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Immunotherapy is a very promising therapeutic approach against cancer that is

particularly effective when combined with gene therapy. Immuno-gene therapy

approaches have led to the approval of four advanced therapy medicinal products

(ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory

acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In

spite of these remarkable successes, immunotherapy is still associated with severe

side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling

transgene expression through an externally administered inductor is envisioned as a

potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop

smart immunogene therapy-based-ATMPs, which can be controlled by the addition

of innocuous drugs or agents, allowing the clinicians to manage the intensity and

durability of the therapy. In the present manuscript, we will review the different inducible,

versatile and externally controlled gene delivery systems that have been developed and

their applications to the field of immunotherapy. We will highlight the advantages and

disadvantages of each system and their potential applications in clinics.

Keywords: immunotherapy, gene therapy, externally controlled, inducible, ATMPs, transgene expression, cancer,

autoimmunity

INTRODUCTION

Immunotherapy has drastically evolved since the past 30 years, providing diverse approaches for
boosting the intrinsic power of the host’s immune system to target different diseases, especially
cancer. This field includes a broad spectrum of strategies that includes the administration of
cytokines, chemokines, monoclonal antibodies, cell lysates, and living cells (1–7) to directly or
indirectly boost the immune system to fight cancer or to defuse it for mitigating transplant rejection
(8), autoimmune diseases (9), or chronic inflammation (10).

Immunotherapeutic molecules can be delivered systemically or locally into the patients
through different systems such as non-viral or viral strategies that can be administered through
in vivo or ex vivo strategies (11). Immuno-gene therapy is a new strategy of immunotherapy
that involves genetic modification of cells in order to control immune responses. Some of
the most successful immuno-gene therapy applications target tumor cells (12–14) and reduce
autoimmune/inflammatory disorders (8, 9, 15).
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The re-administration of T cells that are genetically
modified to recognize and kill specific cell types (Chimeric
Antigen Receptor, CAR-T cells) are particularly successful
immunotherapeutic lines to fight refractory tumors (7, 16).
Nowadays, Kymriah (Tisagenlecleucel) and Yescarta
(Axicabtageneciloleucel, Axi-cel) CAR-T cells became the first
two advanced therapy medicinal products (ATMPs) approved in
2017 for the treatment of refractory CD19+ acute lymphoblastic
leukemia and aggressive B-cell lymphomas, respectively (17).
A third potential ATMP, JCAR017 (Liso-cel) has received the
Food and Drug Administration (FDA) breakthrough designation
and priority access to medicine program by the European
Medicine Agency (EMA) for Relapsed/Refractory Large B-cell
Lymphoma (16) and expected to be clinically approved in
2020 (18).

Besides the excellent clinical outcome reported for several
immuno-gene therapy approaches, the continuous expression
and secretion of potent active molecules [such as IL-12,
interferons (IFNs)] can generate adverse clinical events that
can lead to life-threatening organ damage and death. This
toxicity also limits efficacy, due to the impossibility to reach the
appropriate concentrations in target organs. There is therefore
a clear necessity to develop fine-tune strategies capable of
modulating immune cell activity in order to improve safety
and effectiveness of immunotherapies. In this sense, gene
therapy field has developed multiple strategies to control the
potency and duration of the immune responses by controlling
transgene expression.

Several autonomous and externally-control strategies for
regulating activity in immuno-gene therapy have been developed
[reviewed in (19–21)] (Figure 1). First autonomous systems
are self-regulated and respond to signals such as stress,
inflammation, cytokines, or endogenous hormones. However,
those strategies do not allow clinicians to control the intensity
and durability of the therapy.

On the contrary, remote-controlled systems allow the
modulation of activity and associated side effects. Those
approaches rely on the co-administration of an inductor, which
should fulfill certain characteristics in terms of pharmacokinetics,
tolerability and biodistribution (Table 1). There are various
systems for controlling gene expression or managing toxicities at
different levels (Figure 2). For example, inducible suicide herpes
simplex virus tyrosine kinase (HSV-TK) or human thymidylate
kinase (TMPK) systems trigger cell death upon a small molecule
administration [reviewed in (27)] but are irreversible systems. On
the other hand, several systems have been developed to control
CAR-T activity (28–31). Despite their clinical potential, they
are CAR-specific and not able to control other immuno-gene
therapy strategies.

In this review, we will focus on externally controlled,
reversible (on/off switchable) and versatile inducible
systems which can constitute potential tools for improving
immunotherapeutic application. We will discuss the benefits and
weaknesses of every emerging approach regarding their state of
development, safety, on/off dynamics, inductor properties and
closeness to clinics.

PRINCIPLE OF EXTERNALLY
CONTROLLED SYSTEMS

Gene therapy provides us a robust, safe and heterogeneous
platform of gene transfer for clinical applications. This field
has generated a wide range of long-term, stable (or transient,
if required) tools, with reduced immunogenicity for modifying
immune cells by using non-viral and viral delivery systems.

Although multiple inducible systems have been developed,
we will focus on those that are externally controlled, are able
to regulate any transgene and are potentially applicable to
humans. In order to compare the different versatile available
systems for clinical applications, several characteristics must be
considered including the inducer properties, vector architecture,
and origin, single or dual systems, promoters, target cells, leaking
(basal expression in absence of the inducer) and potential risks
parameters. For clarity, we will classify the different externally
controlled systems on (1) those based on the administration of
drugs and (2) those based on the application of physical inductors
(light, ultrasounds or irradiation).

Drug-Inducible Systems
Inducible systems controlled through the administration of
drugs are designed to trigger conformational changes on target
proteins so they induce (ON-systems) or block (OFF-systems)
transcription of the desired transgenes. OFF-systems have the
disadvantage of continuous administration of inductor, necessary
for silencing transgene expression. Permanent-high levels of
antibiotics, for example, can lead to several complications for the
patients and have therefore very limited applications in clinics. In
this review, we will focus on the ON-systems (Figure 2). These
systems require, in general, two key components: (1) a chimeric
transcription factor which contains a DNA-binding domain and
a drug-binding domain; and (2) a regulated minimal promoter,
with very low basal activity, followed by the gene of interest.
This promoter includes several copies of a non-natural DNA-
binding site in which the chimeric transcription factor binds in
the presence of the drug.

Tetracycline-Regulated Expression Systems
Tetracycline (Tet)-based gene expression control systems have
been established as the systems par excellence for gene induction
due to ease of handling, high efficiency and minimal side
effects. This system has been designed to have three different
configurations: (1) the system based on the original tetracycline
repressor, TetR (Tet-ON) (32–34). In these configurations,
TetR-binding sites (Tet operator-tetO) are inserted between a
constitutive promoter and the gene of interest blocking its
activity. The addition of tetracycline or its derivatives [such
as doxycycline (Dox)] promotes a conformational change in
the TetR that makes it incapable of tetO binding, allowing
transcription to proceed. (2) tTA-based systems (Tet-OFF) (35).
These systems are based on a chimeric protein formed by
the fusion of TetR and a domain of VP16 (derived from
herpes simplex virus type 1). Contrary to the TetR-based
system, here the inducible transgene is placed downstream
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FIGURE 1 | Gene therapy strategies to control immunogene therapy using inducible systems. Externally controlled systems (left) require the addition of an external

stimuli (chemical or physical) to modulate the expression of the desire transgene. Autonomous systems (right) are designed to control the expression of the transgene

in function of different cellular situations such as inflammation, cytokines, hypoxia, or pH. Figures were created with BioRender.com.

