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Obesity is a major independent risk factor for increased morbidity and mortality upon

infection with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), which

is responsible for the current coronavirus disease pandemic (COVID-19). Therefore,

there is a critical need to identify underlying metabolic factors associated with obesity

that could be contributing toward increased susceptibility to SARS-CoV-2 in this

vulnerable population. Here, we focus on the critical role of potent endogenous

lipid metabolites known as specialized pro-resolving mediators (SPMs) that are

synthesized from polyunsaturated fatty acids. SPMs are generated during the transition

of inflammation to resolution and have a vital role in directing damaged tissues to

homeostasis; furthermore, SPMs display anti-viral activity in the context of influenza

infection without being immunosuppressive. We cover evidence from rodent and human

studies to show that obesity, and its co-morbidities, induce a signature of SPM

deficiency across immunometabolic tissues. We further discuss how the effects of

obesity upon SARS-CoV-2 infection are likely exacerbated with environmental exposures

that promote chronic pulmonary inflammation and augment SPM deficits. Finally,

we highlight potential approaches to overcome the loss of SPMs using dietary and

pharmacological interventions. Collectively, this mini-review underscores the need for

mechanistic studies on how SPM deficiencies driven by obesity and environmental

exposures may exacerbate the response to SARS-CoV-2.
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INTRODUCTION

Obesity is an independent risk factor for increased morbidity and mortality upon infection with
the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) responsible for the current
COVID-19 pandemic. Several studies underscore the notion that obesity, in addition to a range
of other co-morbidities and dietary factors, may increase the risk for SARS-CoV-2 (1–10). As an
example, in a study from Mexico, the odds of having COVID-19 among obese patients with a BMI
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> 30 kg/m2 was 61% higher than that of control non-obese
patients (1). Generally, amongst patients with symptoms, those
with severe or critical conditions had much higher BMI and
prevalence of obesity than the normal population or COVID-
19 negative patients (2–10). One study used the UK Biobank
data (n = 285,817) to show that obesity almost doubled the risk
of infection, adjusted for age, sex, ethnicity and socioeconomic
status (9). Thus, it is clear that obesity results in a higher
risk of increased severity of infection with SARS-CoV-2. These
findings mirror influenza infection, as obesity also independently
increases risk for influenza severity and death (11).

The high rate of obesity worldwide (e.g., in the U.S. over 40%
of the adult population is obese) combined with the enhanced
morbidity and mortality in obese individuals from infection with
SARS-CoV-2 represents a public health emergency. Therefore,
there is a critical need to identify the underlying factors by which
obese patients are at high risk of infection and complications
with SARS-CoV-2. In this mini-review, we focus on a unique
aspect of fatty acid metabolism that may provide a link between
obesity and immune dysregulation to SARS-CoV-2 infection.
These significant insights could evoke new areas of investigation
at amechanistic level and ultimately therapeutic strategies for this
vulnerable population.

METABOLITES OF THE SPECIALIZED
PRO-RESOLVING MEDIATOR FAMILY ARE
CRITICAL IN THE RESOLUTION OF VIRAL
INFECTION THROUGH MULTIPLE
MECHANISMS

A wide range of metabolic factors contribute toward impaired
innate and adaptive immunity in obesity. Here, we discuss
the role of fatty acid-derived metabolites belonging to the
specialized pro-resolving mediator (SPM) family. These potent
lipid autacoids known as resolvins, protectins, maresins, and
lipoxins are synthesized during the transition of inflammation
to resolution and are critical for turning damaged tissue
to homeostasis (12). SPMs are predominately synthesized
from the n-3 polyunsaturated fatty acids (PUFA) known
as eicosapentaenoic (EPA) and docosahexaenoic (DHA)
acids (Figure 1A). Some SPMs are also synthesized from
arachidonic acid, an n-6 PUFA (Figure 1B). For further
details on these metabolites and their immunoresolvants
properties, we refer the reader to elegant reviews from Serhan
et al. (12, 13).

There is strong literature to support a role for SPMs
in improving outcomes upon bacterial, parasitic, and viral
infections (14, 15). To exemplify, the DHA-derived SPM known
as protectin DX (PDX), an isomer of protectin D1 (PD1),
enhanced mouse survival upon lethal H5N1 infection including
under conditions where antiviral drugs failed to confer protection
(16, 17). Mechanistically, PDX inhibited viral replication by
targeting the nuclear export machinery for viral transcripts. PDX
specifically blocked viral transcripts from being transported to
NXF1, an mRNA transporter. Furthermore, pulmonary PDX
levels were lowered upon influenza infection and were dependent

on 12/15-lipoxygenase activity. These effects were unique to
PDX as other PUFA-derived metabolites did not confer any
improvement in survival.

