pathways. If the infection tends to be eradicable,
then the host immunological pathways mentioned in the following sections are generated along
with other cytokines.

Eradicable Immune Responses
TH1 immune responses are driven by IL-12 and are induced against intracellular bacteria or
protozoa (22). Type 2 myeloid dendritic cells (CD141+ mDC2) are the antigen presenting cells
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FIGURE 1 | Summary figure of host immunological pathways. Tfh side (follicular help T cell) initiates initiatory immunity and the Treg side (regulatory T cells) initiates

regulatory immunity. Eradicable immune responses include TH1, TH2, TH17, and THαβ. Tolerable immune responses include TH1-like (Th1L), TH9, TH22, and TH3.

The picture shows all effector cells associated the types of host immune responses. TH1/TH1-like are immune responses against intracellular bacteria/protozoa and

are related to type 4 hypersensitivities. TH2/TH9 are immune responses against helminths and are related to type 1 hypersensitivities. TH17/TH22 are immune

responses against extracellular bacteria/fungi and are related to type 3 hypersensitivities. THαβ/TH3 are immune responses against viruses and are related to

type 2 hypersensitivities.
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in the TH1 response (9). The main TH1 effector cells are
stimulatorymacrophages (M1), IFN-γ-secreting cytotoxic CD8T
cells (CD28+ Tc1), IFN-γ-secreting CD4T cells, iNKT1 cells,
and IgG3-producing B-cells (23, 24). Initiation of eradicable
immunity also requires innate lymphoid cells to produce the
initial cytokines that drive different immunological pathways.
For TH1 immune responses, the key innate lymphoid cells
are ILC1 (25). STAT4 is the key transcription factor for TH1
immunity but T-bet also plays a vital role. TH1 responses against
self-antigens present as type 4 delayed-type hypersensitivity, such
as type 1 diabetes mellitus or Crohn’s disease (26).

TH2 immune responses are driven by IL-4 and is induced
against extracellular parasites (helminths) (27). The antigen
presenting cells in TH2 immune responses are Langerhans cells
(CD1a+) (9, 28). The main TH2 effector cells are eosinophils
(iEOS), basophils/pro-inflammatory mast cells (MCt, mast cell
tryptase), IL-4-/IL-5-secreting CD4T cells, iNKT2 cells, ILC2,
and IgG4/IgE-producing B-cells (29). IgG4 activates eosinophils,
and IgE activates mast cells, as in acute anaphylaxis (30). IgG4–
eosinophils function to activate eosinophil-mediated cellular
immunity against parasites or insects, whereas IgE–mast cells act
to expel helminths or insects through a physiological mechanism.
Mast cells activated by IgE can release histamine, which causes
bronchoconstriction, vomiting/nausea, rhinorrhea, skin itching,
gastric acidification, increased local vascular permeability, or
increased bowel movement. These actions can all help to
physiologically expel helminths or insects. The key transcription
factor in TH2 response is STAT6 andGATA3 also plays a vital role
in the TH2 immunological pathway. TH2 responses against self-
antigens present as type 1 immediate allergy, such as food/drug
allergy, anaphylaxis, or urticarial (31).

THαβ is distinct from traditional TH1 immune responses
(2). THαβ cells are induced against viruses and were previously
called as Tr1 cells (4, 32). THαβ immune responses are driven
by IFNα/β or IL-10. The antigen presenting cells for THαβ

responses are plasmacytoid dendritic cells (pDC) (9). The main
effector cells of THαβ immune responses are IL-10-producing
stimulatory NK cells (CD56–CD16 + NK1 cells), IL-10/IL-
27-secreting CD4T cells, IL-10-secreting cytotoxic CD8T cells
(CD28+ Tc2), iNKT10 cells, ILC10, and IgG1-producing B-
cells (23, 33–35). The CD27 molecule is important for antiviral
immunity. The key transcription factors for THαβ response
are STAT1 and STAT2 (36). THαβ immune responses against
self-antigens present as type 2 antibody-dependent cytotoxic
hypersensitivity, such as the acute stage of myasthenia gravis or
Graves’ disease (37). IL-10 is not merely an immunosuppressive
cytokine; it can also have potent stimulatory effects on NK cells,
cytotoxic T lymphocytes (CTLs), and B-cells.