TABLE 1 | Characteristics of Dox-inducible Tet-On CARs.

System Target Delivery Population Dosesa In vivo induction? Leaking rtTA? ClinicalStage Ref

Tet-On 3G (TaKaRa Bio) CD19 Single Selected 100 ng/ml Yes (pre-induced) Yes Yes Pre-clinical (22)

Tet-On

(Sangon Biotech)

CD19 Single Bulk 4 g/ml No Yes Yes Pre-clinical (23)

Tet-On 3G(Clontech) CD38 Dual Selected 1,000 ng/µl No No Yes Pre-clinical (24)

Tet-On 3G (TaKaRa Bio) CD147 Single Bulk 1,000 ng/ml Yes(pre-induced) Yes Yes Pre-clinical (25, 26)

aDoses in vitro; Ref, reference.

of a minimal (inactive) promoter harboring tetO sequences.
Only if tTA bind to the tetO sequences, will the promoter
be active through the activity of the VP16 domain, and will
express the transgene. In this configuration, the addition of
tetracycline also makes the tTA unable to bind to tetO and
transcription stop. (3) rtTA-based systems (Tet-ON) (Figure 2,
bottom-right). As mentioned before, Tet-OFF systems have
limited applications in clinics. Different groups have therefore
designed Tet-On systems based on mutational modifications
of tTA in order to allow its binding to the tetO only in the
presence of tetracycline. In these new systems, transcription

requires the presence of tetracycline, becoming a Tet-ON system.
The first Tet-On system (36) based on the rtTA had high
leaking, but new developments improved the control of the
expression (37–39). However, these systems, as we will discuss
in detail, still have important drawbacks for clinical applications
due to the presence of transactivators. In this direction, new
developments of the original TetR systems have managed to
control transgene expression in the absence of transactivators in
most cell types analyzed (33, 34), including primary T cells (40).
These developments could open new opportunities in the field
of immunotherapy.
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FIGURE 2 | Externally-controlled inducible systems applied to immunogene therapy applications. Two main groups can be established: (1) Drug-based systems (Gray

circle in the middle) which include ecdysone, mifepristone, tetracycline, and rapamycin systems. In these systems, clinicians could control the activity of the

immunogene therapy through the administration of a drug that will, usually, activate the expression of the desired transgenes. (2) Physical-based systems include two

light-based (melanopsin-based and LINTAD), one radiation-based (TNFerade) and one ultrasound-based (FUS-CAR). White area of the each dashed-line square

shows the rational of each approach to achieve externally-controlled transgene expression. Key molecular players (inductors and regulatory-proteins) in each system

are also indicated. Gray area inside the dashed-line squares indicate published immunogene therapy approaches for each system and the current status; In vitro

studies (indicated by the absence of a mice or human drawing), in vivo studies (indicated by the presence of a mice) and clinical trials (indicated by a drawing of

human figure). In addition, the target disease, therapeutic gene, modified cells and vector type are also shown. The legend at the bottom of the figure illustrate the

meaning of the different symbols used in the figure. Figures were created with BioRender.com.

An important advantage of these systems is that tetracycline
and its derivatives, such as doxycycline, have been widely
used as antibiotics in humans for decades and have been very
well-characterized clinically (41). With 93% of oral absorption
efficient, 14–22 h of half-life and deep tissue penetration,
including blood-brain barrier (BBB) (Table 2), they are ideal
inducing agents for a rapid increase in expression, long-term and
rapid decrease of the desired transgene.

Immunotherapeutic application
CAR-T cells. A number of studies utilizing Tet-regulatory
systems to regulate CAR expression have been carried out. CAR-
T therapy is a promising approach in antitumor therapy, with
remarkable results obtained so far in hematological diseases.
However, there are important limitations due to uncontrolled
responses as a consequence of constitutive expression of the CAR
molecules on the surface of T cells. For this reason, a temporary
and reversible CAR expression, in which CAR-T cells response

can be turned on/off, would be a convenient and eligible solution.
Sakemura et al. (22) used the all-in-one pRetroX-TetOne-3G
vector in which the CD19CAR-tEGFR sequence was expressed
in an inducible manner in primary CD8+ T cells using the rtTA
system. CAR+ cells were first selected for obtaining an almost
93% pure population. Maximal CAR expression in SUP-T1 cells
was achieved with 100 ng/ml Dox and the expression went down
after 20 h of Dox removal, although it did not reach zero in the
absence of Dox. Clear differences regarding antitumor efficacy
In vitro between (Dox+) Tet-CD19 CAR-T cells and (Dox-)
Tet-CD19 CAR-T cells were found, but the system exhibited a
significant CAR expression in the absence of Dox. For in vivo
experiments, only Tet-CD19CAR-T cells incubated with Dox
prior to inoculation suppressed tumor growth. Following a
similar strategy, Gu et al. (23) generated an all-in-one vector
expressing the rtTA2S-M2 protein (an improved version of the
rtTA) and CD19-CAR (23). In this case, a concentration of
4µg/ml of Dox was necessary to induce CAR expression 5-fold.
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TABLE 2 | Pharmacokinetics of the small molecules used as inductors for inducible immunotherapy.

Inductor Type FDA-approved FDA-Dosea Oral Tmax T1/2 BBB Ref

Doxycycline Antibiotic

Tetracycline

Yes, for bacterial infections 200 mg/day Yes 1–3 h 18–22 h Yes (41)

Veledimex Diacylhydrazine Investigational,

Fast Track-FDA, as Inductor

10–20 mg/ml Yes 2.5–5.5 h 18–27.5 h Yes (42)

Mifepristone Progestational and

glucocorticoid antagonist

Yes, abortive, contraceptive 4.5 mg/kg Yes 1–2 h 15–30 h Yes (43)

Rapamycin

(Sicrolimus)

Antibiotic macrolide Yes, as immunosuppressant 2–5 mg/day Yes 1–6 h 57–68 h Yes (44)

Rimiducid

(AP1903)

Antibiotic

macrolide

Investigational,

Orphan-Drug designation

0.4 mg/kg Yes N.D 5 h Yes (45)

Tmax , peak in blood after administration; T1/2, elimination half-life of the drug; BBB, blood-brain barrier; N.D, non-determined; Ref, reference.
aFDA approved or used in the current clinical trial in adults.