Another study suggested that metabolites of the DHA-derived
SPM family have utility as adjuvants for influenza vaccination.
The SPM precursor 17-hydroxydocosahexaenoic acid (17-
HDHA) increased antibody levels and improved survival upon
pH1N1 influenza vaccination and infection in lean mice by
promoting B cell differentiation toward the formation of CD138+

long-lived antibody secreting cells (18). At a molecular level,
this was driven by 17-HDHA upregulating the expression of
key transcription factors including Blimp-1, the master regulator
of B cell differentiation toward antibody secreting plasma cells.
Similarly, administration of dietary DHA ethyl esters, the parent
compound of DHA-derived SPMs, also boost antibody levels
of obese mice (19, 20). DHA improved antibody levels upon
influenza infection by increasing the concentration of 14-
hydroxydocosahexaenoic acid (14-HDHA), which in turn drove
the formation of long-lived CD138+ antibody secreting cells
(19). Therefore, these studies suggest that SPMs have a role
in controlling influenza infection through differing mechanisms
including improving aspects of humoral immunity. Furthermore,
there is also in vitro evidence that the n-6 PUFA-derived
SPM known as lipoxin B4 can stimulate antigen-specific IgG
production frommemory B cells in subjects that were vaccinated
for influenza (21). In this case, lipoxin B4 upregulated the
expression of Blimp-1 and XBP1 to increase the abundance of
memory B cells.

The effects of SPMs are not just limited to influenza virus.
For instance, aspirin-triggered resolvin D1 is reported to have
anti-inflammatory effects on murine ocular inflammation driven
by infection with herpes simplex virus (22). In addition, aspirin
triggered resolvin D1 can clear mouse bacterial infections such as
pulmonary pneumonia, which can lower the need for antibiotics
(23, 24).

The cellular targets of SPMs in the context of viral infection
and obesity are emerging. There is strong evidence for the role of
SPMs in controlling chronic inflammation in obesity by targeting
monocyte and macrophage polarization (25). This is particularly
relevant for COVID-19 as adipose tissue presumably expresses
high levels of the human angiotensin converting enzyme (ACE2),
the receptor for SARS-CoV-2. ACE2 expression levels are likely
higher in adipose tissue of the obese compared to the lungs,
suggesting that adipose tissue may be a major target for SARS-
CoV-2 (26). As described above, there is strong evidence on
how SPMs drive B cell differentiation toward long-lived antibody
secreting cells. However, it is unclear how SPMs influence other
aspects of humoral immunity to promote antibody production.
For instance, the abundance of T follicular helper cells, which
are required to promote B cell activation and germinal center
formation, is lowered in obesity (27). It remains unclear if SPMs
could be targeting the abundance of these cells to improve
germinal center formation and function. In addition, obesity
impairs pulmonary outcomes upon influenza infection, including
lung inflammation characterized by dysregulated memory CD8+

T cell metabolism (28). Given evidence to show that SPMs can
control T cell differentiation and function, there is a need to
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FIGURE 1 | Metabolic pathways by which specialized pro-resolving mediators (SPMs) are synthesized from polyunsaturated fatty acids (PUFA). (A) EPA and DHA are

long-chain n-3 PUFAs that serve as precursors for the biosynthesis of SPMs of the resolvin, protectin, and maresin families through the use of differing enzymes. EPA

and DHA can be synthesized from the essential short-chain n-3 PUFA known as alpha-linolenic acid. (B) The biosynthesis of lipoxins from the n-6 PUFA arachidonic

acid. Arachidonic acid can be synthesized from the essential n-6 PUFA linoleic acid. Key enzymes for fatty acid elongation and desaturation in addition to SPM

biosynthesis are indicated for the n-3 and n-6 PUFA pathways. For simplicity, the biosynthesis of all SPM intermediates is not shown for the n-3 and n-6 pathways.

understand the mechanisms by which SPMs may control the
abundance and function of pulmonary T cell populations (29).