TH22 responses are part of the host innate immunity against
extracellular bacteria and fungi (38). TH22 response is driven
by IL-6 or TNFα (39). The antigen presenting cells in TH22
immune responses are type 1 myeloid dendritic cells (CD1c+
mDC1) (9). The main TH22 effector cells are neutrophils (N1),
IL-22-secreting CD4T cells, iNKT17 cells, ILC3(NCR+), and
IgG2-producing B-cells (6, 40). The key TH22 transcription
factor is STAT3; AP1 and CEBP are also important transcription

factors. TGF-β can suppress IL-22 to skew the TH22 immune
response toward TH17 (41). TH22 responses against self-
antigens present as type 3 immune-complex and complement-
mediated hypersensitivity, such as the Arthus reaction or
rheumatoid arthritis (42). The host immunological pathways
induced are mainly decided by the extracellular or intracellular
location of protozoa or fungi.

Four IgG subtypes fit the four types of acute immunological
pathways. Murine IgG antibodies also have four subclasses
and are correlated with human IgG subtypes as follows:
Human IgG1<->Murine IgG2a; Human IgG2<->Murine IgG3;
Human IgG3<->Murine IgG2b; and Human IgG4<->Murine
IgG1 (43). hIgG1/mIgG2a function against viral antigens;
hIgG2/mIgG3 function against bacterial antigen, especially
polysaccharides; hIgG3/mIgG2b act against intracellular bacteria;
and hIgG4/mIgG1 act against parasite antigens (44–46). Notably,
the immune response against fungi or protozoa is mainly based
on their intracellular or extracellular location. Extracellular
fungi such as Candida spp or Aspergillus spp usually trigger
TH22 immune responses, whereas intracellular fungi such as
Histoplasma spp. trigger TH1 responses.

Regulatory Immune Responses

Tregs are the host immune inhibitory cells (47) driven by IL-2
and TGF-β. Regulatory dendritic cells (DCreg) are the antigen
presenting cells for Tregs (48). Regulatory innate lymphoid
cells (ILCreg) are the initial helpers for Treg production (49).
The main effector cells for Tregs are the TGF-β-producing
CD4T cells, FOXP3 regulatory iNKT cells, and IgA-producing

B-cells (50). STAT5, especially STAT5a is the key transcription
factor for the Treg pathway. However, both STAT5a and
STAT5b play non-redundant roles in Treg generation (51).
They may first act sequentially with STAT5b activation in Tfh
signaling. Combined signaling STAT5b and STAT5a induces Treg
generation. The combination of Tregs and the aforementioned
four immunological pathways are important to shift adaptive
immunity to tolerable immunity. During initial infection, acute-
stage fierce cytokines can rapidly kill pathogens and infected cells
or tissues. However, if the pathogen infects numerous cells in a
tissue such as the liver, killing the infected cells will completely
destroy the organ (52). Thus, a regulatory T cell STAT5 signal
combined with TH1/TH2/TH22/THαβ will allow the generation
of CD4T cells with less fierce inflammatory cytokines (51). TH1-
like/TH9/TH17/TH3 immunological pathways are generated
during chronic infection. IgA1 and IgA2 are the two types of
IgA antibodies, with IgA1 being dominant in the serum, whereas
IgA2 is dominant in the mucosa. TGF-β can induce IgA1 or IgA2
depending on the lymphoid follicle location (53). In the Gut-
associated lymphoid tissues (GALTs) or the Peyer’s patches, IgA2
is the dominant IgA antibody produced in the gastrointestinal
mucosa. In the lymph nodes at other body locations, IgA1 is the
dominant IgA antibody produced. However, IgA1 is specifically
related to viral protein antigens, whereas IgA2 is especially related
to bacterial antigens such as LPS. The heavy-chain locus sequence
of B-cell antibodies on the human chromosome 14 is IgM, IgD,
IgG3, IgG1, IgA1, IgG2, IgG4, IgE, and IgA2. B-cells co-express
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IgM and IgD. IgG3, IgG1, and IgA1 comprise the first group for
cellular immunity, whereas IgG2, IgG4, IgE, and IgA2 can be
considered as the second group for humoral immunity. The gene
sequence order is important as it affects the time sequence of the
isotype switch.