Those inducible CAR-T cells also presented better killing of
tumor cells in the presence of Dox, although they produced
killing also in its absence. The efficiency of the TetOn system has
been also tested formultiplemyeloma (MM), using CD38 antigen
as the target of Dox-regulated CAR T cells (24). Here, the authors
used two vectors, the pRetroX-TRE3G vector to control the
expression of the CD38-CAR and the pRetroX-TET-On 3G for
expression of the rtTA transactivator. CAR-expressing cells were
selected by puromycin to obtain a pure population. Maximal
tumor lysis In vitrowas assessed with 1,000 ng/ml and the prompt
reversion of the CAR activity was better achieved after a short
exposition (24 h) with 10 ng/ml Dox. There are also pre-clinical
assays using the Tet-On 3G system in solid tumors, specifically
for hepatocellular carcinoma (HCC) treatment (26). Zhang and
co-workers constructed the Tet-CD147-CAR lentiviral vector
to generate Tet-CD147-CART cells. With a Dox concentration
of 1,000 ng/ml CAR expression reached the peak at 24 h and
returned to baseline level at 48 h after removal of Dox, but
expression never reached zero. CART cells exhibited higher
lytic activity in the presence of Dox, but residual lysis as a
consequence of CAR leaking was observed. In an HCC mouse
model, mice treated with pre-induced (Dox+) Tet-CD147-CART
significantly reduced tumor volume and weight compared with
those of mice that received (Dox-) Tet-CD147-CART (26), but
in vivo leaking was noticeable.

Others immune-gene therapy approaches. Tet-On systems have
also been applied to control cytokine expression in order to
boost or control immune responses in a doxycycline-dependent
manner. One of the first demonstrations of the potential of this
strategy used two adeno-associated vectors (AAVs), one AAV
harboring the Tet-responsive promoter driving the expression
of interleukin-10 (IL-10) and the other expressing rtTA (46).
The authors showed therapeutic efficiency over In vitro human
rheumatoid synovium from rheumatoid arthritis patients as
well as in vivo mice model, after intramuscular injection of
both AAVs.

In another approach, the group of Dr. Castro developed a
combined strategy that used Adenoviral vectors (AdV) to express
HSV-TK constitutively and FLT3L in a Dox-dependent manner

(47) for the treatment of Glioblastoma multiforme (GBM),
a primary malignant brain cancer with very poor prognosis.
This strategy aims to induce apoptosis in dividing cells in the
presence of ganciclovir, and to stimulate the recruitment of DCs
to the site of HSV-TK-mediated tumor killing through Dox-
induction of FMS-like tyrosine kinase three ligand (Flt3L). The
authors observed significant therapeutic benefits in rat models
of GBM after intracranial inoculation of the AdV vectors and
after treatment with Dox. Of note, a dose of 300 mg/day Dox
was more effective than 200 mg/day equivalent, showing the high
Dox concentrations required in this Tet-On system. Interestingly,
rats were able to generate adaptive immune responses against the
implanted tumors (48). Based on these studies, a clinical trial was
approved in 2013 (ClinicalTrials.gov Identifier: NCT01811992)
and currently ongoing Phase I (updated on April 2020).

Ecdysone-Regulated Expression System
Another interesting system to control gene expression in a
rapid, robust, precise, and reversible way are based on the
use of steroids-based regulatory domains from insects. Steroids
present very interesting properties as inducers of externally-
controlled systems: they can penetrate all tissues and are quickly
metabolized. The group of R.M. Evans developed the first
regulated system based on the ecdysone receptor of Drosophila
melanogaster to regulate transgene expression on mammalian
cells (49). Different versions of these systems have been published
since with different success in different cell types and tissues
(50, 51). Of all the systems, the RheoSwitch (52) has been the
most successful, with applications even in clinical trials.

The RheoSwitch Therapeutic System R© (RTS) consists of
a series of inter-dependent functional components for gene
induction (Figure 2, top-right): (1) two transcription factors
(VP16-RXR and Gal4-EcR), (2) an inducible promoter and (3)
an activating small molecule ligand. The first factor arises from
the fusion between the ligand binding domains of a chimeric
RXR and the transcriptional activation domain of VP16 of HSV1,
that acts as a co-activation partner. The second consists of a
DNA-binding domain of the yeast transcription factor Gal4 fused
with the hinge domains of the mutated ecdysone receptor (EcR)
of the Spruce budworm (Choristoneurafumiferana), where the
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ligand is bound. To achieve regulation, both proteins must be
constitutively expressed. The addition of the ligand promotes
the stabilization of the heterodimeric complex which binds the
responsive-promoter through Gal4 and leads to transcriptional
activation thanks to the VP16 domain. In the absence of an
inducer, the complex is destabilized and transcription is blocked.

The RTS system has been clinically validated for the control
of IL-12 expression through clinical trials (53). Previous studies
using IL-12 were based on the use of strong constitutive
promoters, such as CMV or EF1-α to achieve high expression
levels. However, IL-12 plays crucial roles in naive T cells
differentiation into cytotoxic T-lymphocytes (CTLs) via IFN-γ
production. It does need therefore a clear control in order to
achieve the desired therapeutic benefits minimizing side effects.

Different groups have also investigated the most appropriate
ligand to be used in clinical settings (54). Ecdysteroids are
contained in vegetables thus its safety for humans is well-proven.
Veledimex is a synthetic analog of ecdysone used as the ligand of
the RheoSwitch system and is currently under investigational in
the Fast-track line of FDA due to its pharmacokinetics features
(42, 55) (Table 2).

Immunotherapeutic applications
The VP16-RXR and Gal4-EcR sequences was adapted into
an AdV vector to express IL-12 under the control of the
RTS [reviewed in (56)]. Using this rationale, two strategies
were followed: (1) to transduce dendritic cells (DCs) ex vivo
and introduce them into the patients, and (2) to introduce
the Ad-vector in vivo (56). In the first strategy, a complete
tumor regression was reached in a subcutaneous B16F0
melanoma model by delivering mIL-12-DCs intratumorally
(57, 58). Using the second strategy, between 73 and 90% of
tumor regression was obtained using the melanoma model
and tested successfully against other tumoral models (56, 59).
In all the cases, IL-12 increased DCs life, generated a high
infiltration into the tumors of cytotoxic CD4+ and CD8+ T
cells producing high levels ofIFNγ. Based on these data, the
first-in-human clinical trial was approved that used externally-
regulated gene therapy intervention (NCT00815607). This first
study aimed to analyze safety, regulation of the IL-12, tolerance,
response rate, and immunological effects. Patients enrolled
received 5 × 107 DCs transduced with Ad-RTS-hIL12 and
oral administration of inducer ranging from 0.6 to 200mg.
A second phase I clinical trial was also approved using the
second strategy. Patients were injected with 1 × 1012 Ad-
RTS-IL-12 particles into accessible lesions in combination with
oral inducer administration. Patients included had stage III-
IVmelanoma (NCT01397708) and metastatic breast cancer
(NCT01703754, NCT02423902). Although only a minority of
the patients achieved a partial regression, a veledimex dose-
dependent increment of mRNA IL-12 intratumorally as well as
serum IFNγ levels were manifested (60). Unfortunately, several
patients experienced serious toxic effects but were rapidly solved
after veledimex discontinuation (60, 61). In another phase-
I study targeting Glioblastoma (NCT02026271), the authors
showed a significant improvement in patient’s survival (55). In
this study, several patients experienced severe adverse events

(CRS or neurological-related) that were quickly controlled after
suspension of veledimex uptake. Today, there are four open
clinical trials to evaluate the intratumoral injection of Ad-RTS-
hIl-12 and activated with oral veledimex (20 mg/day during
15 days) as a therapy to treat patients with recurrent or
progressive glioblastoma (alone or combined with anti-PDL1
monoclonal antibody (mAb), NCT04006119, NCT03679754,
NCT03330197, NCT03636477).