OBESITY PROMOTES A SIGNATURE OF
SPM DEFICIENCY

There is evidence that obesity generally drives a unique signature
of SPM deficiency (19, 30–37). Table 1 summarizes the results of
these studies. To exemplify, obesemice compared to lean controls
display a rapid reduction in DHA-derived SPM precursors and
SPMs in white adipose tissue within 4 days of consuming
a high fat diet (37). Others have also reported a reduction
of not only DHA-derived SPMs but also metabolites from
the EPA pathway upon long term consumption of obesogenic
diets in white adipose tissue and liver, which are central in

driving complications of obesity (30, 32, 34, 42). As described
below, these deficiencies can be overcome through dietary
administration of EPA- or DHA-enriched marine oils. On the
contrary, one study demonstrated that in a model of liver
steatosis, select SPMs were elevated, which may be due to an
attempt to lower chronic inflammation (38). However, in this
study, the liver content of EPA and DHA, the parent fatty acids
of SPMs, were lower in obese mice relative to lean controls.

SPM deficiencies are not just limited to adipose tissue
and liver. When mice were fed a western diet, there was a
significant loss of PDX in the spleen, which was reversed upon
administration of DHA ethyl esters in the diet (19). A significant
reduction of 14-HDHA, 17-HDHA, and PDX was also reported
in mice consuming a high fat diet with a modest effect on 14-
HDHA in the bone marrow (33). The effects were evident in male
but not female obese C57BL/6J mice, suggesting sex differences
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TABLE 1 | Summary of the effects of obesity, diabetes, and weight loss on SPM levels across tissues of humans and mice.

Model system Tissue/cells SPM precursors/SPMs References

Obese humans Adipose tissue The ratio of SPMs to leukotrienes and prostaglandins was significantly lowered in obese

compared to lean individuals

(30)

Obese humans Plasma & leukocytes 14-HDHA, 17-HDHA, 18-HEPE and 15-LXA4 levels were reduced in the plasma of obese

compared to lean individuals. Leukocytes from obese individuals also had significantly lower

levels of 17-HDHA and 18-HEPE

(31)

C57BL/6 mice Adipose tissue RvD1, PD1, 17-HDHA, 14-HDHA, and 18-HEPE levels were lower compared to lean mice (32)

C57BL/6J mice Spleen PDX was lowered compared to lean controls (19)

C57BL/6J mice Spleen and bone marrow 14-HDHA, 17-HDHA and PDX were lower in obese male but not female mice. 14-HDHA was

lowered in the bone marrow of obese male but not female mice

(33)

C57BL/6 mice Adipose tissue and liver 15R-LXA4 increased in the adipose tissue of obese mice. 18-HEPE decreased in adipose

and liver of obese mice

(34)

C57BL/6J mice Adipose tissue

macrophages

RvE1, RvE2, RvD2, RvD3, RvD5 levels were significantly reduced and RvD6 was significantly

increased in obese mice

(35)

Swiss mice Hypothalamus Hypothalamic RvD2 is reduced in obese mice (36)

C57BL6 and ob/ob mice Adipose tissue Adipose levels of 17-HDHA and PD1 are lowered in obese mice (37)

C57BL/6J mice Liver steatosis Levels of liver RvE1, RvE2, RvD1 and RvD2 are increased compared to controls; EPA and

DHA levels in the liver are lower in obese mice

(38)

db/db mice Cutaneous wounds 17-HDHA, 14-HDHA and 4-HDHA levels were lower in the wounds of db/db mice (39)

db/db mice Adipose tissue 17-HDHA and PD1 were reduced and 18-HEPE was increased (37)

Humans with and without

out type 2 diabetes

Plasma MaR1 levels are lowered in type 2 diabetic patients compared to controls. Diabetics with foot

ulcers had a further reduction in maresin levels compared to controls and type 2 diabetics.

(40)

Humans with the metabolic

syndrome and weight loss

Neutrophils Metabolic syndrome patients who lost weight in a weight loss program had a 2-fold increase

in RvE1 compared to those participants who were in the weight maintenance group and did

not lose weight

(41)

in SPM deficiencies. In support of this notion, it is known
that synthesis of DHA is higher in women than men (43). The
notion of sex-differences in SPM metabolism is also consistent
with a human study that showed females were protected from
endothelial impairments driven by inflammation due to elevated
levels of SPMs compared to males (44). The sex-differences are
intriguing, as data on COVID-19 prevalence shows that males
are disproportionally at higher risk for becoming infected than
females across all ages (45).