Tolerable Immune Responses

TH1-like cells (non-classic TH1) are initiated by TGF-β (STAT5
signaling) and IFN-γ (STAT4 signaling). TH1-like cells with
Foxp3+ regulatory characteristics have been identified (7). TH1
helper cells and TH1-like cells are closely related (54). TH1-like
cells are induced in chronic TH1 immune responses. Thus, these
cells may be related to chronic inflammation such as long-term
tuberculosis or leishmania infection (55). The effector cells of
TH1-like immune responses include suppressive macrophages
(M2), ILC1, suppressive CD8T cells (CD28-CD8+Treg), IgA1-
producing B-cells, iNKT1 cells, and IFN-γ-/TGF-β-producing
CD4T cells (24, 40, 56). The TH1-like response induces type 4
delayed-type hypersensitivity, such as Crohn’s disease (26).

TH9 cells are driven by IL-4 (STAT6 signaling) combined with
TGF-β (STAT5 signaling) (57–59). Thus, TH9 cells are closely
related to the TH2 immunological pathway in parasite immunity

(60). The cells are characterized as IL-9-secreting CD4T cell. TH9
cells are important under a chronic allergic condition such as
asthma. Thus, TH9 helper cells are chronic T helper cells related
to TH2 immune response. The effector cells of TH9 immunity
include regulatory eosinophils, basophils/profibrotic mast cells
(MCct, mast cell chymase, and tryptase), ILC2, IL-9-producing
CD4T cells, iNKT2 cells, and IgA2-producing B-cells (40, 61).
TH9 immune responses present as type 1 allergy, including
asthma (29).

TH17 cells are driven by IL-6/IL-1 combined with TGF-β (5).
Thus, TH17 cells are closely related to the TH22 immunological
pathway against extracellular bacteria and fungi (62). TH17 cells
are characterized as IL-17-secreting CD4T cells. TH17 cells are
important in chronic immune-complex-mediated diseases such
as rheumatic arthritis. The TH17 helper cell is the chronic
T helper cell related to TH22 immunity. TGF-β with STAT5
can suppress the acute IL-22-producing cells and enhance the
chronic IL-17-producing cells (41). Owing to the role of TGF-
β in TH17 immunity, regulatory IL-17-producing cells have
been noted. The effector cells of TH17 immunity include
regulatory neutrophils (N2), ILC3(NCR–), IL-17-producing
CD4T cells, iNKT17 cells, and IgA2-producing B-cells (40,

TABLE 1 | Summary of host immunological pathways.

Immune

pathways

Driven

cytokines,

ILCs, DC

Transcription

factors

Effector cells CD4T cells B cells NKT cells Pathogen/

pathogenesis

Autoimmune

Initiatory

Tfh IL-21, FDC, LTi STAT1, STAT3,

STAT5B

IL-21 CD4T

cells

IgM/G B

cells

iNKTfh Acute infection

Eradicable immunities

TH1 IL-12, ILC1,

mDC2

STAT4 Macrophages

(M1), CTL (Tc1)