Mifepristone-Regulated Expression System
The first development of Mifepristone (MFP)-based systems (62)
took advantage of the modular nature of functional domains
of steroid receptors. The authors generated a Mifepristone-
responsive regulator (pGL-VP) by fusing the ligand-binding
domain of the human progesterone receptor, the DNA-
binding domain of yeast GAL4 protein and the VP16
transactivation domain of the HSV protein. They showed
that this chimeric protein was able to promote transcription
of minimal promoters containing GAL4-binding sites after
administration of MFP In vitro and in vivo. Importantly for
these systems, the MFP (RU486) concentration required for
transgene activation is lower than that required for antagonizing
progesterone action.

A later development consisted in a chimeric regulator, GLp65
composed of a mutated ligand-binding domain (LBD) of the
human progesterone receptor, the DNA-binding domain of yeast
GAL4 protein and the activator domain (AD) from the human
p65 protein, part of the nuclear factor kappa B complex (63).
This system was commercially named as the GeneSwitchTM

(GS) platform (64). GS needs two expression cassettes: the
first one expressed constitutively (normally through the CMV
promoter) the GLp65 transactivator protein, and the second
cassette includes the inducible promoter, which contains at least
four sequences for GAL4 binding, and the gene of interest.
When MFP is present and binds to the LBD, a conformational
change allows the GLp65 transactivator to dimerize and binds
to the GAL4-promoter, activating transcription through the p65
domain (Figure 2, middle-right). The elimination of the VP16-
domain from the system reduced expression levels but also
reduced leaking, improved safety and reduced immunogenicity.

MFP is a clinically approved drug, with anti-progestin and
anti-glucocorticoid properties (65). The long-term use of this
drug in both females and males is under current investigation in
phase III for psychotic depression (66) but MFP appeared safe
and well-tolerated at the doses required to activate transcription
(Table 2). However, the potential side effects as a glucocorticoid
antagonist should be further characterized. Its progesterone
antagonistic activity could be a problem on human T cells,
which present progesterone receptors in the membrane, and
T cell proliferation was inhibited after 5mM of MPF (43,
67). Altogether, suggest that dose-escalation for future clinical
application should be carefully validated.

Different GS system has been developed for inducible gene
therapy approaches to fight liver cancer (68–70), as well as for
the treatment of neurological diseases (71, 72).

Another important aspect to consider of inducible systems
is the alterations provoked by the constitutive expression of
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the chimeric regulators. Reboredo et al. (73) analyzed the effect
of GLp65 and rtTA2(S)-M2 in the liver’s transcriptomics. They
found that while rtTA2 expression induced alterations in 69
genes, GLp65 caused an altered expression of 1,059, although
functional analysis showed only mild alterations.

Immunotherapeutic applications
GS system has also been applied to regulate the expression
of potent cytokines such as IL-12 with the aim to control its
activity while keeping their therapeutic potential. In an elegant
study, Wang et al. developed a strategy to achieve hepatic-
specific expression of IL-12 that also responded to the control of
MFP. The authors developed an AdV harboring the sequences
for GAL4 binding into a hepatic-specific promoter driving the
expression of IL-12 (6). Direct administration of these AdVs
enabled controlled hIL-12 expression in the liver for more than
48 weeks when MFP was administered every 24 h. In addition,
this system achieved complete tumor regression in an aggressive
model of liver metastases in vivo. Whereas, using a specific-liver
promoter seems to be useful for preventing immunogenicity, the
IL-12 production in the liver was associated with a moderate
inflammatory reaction opens the possibility that higher doses of
AdV-MFP could induce-IL-12-related severe inflammation.

In a different approach, MFP-GS was used to express IFN-
beta for the treatment of a murine model of multiple sclerosis,
experimental autoinflammatory disease (EAE) (74). In that
model, a single intramuscular administration of the inducible
mIFNβ vector delivered as DNA plasmid was sufficient to
decrease significantly the onset of disease. The procedure was
well-tolerated and the overall severity of the disease scores was
reduced in the presence of MFP (74).

Rapamycin-Regulated Expression System
Rapamycin-regulated system is a human platform designed by
Rivera et al. (75, 76) that is based on the interaction between
two cytosolic proteins that only dimerizes in the presence
of rapamycin. FK506 binding protein (FKBP12) is a 12 kDa
cytosolic protein and FKBP12-rapamycin-binding protein (FRB)
is a 11 kDa domain derived frommammalian target of rapamycin
(mTOR). The original system contained three copies of FKB12
fused to a DNA-binding domain (zinc finger homeodomain
transcriptional factor 1, ZFHD1) composing the DBD and FRB
was fused to the DNA activation domain (AD) of Nuclear
Factor Kappa B p65 subunit, driven expression of the gene
of interest in a three-plasmid system. Transgene expression
was induced after a 24 h incubation with 10 nM of rapamycin
(75) but induction failed when DBD was incorporated in a
retroviral vector (77). A new and more potent AD domain, called
SH3, containing sequences from human heat shock factor one
(HSF1) and p65, overcomes that problem even with only one
copy of FKB12 in a single vector and placing the target gene
cassette in reverse orientation achieves no leaking. In this case,
1µM rapamycin or analog AP1903 was necessary for maximal
induction (Figure 2, bottom-middle).

Rapamycin (Sirolimus) is a macrolide antibiotic with potent
immunosuppressant activity used for allograft rejection in renal
and cardiac transplantation (45). This immunosuppressive action

occurs by targeting calcineurin and IL-2 production in T cells
by Rapamacyin-FKB12 and inhibiting mTOR, thus affecting cell
proliferation and metabolism via Rapamycin-FBR. In order to
improve safety, a mutation in the FKBP domain was generated
(FKBP12-F36V) (78) to allow the design of novel rapalogs
(AP1903/AP20187) that bind the mutated but not the wild-type
FKBP protein. Therefore, AP1903 (Rimiducid) is a safe and well-
tolerated drug that can be administered up to 1 mg/kg (44, 79)
(Table 2).

Immunotherapeutic applications
Since these systems are based in human-derived components,
they present minimal immunogenicity and have been efficiently
adapted to immunotherapy (Table 3). In addition, the inductor
is able to cross the BBB (84) and required low concentrations
(78, 84) (Table 2).