Studies with human samples have validated murine studies
by demonstrating that obese humans compared to lean controls
display deficiencies of key SPM precursors in circulation. A
major finding was that leukocytes isolated from obese patients
had reduced levels of 17-HDHA and an unbalanced formation
of DHA-derived resolvins along with an increased production
of the potent chemokine leukotriene B4 (31). This study found
impaired activity of 15-lipoxygenase, a key enzyme required for
SPM biosynthesis to be the cause of the deficiency. Interestingly,
the impairment was not due to reduced cellular uptake of DHA,
consistent with rodent studies that show no impairment in DHA
levels (33). Furthermore, when leukocytes were treated in vitro
with 17-HDHA, the biosynthesis of downstream metabolites
was rescued, demonstrating 15-lipoxygenase to be a potential
therapeutic target for improving circulating levels of SPMs (31).

The observations on SPM deficiencies with obesity are
generally consistent with models of type 2 diabetes, a major co-
morbidity of obesity (Table 1). For instance, in wounds of db/db
mice, select SPMs were lowered relative to littermate controls
(39). In another study, 17-HDHA and PD1 were decreased

in white adipose tissue of db/db mice, consistent with studies
using diet-induced obese mice, although 18-HEPE levels were
elevated compared to controls (37). In type 2 diabetic subjects,
circulating maresin 1 (MaR1) levels were decreased compared to
controls; furthermore, MaR1 was further decreased in those type
2 diabetics with foot ulcers (40). MaR1 is of significance given
its role in regulating murine insulin sensitivity and adipose tissue
inflammation in models of genetic and diet-induced obesity (46).
Finally, a recent study showed weight loss elevated RvE1 levels
in human subjects with metabolic syndrome (41), suggesting
that the effects of obesity on SPMs could be potentially reversed
through weight loss (Table 1).

OBESE INDIVIDUALS HAVE INCREASED
SUSCEPTIBILITY TO ENVIRONMENTAL
EXPOSURES THAT DRIVE A STATE OF
SPM DEFICIENCY

Recent studies have noted that individuals living in areas with
higher levels of ambient air pollution are at a higher mortality
risk from COVID-19 (47, 48). This was also noted with previous
SARS pandemics (49). Obese individuals are uniquely susceptible
to environmental exposures and it is currently unknown
whether there is a higher rate of mortality from COVID-19 in
obese patients that live in areas with increased air pollution.
Epidemiological studies have indicated an association between
obesity and air pollution (50, 51). Studies of obese humans
and animal models have demonstrated a greater decrement in
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pulmonary function after exposure to the criteria air pollutant
ozone (O3), enhanced production of proinflammatory cytokines,
and markers of oxidative stress (52, 53). It is currently unclear
why obese individuals are more susceptible to the health effects
of environmental exposures. However, experimental data have
noted that obese mice and humans exposed to air pollutants have
increased pulmonary and systemic TNFα, IL-17, markers of lung
injury, and airspace neutrophilia (54).

In addition to increased inflammation, acute exposure to
O3 significantly reduces pulmonary and systemic DHA-derived
SPM precursors and SPMs (55). Treatment of mice with
17-HDHA, 14-HDHA, and PDX significantly decreased O3-
induced pulmonary inflammation (55). This suppression of SPM
production was also noted in a murine model of nanotoxicity
wherein obese mice exposed to nanoparticles had a significant
suppression in pulmonary expression of 5-lipoxygenase and
12/15-lipoxygenase and the production of EPA- and DHA-
derived SPMs (56). Taken together, these data suggest that the
susceptibility of obese individuals to environmental lung diseases
may drive an altered pulmonary immune response and a state
of SPM deficiency that increases the morbidity and mortality to
respiratory infections, including COVID-19.

DISCUSSION

Given that SPM deficiencies in obesity are potentially
contributing toward poor outcomes upon SARS-CoV-2
infection, administration of SPMs may be beneficial (57). This
hypothesis assumes that SPMs would target key mechanisms
by which SARS-CoV-2 drives an uncontrolled and dysregulated
pulmonary response. SARS-CoV-2 can drive a cytokine storm,
which may be a potential target for intervention as SPMs
are known to have dual anti-inflammatory and pro-resolving
properties including restricting excessive immune cell infiltration
(12, 58). For instance, TNF-α, IL-6, IL-1β, IL-8, IL-12, monocyte
chemoattractant protein 1 (MCP1), interferon-gamma inducible
protein (IP10) and macrophage inflammatory protein 1A
(MIP1A) have been implicated in driving complications
associated with SARS-CoV-2 (59). Furthermore, uncontrolled
infiltration of immune cells into the lungs, due to excessive
reactive oxygen species and secretion of proteases promote
pulmonary destruction and thereby lower blood oxygen upon
SARS-CoV-2 infection (60). Thus, SPMs or their parent
compounds may have utility in improving pulmonary cytokine
production and recruitment of pulmonary immune cells upon
infection. In support of this notion, in amousemodel of infection
with non-typeable haemophilus influenzae, the aspirin triggered
RvD1 decreased the concentration of pulmonary TNFα and IL-6
in addition to driving the clearance of macrophages (61).