IFN-γ CD4T

cells

IgG3 B cells iNKT1 Intracellular bacteria

and protozoa

Type 4 DTH

TH2 IL-4, ILC2, LC STAT6 Eosinophils (iEOS),

basophils, mast

cells (MCt)

IL-4, IL-5,

CD4T cells

IgG4/IgE B

cells

iNKT2 Helminths and insects Type 1 allergy

TH22 IL-1, mDC1,

ILC3 NCR+

STAT3 Neutrophils (N1) IL-1, TNFα,

IL-22 CD4T

cells

IgG2 B cells iNKT17 Extracellular bacteria

and fungi

Type 3 Immune

complex

THαβ IL-10, pDC,

IFNα, ILC10

STAT1, STAT2 NK cells (NK1),

CTL (Tc2)

IL-10 CD4T

cells

IgG1 B cells iNKT10 Viruses Type 2 ADCC

Immune

pathways

Driven cytokines,

ILCs

Transcription

factors

Effector cells CD4T cells B cells NKT cells Pathogen/

pathogenesis

Hypersensitivities

Regulatory

Treg TGF-β, DCreg,

ILCreg

STAT5A,

STAT5B

TGF-β CD4T

cells

IgA B cells iNKT1 Chronic infection

Tolerable immunities

TH1 like IL-12, TGF-β,

ILC1

STAT4, STAT5 Macrophages

(M2), CD8 Tregs

IFN-γ/TGF-β

CD4T cells

IgA1 B cells iNKT2 Intracellular bacteria

and protozoa

Type 4 DTH

TH9 IL-4, TGF-β,

ILC2

STAT6, STAT5 Eosinophils(rEOS),

basophils, mast

cells (MCct)

IL-9 CD4T

cells

IgA2 B cells iNKT17 Helminths and insects Type 1 allergy

TH17 IL-6, TGF-β,

ILC3 NCR–

STAT3, STAT5 Neutrophils (N2) IL-17 CD4T

cells

IgA2 B cells iNKT10 Extracellular bacteria

and fungi

Type 3 immune

complex

TH3 IL-10, TGF-β,

ILC10

STAT1, STAT2,

STAT5

NK cells (NK2),

CD8 Tregs

IL-10/TGF-β

CD4T cells

IgA1 B cells iNKTreg Viruses Type 2 ADCC
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63). TH17 immunity presents as type 3 immune-complex
hypersensitivity, including ulcerative colitis or rheumatoid
arthritis (42).

TH3 cells are driven by IL-10 and TGF-β (64, 65). Thus,
TH3 cells are closely related to the THαβ immunological
pathway against viruses (66). These cells also produce IL-
10 and TGF-β. Thus, TH3 helper cells are important for
chronic antibody-dependent cellular cytotoxic hypersensitivity.
TH3 cells are the chronic helper T cells corresponding to
THαβ helper cells. The TH3 immune effector cells include
IL-13-producing regulatory NK cells (CD56 + CD16–NK2
cells), ILC10, IL-10- and TGF-β-secreting CD4T cells,
suppressive CD8T cells (CD28-CD8+ Treg), iNKT10 cells,
and IgA1-producing B-cells (34, 35, 56, 67, 68). IgA1 of
TH3 immune responses is produced in the serum and
acts against viral protein antigens. TH3 immune responses
induce type 2 antibody-dependent cytotoxic hypersensitivity,
including the chronic stage of Systemic Lupus Erythematosus
(SLE) (69).

CONCLUSIONS

The summary diagram includes complete picture of
the 4 × 2 + 2 immunological pathways (Table 1).
The TH1, TH2, TH22, and THαβ eradicable immune
responses correspond with the TH1-like, TH9, TH17,
and TH3 tolerable immune responses, respectively, and
match the four types of hypersensitivities. The detailed
immune responses against different pathogens and in
allergy/hypersensitivity can thus be understood clearly.
This framework can provide new insights for therapeutic
agent development for the four types of pathogens
and hypersensitivities.
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