One of the most important uses of this system has been
adapted to induce the activation of the proapoptotic enzyme
caspase 9 (85), initially adapted to kill tumor cells, it did translate
soon for suicide and irreversible T-cell depletion (86) to treat
GVHD (BPX-015, Phase I/II). iCasp9 or CaspaCIDE is based on
the homodimerization of mutated FKB12 fused to the signaling
domain of caspase 9 after the treatment of AP1903/Rimiducid.
This system can eliminate 85 to 95% of circulating CD3+ T
cells within 30min [NCT01494103 (84)]. A phase I trial had
demonstrated long-term-persistence of transduced T cells (up
to 3.6 years) without compromising proliferation. However, a
single clone of iCasp9-transduced T cells caused a delayed CRS in
one patient that developed de novo Epstein–Barr virus-associated
post-transplant lymphoproliferative disease (EBV-PTLD), being
unresponsiveness to Rimiducid (87).

iCasp9 have been also included in TCR-restricted (88) and
CAR-T cell therapies as a safety measure (89). iCasp9 showed
efficient clearance in anti-CD19 CAR-T cells co-expressing IL-
15 (90) and in third generation anti-CD20 CAR-T cells, where
the 90% of engineered T cells were depleted in vivo in only
12 h (91). GD2-specific and iCasp9-expressing CAR (GD2-iCAR)
T cells have reached clinical trials against advanced melanoma
(CARPETS, ACTRN12613000198729), neuroblastoma (GRAIN,
NCT01822652), sarcoma (VEGAS, NCT01953900), and other
GD2+ solid tumors (NCT02107963). Of note, while iCasp9
can rapidly reverse toxicity, sacrifices the long-term antitumor
efficacy. Stavruo et al. (78) have exploited the same Caspase 9
strategy in CAR19-T cells but using original FRB/FKBP system
to generate homodimers of Casp9 after rapamycin addition
(RapaCasp9), which is indeed a clinically-drug approved,
exhibiting a similar response of rapaCasp9 to iCasp9 at 1 nM (78).

Another elegant FKBP/FRBmut system specific for CARs,
are the “ON-switch” CARs (28), where the CAR structure is
split into two chimeric polypeptides: CAR-I encloses the antigen
recognition domain, transmembrane and 4-1BB costimulatory
domain and CAR-II harbors the main CD3zeta-ITAMS signaling
domain. Both chimeric proteins are fused to intracellular
FKBP/FRBmut. Only when AP21967 was administered, an anti-
tumoral effect was observed in mice, but due to its shorter life,
another heterodimer system would be desirable for a more-
suitable future clinical application.
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TABLE 3 | Systems for controlling transgene expression applied to immunotherapy.

System Inductor Gene Model/Disease Product Administration Clinical stage Ref

Tet-On 3G

(TaKaRa Bio)

Dox CAR-CD19 CD19+ Raji cells

(Burkitt’s lymphoma)

All-in-one

RV-T cells

Cellsa: intravenously

Inductor: pre-induced

ex vivo+ oral

Pre-clinical (22)

Tet-On

(Sangon Biotech)

Dox CAR-CD19 CD19+ Raji cells

(Burkitt’s lymphoma)

All-in-one

LV-T cells

In vivo experiments were

not conducted

In vitro (23)

Tet-On 3G

(Clontech)

Dox CAR-CD38 CD38+ cell lines

(Multiple myeloma)

Dual system

RV-T cells

in vivo experiments were not

conducted

In vitro (24)

Tet-On 3G

(TaKaRa Bio)

Dox CAR-CD147 CD147+ cells (Hepatocellular

carcinoma)

All-in-one

LV-T cells

Cellsa: intratumoral

Inductor: pre-induced

ex vivo

Pre-clinical (26)

Tet-On Dox IL-10 DBA1 mice

(Rheumatoidarthritis)

All-in-one

AAV vp

Vectorb: intramuscularly

Inductor: oral

Pre-clinical (46)

Tet-On Dox FLT3L Glioblastoma multiforme All-in-one

Ad

Vectorb: intracranial

Inductor: oral

Phase I (47)

RheoSwitch

(RTS)

Veledimex IL-12 Stage III or IV melanoma All-in-one

Ad-DCs

Cellsa: intratumoral

Inductor: oral

Phase I (57)

RheoSwitch

(RTS)

Veledimex IL-12 Stage III-IV melanoma Metastatic

breast cancer

All-in-one

AdV

Vectorb: accessible lesions

Inductor: oral

Phase I/II (56)

Gene Switch MFP IL-12 MC-38 mice (Livermetastases) All-in-one

AdV

Vectorb: intravenous

Inductor: intraperitoneal

Pre-clinical (68)

Gene Switch MFP IFN-β EAE mice (multiple sclerosis) DNA

plasmid

Plasmidc: intramuscular

Inductor: subcutaneous

Pre-clinical (74)

Light- pNFAT Blue light IL-2,

IL-15,

TNF-α

SK-HEP-1 mouse

(Hepatocellular carcinoma)

All-in-one

LV-T cells

Cellsa: subcutaneous

Inductor: externally applied

Pre-clinical (80)

LINTAD Blue light CAR-CD19 CD19+ Nalm6+ mice

(B-lymphoblastic leukemia)

Dual system

LV-T cells

Cellsa: subcutaneous

Inductor: externally applied

Pre-clinical (81)

TNFerade Radiation TFN-a Metastatic pancreatic cancer All-in-one

Deficient AdV

Vectorb: intratumor

Inductor: externally applied

Phase III (82)

FUS-CAR Ultra-sounds CAR-CD19 CD19+ Nalm6+ cells

(B-lymphoblastic leukemia) PC3

cells (Prostatecancer)

Dual system

LV-T cells

Cellsa: subcutaneous

Inductor: externally applied

Pre-clinical (83)

aEx vivo transduction. b in vivo transduction. cDirect plasmid injection Dox, doxycycline; MFP, mifepristone; CAR, chimeric antigen receptor; IL-10, interleukin 10; FLT3L, FMS-like tyrosine

kinase 3 ligand; IL-12, interleukin 12; IFN-β, interferonβ; IL-2, interleukin 2; IL-15, interleukin 15; TNF-α, tumor necrosis factor α; EAE, experimental autoimmune encephalomyelitis; RV,

retroviral vector; LV, lentiviral vector; AAV, Adeno-associated vector; vp, viral particles; Ad, adenoviral vector; Ref, reference.

In a different configuration but with a similar idea, the
dimerizing agent–regulated immunoreceptor complex (DARIC)-
T cells is also composed of twoCARs (92): the CAR-I is composed
by the ScFv-FRB-TM domains and the CAR-II by the FKPB-
TM-41BB-CD3ζ domains. In both CARs, the FKBP/FRBmut
domains are located extracellularly. DARIC-T cells also allow the
application of a plugin for targeting another antigen (a subunit
of the ScFv and FRB). In addition, Tacrolimus, which has a high
affinity for FKBP12, can be used as a rapamycin competitor,
which could be interesting as a safe method for reducing severe
CRS or persistent neurotoxicity (92).

Controlling the ScFv presentation at the cell surface after
AP21967 addition is another FKB16/FRBmut design, where the
FRB and FKBP12 domains were placed between the CD8a hinge
and the scFv domains, modulating the cytotoxic properties of this
“transient” CAR-T cell (93).