There are several approaches that could increase levels
of SPMs. One is through dietary intervention in which the
parent compounds of SPMs, notably EPA and DHA, can
be delivered as either over-the-counter supplements or as
prescription supplements such as Lovaza, Vascepa, and Epanova.
It is important to note that over-the-counter formulations of
these fatty acids are not the same as prescriptions due to

differences in dose, purity, and composition of the fatty acids.
Nevertheless, a recent study showed that an SPM precursor
containing marine oil strongly upregulated SPMs of the EPA
and DHA series within hours of administration accompanied by
enhanced neutrophil andmonocyte phagocytosis of bacteria (62).
However, a major limitation of this approach is that dietary EPA
and DHA may not be as potent as direct intervention with SPMs
(12). Amore directed approach is to deliver SPMs rather than the
parent compounds although the mode of delivery remains to be
established. One recent study showed that SPMs were delivered
using nanoparticles in amodel of intestinal wound healing, which
led to activation of pro-repair pathways in the colonic mucosa
(63). Furthermore, changes in dietary patterns may be another
viable option. The Western diet is associated with impaired
pulmonary outcomes and a shift toward a Mediterranean diet
may prevent a deficiency of SPMs (64).

An additional consideration is the potential role of n-6 PUFAs
on outcomes related to SARS-CoV-2 infection. N-6 PUFAs are
highly abundant in the western diet and there is some suggestion
that select n-6 PUFAs such as linoleic acid could be driving SPM
deficiencies due to competition between the n-6 and n-3 fatty
acids for specific enzymes that control SPM biosynthesis (65, 66).
This is particularly important to consider given that parenteral
nutrition in a hospital setting is enriched in n-6 PUFA-enriched
oils (67). Thus, increasing n-3 PUFA levels alone may not be
enough to increase downstream SPMs in the obese but could
require changes in the intake of n-6 PUFAs. Of course, n-6 PUFAs
themselves are also critical for synthesis of SPMs such as lipoxins
(12). Thus, additional studies on the complex relationship
between dietary n-6 and n-3 PUFAs with downstream SPM
biosynthesis, particularly in the context of viral infection are
essential. Overall, there is no current evidence to support changes
in dietary PUFA intake for improving outcomes upon SARS-
CoV-2 infection, but is an important area of investigation at the
pre-clinical and clinical level.

Finally, our understanding of the mechanisms by which
SARS-CoV-2 exerts its effects are just emerging (60), although
how the virus impairs outcomes in obese individuals currently
remains unknown. There is no evidence for a role for SPMs
in controlling the host’s response upon SARS-CoV-2 infection.
Therefore, there is a critical need to evaluate and understand the
kinetics of SPM biosynthesis in human and animal models of
obesity during SARS-CoV-2 infection using mass spectrometry-
based lipidomics. Supporting experiments with gain and loss
of function approaches in animal models are also required to
establish that SPM deficiencies in obesity exacerbate the response
to the infection. It is also important to consider the host genetic
profile (34), which could be a major consideration in developing
dietary or pharmacological approaches to overcoming SPM
deficiencies and improving outcomes to SARS-CoV-2 for
the obese.

CONCLUSION

In summary, SPMs are key players in inflammation resolution
and the infectious response. Deficiencies in SPMs, driven
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by obesity, its co-morbidities, and chronic pulmonary
environmental exposures, could exacerbate the SARS-
CoV-2 induced morbidities and mortalities. Thus, there
is an urgency for mechanistic studies on SPMs in the
context of obesity and its co-morbidities upon SARS-
CoV-2 infection. Ultimately, targeting SPM deficiencies
through dietary and pharmacological interventions may
be a therapeutic approach worth investigating in order to
decrease the morbidity and mortality in response to SARS-
CoV-2 infection in a highly vulnerable and metabolically
impaired population.
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