Rapamycin-based systems have also been developed to
activate immune cells such as dendritic cells (DC) or T cells,
regulating the synergy of TLR/IL1R (through MyD88) and CD40

signaling within the context of an immunological synapse. In
this case, rimiducid-inducible MyD88 and CD40 (iMC) system
is composed by aTIR domain-deleted version of MyD88 fused to
tandem copies of the modified FKBP12V36 and a myristylation-
targeting sequence for membrane anchoring, whereas the same
fusion structure was used for the cytosolic domain of CD40.
Autologous iMCs-DCs showed a strong antitumoral effect in vivo
(94, 95).

More recently, this iMC strategy has been applied for the
CAR-T field against HER2+ solid tumors. In the presence of
Rimiducid, T cells expressing HER2–CARζ and this FKBP12
iMyD88/CD40/FKBP12 system exhibited potent antitumor
activity in pre-clinical models, allowing their remote-control
post-infusion (96), becoming a very promising platform. Duong
et al. (97) engineered CAR-T cells with this Rimiducid iMC-
signaling system for CAR T cell activation in combination with
the rapamycin-induced caspase-9-based safety switch (iRC9)
for controlling potential risks. This dual-switch (DS) system
generated higher CAR-T cell expansion in a drug-dependent
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manner while triggering apoptosis to avoid severe toxicities if
required (97). However, escalation doses of Rim to in vivo/clinical
application should be carefully evaluated since 100x more of the
Rim dose for activate iMC counterpart (1 nM), could also trigger
the iRC9 system in vitro.

Future Drug-Inducible Systems for Immunogene

Therapy Applications
Here, we will briefly describe systems that fulfill the above criteria
of versatile, reversible and inducible system but have not been
used yet for immunotherapeutic applications.

Antibiotics
Other antibiotic-based systems found in different bacterial
strains have been modified and adapted to control gene
expression in mammalian cells such as streptogramin
(PipOFF/PipON) and macrolide (EON/EOFF) based gene
regulation systems (98). Those four systems have been tested
In vitro using different cell lines and different transgenes,
obtaining a fast (<24 h) and great induction (until 100-fold)
of transgene and low leaking (98, 99). Both the macrolide
and the streptogramin antibiotic families present interesting
clinical properties, such as excellent bioavailability, optimal
pharmacokinetics, and human compatibility (100, 101).

Another system that has not been applied yet to
immunotherapy approaches is the system based on the
original tetracycline repressor, TetR (32–34). These systems
have several advantages over the traditional Dox-based system
that use transactivators such as the absence of toxicity, the low
leaking, and the low Dox requirements.

Quorum Sensing
A chimeric transcription factor controlled by an acylated
homoserine lactone (AHL), getting up to 1000-fold induction
and low basal transcription in different human cell lines have
been developed (102). However, AHL signaling molecules can
influence the behavior of eukaryotic cells and tissues and it is
unknown its pharmacodynamics in vivo (103, 104). Looking
ahead, it is possible to engineer other transcription factors from
different bacterial species and develop inducer compounds with
improved characteristics.

Physically-Induced Systems
Light-Based Systems (Optogenetics-Based)
Optogenetics rely on light-sensitive proteins that have a
physiological role of regulating the behavior of living cells.
Most optogenetic tools are based on light-sensitive ion
channels, but there are also other types of molecules able
to respond to light, such as enzymes and protein interaction
modules (105–110). This variety of tools has opened the
opportunity of modulating gene transcription and to use it
for gene therapy applications (111–113). Transgene inducible-
systems based in Optogenetic are a very promising approach
due to their high spatial-temporal control capacity (114)
compared to other systems and because light can be applied
locally without affecting other organs. However, the low
penetrance of blue light may be a limiting factor for future

clinical application. Two main optogenetic strategies have
been used in immunotherapy: Melanopsin-based (calcineurin-
NFAT-based) and biLINuS-based (nuclear translocation induced
by light).

The Melanopsin-based system (Figure 2, top-middle) relies
on the ability of this protein to induce calcium influx under
blue light illumination. Intracellular Ca++ increment activates
calcineurin that triggers the nuclear translocation of NFAT (111),
a transcription factor involved in the expression of multiple
genes related to effective immune responses (115). For the system
to achieve light-response into target cells we need to express
the melanopsin and introduce an expression cassette harboring
an NFAT-responsive promoter (Figure 2) (111). Once all the
components are into the target cell, light will activate Ca++

influx through the melanopsin that is expressed in target cells.
This Ca++ influx initiates a signaling cascade that leads to
NFAT-nuclear translocation, activation of NFAT-promoter and
expression of the desired genes.

In the biLINuS system (Figure 2, top-left), the light will
expose the NLS motif to cause nuclear translocation of the
complex (generally harboring transcriptional activators) required
for transcriptional activation. These systems are based in the
light-inducible nuclear localization signal (LINuS) from the
LOV2 domain of Avena sativa phototropin 1 (ASP-1), a small
tag that can be added to different proteins and cell types (116).
In particular, the LINuS system has been used in combination
with the blue light–based CRY2-CIB1 (used for blue light-
dependent transgene expression) (117) but that had a high
background. Huang et al. (81) developed the LINTAD gene
activation system that rely in two chimeric proteins and a light
responsive promoter (Figure 2): (1) The LexA-CIB1-biLINuS
(LCB) protein combines the CRY2-CIB1 pair with the LOV2
domain reducing non-specific CRY2/CIB1 dimerization, (2) the
CV protein contains the NLS from CRY2PHR (Arabidopsis CRY2
photolase homology region) and a strong VPR transcription
activator (a tripartite VP64-p65-Rta), and (3) the light-inducible
promoter harbors several LexA-binding sequence (LexA BS) and
a minimal promoter that require the presence of transactivators
to be active. The LCB remains in the cytoplasm, while the CV
remains in the nucleus. When stimulated by blue light, biLINuS
in the LCB is activated, exposing the NLS motif to cause nuclear
translocation of the SCB. At the same time, the CRY2PHR
domain in CV is activated by blue light and can bind to the
CIB1 domain of LCB with high affinity. Therefore, the LCB-CV
complex is directed to the LexA BS in the reporter cassette so that
the VPR is very close to the minimal promoter, which triggers
transcription of the target reporter gene. This would generate a
strong activation of the gene by stimulating blue light with a high
signal-to-noise ratio.

Immunotherapeutic applications
Following the two main strategies described above, optogenetics
have pursued twomain strategies for immunotherapy: to increase
the expression of NFAT-targeted genes (mainly cytokines), key
regulators of T cell function (80, 112, 115, 118) and to induce
CAR expression through the biLINuS system (80, 116).
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Expression of NFAT-targeted genes. Based on the melanopsin-
based system, Zhao et al. (80) designed a light control system
for the inducible expression of three molecules: IL-2, IL-15,
and TNFα. The system relies on the expression of melanopsin
on T cells in order to change T-cell functions via the NFAT-
calcium pathway. The T cells must also be modified to contain
a NFAT-responsive promoter expressing the desired factors.
The author included all these components into T cells using
Lentiviral vectors and generated T cells that express increased
amounts of IL-2, IL-15, and TNFα after blue light stimulation.
In this system, light activates melanopsin to induce Ca2+
input triggering NFAT nuclear translocation and cytokine NFAT-
dependent gene expression of IL-2, IL-15, and TNFα. This
enhances the tumor killing activity of T cells, a crucial factor
for immunotherapy to be effective for solid tumors. The system
was tested on pan-T cells, and checked for up-regulation of IL-
2, IL-15, and TNFα by messenger RNA and protein after light
stimulation during 12 h of continuous exposition. Maximum
reporter expression (determined in 293T) was achieved 1-6 h
after point-light stimulation and reached basal levels at 48 h,
but not light-kinetics were performed over primary T cells. This
group demonstrated in vivo light-controlled antitumor efficacy
in a subcutaneous model of hepatocellular carcinoma, SK-HEP1
in NSGmice. Engineered T cells were introduced intratumorally,
and blue LED light applied for 7 days, showed significant tumor
regression (80).

Light-inducible CAR-T cells. As described above, Huang et al.
(81) generated a blue-light transgene inducible system (LINTAD)
with low background that allowed the generation of a light-
inducible CAR. Indeed, Huang et al. demonstrated that they
could regulate the expression of several genes (including CAR)
by blue light administration In vitro and in vivo. The authors
engineered T cells to express constitutively the LCB and CV light-
responsive proteins and to integrate a light-inducible promoter to
express a CAR targeting CD19. These light-inducible CAR-T cells
were able to lyse Nalm-6 cells (CD19+) 7.3-fold more efficiently
after providing light. Importantly, the system also worked in vivo
since significant differences in tumor regression was observed
under blue-light conditions (1 s-pulse every 30 s during 12 h)
with respect to the dark state (81).

Radiation-Controlled System
Radio-genetic therapy takes advantage of radiation and gene
therapy for cancer applications, controlling by radiation the
expression of a therapeutic gene. Ionizing radiation (IR) induces
DNA damage such as double strand breaks (DSBs) and reactive
oxygen species (ROS) that activate certain signaling pathways
of mammalian cells (SAPK/JNK or DNA-PK) in order to offer
an early (expression of transcription factors) and late response
against that dangerous stress. IR induces the expression of TNF-
alpha, IL-1 and other growth factors and metabolic enzymes
for DNA repair, mutagenesis, apoptosis, and proliferation.
Those inducible promoters constitute interesting tools such as
transcription factors AP-1, NFkB, or Early growth response-1
(EGFR) that respond to ROS thanks to the upstream presence of
the CArG box, a sequence composed by CC-(A+T rich)-6GG.

Hallahan and his team developed the first AdV that controls
TNF-alpha under six radio-inducible CArG boxes of EGFR-1
gene designed as TNFerade (119) and showed a tumor regression
in several xenograft models (see below) (Figure 2, left-middle).

Other groups have developed other artificial X-ray inducible
promoters in order to overcome the cell type-dependent
limitations of natural physiological promoters (120, 121) for
prostate cancer. A combination of different cis-elements based
on NF-kB, AP-1, NF-Y and CArG, among others, produced a
candidate promoter able to regulate luciferase with a peak at 6–
10 h post 10Gy radiation, exhibiting certain antitumor efficacy
but with high leaking.

Radiation systems should be further improved in order to
achieve minimal basal activity if considered for other clinical
applications or methods of administration and obtain more-
sensitive promoters, thus 10Gy dose is relatively high for
radiotherapy (fractions of 1.8−2Gy per day are normally used
in adults) (122). A treatment of several low-fractionated doses
of radiation will be desirably employed for minimizing severe
damage, that would depend on the tumor-type and kinetics of
the therapeutic gene.

Immunotherapeutic applications
TNFerade, developed by GenVec, is a deficient AdV designed
for intratumoral administration and that regulated human TNF-
α under a radiation-inducible promoter, approved for phase I
clinical trials by FDA in 2000 (82). TNFerade has been used
over a dosage range of 4 × 107-1 × 1012 vp with 30–70Gy
synergistic radiation for several types of solid cancer such
as pancreas, esophagus, rectum, breast, lung, skin, head-neck
carcinoma, and soft tissue sarcoma, demonstrating improved
overall and progression-free survival of cancer patients in phase
I (82). Unfortunately, phase III clinical trial for locally metastatic
pancreatic cancer was discontinued in 2011, when TNFerade did
not increase patient survival in comparison to standard treatment
(123). Instead of its proven safety, other limitations of TNFerade
include its administration, only feasible to accessible cancers;
a spillover out of tumor neighborhood can be a serious issue
and moreover, a possible immune response against adenovector
may accelerate the metabolism of TNFerade and therapy became
ineffective (82).

Ultrasounds
Focused ultrasounds (FUs) can be also used as inductor for
externally control of gene expression, penetrating with a depth of
centimeters into tissues. Therapeutic FUs-controlled byMagnetic
Resonance Imaging (MRI) have been applied into clinics for
vasodilation, neuromodulation, heat-ablation of tumors and as
an adjuvant therapy for drug, gene delivery (124) and tumor
vaccination in situ (125). Low-energy focused ultrasounds (LO-
FUs, with normal intensities of 0.1–2 W/cm2 and frequencies
of 0.5–3 MHz) generate rapid oscillating pressures that lead to
non-invasive hyperthermia. In response, mechanical and thermal
stresses are manifested transiently without killing the cells and
several genes are upregulated such as heat-shock proteins that
translocate from cytoplasm to cell surface (125). Based on this
response, the use of heat-shock protein’s (HSP) promoters have
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been used for local control gene expression in several models
(126) but not for immunotherapy. However, this rationale has
been recently applied for CAR-T regulation induced by low-
intensity FUs (83) (Figure 2, bottom-left). In this case, a HSP
promoter drives the transgene expression upon FUs stimulation
controlled by Magnetic Resonance Imaging (MRI) thermometry.
This is a reversible system that generates oscillatory patterns of
expression after repeated stimulation of 10 min-FUs every 48 h in
T cells, thus preventing short- and long-term side effects.

However, several authors have developed acoustogenetics
systems for maintaining a sustained expression, making it
irreversible but avoiding FUs pulses to minimize cell death and
facilitate treatment application through the adaptation of the
Cre-LoxP system in a dual approach.

Immunotherapeutic applications
Based in the FU-based Cre-LoxP system,Wu et al. (83) developed
a two-vector system in which the HSP promoter drives de
expression of Cre recombinase in one inducible LV vector
whereas a second vector allow the CAR production after the
excision of a LoxP-flanked “STOP” cassette (83). In vitro CAR
expression in primary T cells was detected 24 h later after a 15
min-pulsed FU, reaching 43◦C. Minimal cell death with pulsed-
FUS was observed when compared to continuous stimulation
during the same period. In addition, this dual system was able
to control the cytotoxic potential of inducible CAR-T cells
against subcutaneous models of CD19+Nalm6 cells and human
prostate cancer PC3 cells, treated with three pulses of 5 min-FUs,
whereas FUs alone did not had tumoricidal effect.

This specific design overcomes the continuous requirement
of inductor, whose application is not as easy as a drug-based
inducer, but making it irreversible and not allowing a safer
control of CAR-T against CRS and neurotoxicity in CD19+
leukemia. Moreover, HSP are translocated to membranes after
LO-FUs exposition in cancer cells. This HSP complexes can
activate natural killer cells, being interpreted as danger signals for
DC activation and cross-presented for generated immunity (125).
Whereas, this response is very desirable for tumor treatment for
the generation of immune priming and activation of the TME,
should be further studied in primary T cells, in order to analyze
the worst scenario of a non-desirable immunogenicity against
CAR-T cells that can compromise the persistence of the therapy.

DISCUSSION

Immuno-gene therapy has revolutionized the treatment of
chemo/radio-refractory cancers, sometimes reaching the
frontline. As mentioned above, adoptive cell transfer based on
the use of CAR-T cells has enabled the rescue of many patients by
boosting their immune system. Novartis’ Kymriah has achieved
a complete tumor regression of 60% and Kite’s Yescarta, between
36 and 54% (16). But this is not risk-free, due to severe side effects
and rapid exhaustion of T-cells by uncontrolled expression of
CAR (127). On the other hand, these treatments have been
focused on aggressive leukemias and lymphomas, since their
efficacy in solid tumors is very low, which requires alternative

approaches to convert a “cold” to a “hot” battlefront into the
tumor microenvironment (TME) (31, 128).

There is a lot of work to do yet, and this is where expression
control systems by external stimuli become important. Being
able to externally control the expression of different molecules
of interest (CAR, immune-checkpoint inhibitors, cytokines...)
opens new ways of re-orienting immunotherapies toward safety
and efficacy (19–21). Controlling the expression of CAR will
allow reducing CRS, on-target/off-tumor effects and T-cell
exhaustion. In addition, controlling other molecules of interest
will increase the effectiveness in the treatment of resistant
lymphomas and solid tumors. In fact, CAR has already been
co-expressed with interleukins (IL-12 or IL-18) and/or with
antibodies against PD-1/CTLA-4, in a constitutive way (129–
132). Controlling the expression of these molecules may not only
enhance therapy in solid tumors, but also avoid the devastating
side effects of continued expression in patients.

In this review, we have focused on inducible systems that meet
four characteristics: (1) the expression of the transgene can be
externally-controlled, (2) they are reversible systems, they can be
turn on and off multiple times. (3) They are versatile, they can
control the expression of any transgene and (4) they have been
adapted for immunotherapy. We found four different systems
that meet these criteria: drug, light, radiation and ultrasound-
based systems.

Below we discuss different aspects that must be considered
when applying these systems for immunotherapy strategies:
the properties of the inductor (penetrance, viability, stability
toxicity, immunogenicity, etc.), the characteristics of the elements
required to achieve external regulation (toxicity, secondary
effects, immunogenic, etc) and finally, the ability to deliver all
components into the desired cells or tissues.

Inductor Properties
Bioavailability
Doxycycline, veledimex and mifepristone have a similar
persistence of 20 h (T1/2 in Table 2), good to achieve continuous
stimulation for 1 day and also for a quick elimination upon drug
removal. However, rapamycin has a T1/2 of ∼60 h, which makes
the system “off” slower, while rimiducid, with a T1/2 of 5 h, has
a very fast switch-off, but require frequent drug administrations.
Due to their small size and polar properties, all these inductors
are able to cross the BBB.

Side Effects
In general, mid-high and continuous doses of most of the
inductors mentioned before are not ideal. Antibiotics can
generate a serious antibiotic resistance. Tet systems that have
been used to express the CAR require a Dox concentration
(In vitro) between 10–1,000 ng/ml, that overlaps with the doses
required to kill bacteria and will therefore generate resistance
if prolonged or intermittent exposure. The same could apply
for rapamycin-regulated systems. Therefore, long-term studies
should be performed to investigate in both cases how microbiota
can also be altered.

Another important aspect to consider is the effect of the
inductor in immunomodulation. In fact, most of the drugs
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used as inductors have an immunomodulatory effect; Rapamycin
can efficiently immunosuppress activation and proliferation
of T cells (133). To avoid this problem, rapamycin analogs
such as Rimiducid can be used as inductors of the mutated-
rapamycin system, thus reducing the affinity for the natural FKBP
domain (78). Doxycycline has an anti-inflammatory effect by
targeting NF-kB (134) and could therefore interfere with the
immunotherapy strategy. It is therefore important to reduce
the Dox concentration not only to avoid antibiotic resistance,
but also to reduce the possibility of immune-suppression. In
this direction, new Dox-regulated systems based on the original
TetR could be an important resource due to the low Dox
concentrations required for activity (34, 40). Finally, MFP acts
as an antagonist of glucocorticoid receptors in non-reproductive
cells, also present in T cell membrane, and can therefore exert a
role blocking the T- activation (67).

Physical Inducers
Compared to drugs, the use of light or FUs as inductors has
advantages and disadvantages. Firstly, light is, in theory, an
ideal induction agent, since it allows the most precise spatial-
temporal regulation, simply by applying light to a localized
body region the induction takes place in that area. However,
the system relies on blue light which is ideal for safety reasons
but limits the penetration into the tissue. Probably, red or
infrared light systems will overcome the penetration concern,
but at the moment are less efficient and require additional
cofactors plus photo-activatable domains. Radiation has emerged
as an alternative induction agent, although its safety must be
considered since actual systems use 10Gy radiation, 3–4 times
higher than the doses used for radiotherapy. Finally, the use of
short-pulse pattern stimulation of FUS minimizes the side effects
of ultrasound exposure, such as hyperthermia or induction of
severe immune responses. In fact, the reversible FUS-inducible
systemmay prevent the on-target/off-tumor toxicity of canonical
CAR-T therapy. This occurs because T-cells that leave the tumor
environment do not receive FUS again (since the induction is
localized), so they will gradually lose membrane CAR molecules.
Ultrasound pulses also allow precise temporal control of gene
expression. Of note, different companies are manufacturing
wearable ultrasonic emitter patches that could be useful for
induction through this system (83).

Characteristics of the Elements Required
to Achieve External Regulation
For an externally controlled system to be successful, the most
important part is probably the characteristics of the different
components that are required. Simplicity as well as low toxicity
and immunogenicity are the three most important characteristics
to compile after, of course, a high inducibility and a low leaking.

Toxicity of the Components
Although, in general, the expression of new proteins into a
cell can alter its intrinsic properties, most of the proteins are
well-tolerated and allow the cells to fulfill the functions that
the scientist expect from them. However, chimeric proteins
harboring transactivators, present in several of the described

systems, exhibit a great capacity to recruit and sequester different
transcription factors [e.g., TATA-binding protein (135)]. The
majority of the Tet-based systems, the mifepristone-based, the
light-inducible LINTAD system and the ecdysone-based ATMP
require either viral or human chimeric transactivators (VP16,
VP64, p65). In-deep studies have been performed in this regard
with the Tet-platforms showing that the TetR-VP16 protein may
be toxic by altering cell physiology and binding to pseudo-TetO
sites which can activate undesired genes (136, 137). Furthermore,
several studies (138–140) have shown a misinterpretation of the
data due to the high toxicity of transactivators. In this direction,
Benabdellah et al. (33, 34) have developed the first and only all-
in-one, transactivator-free Dox-inducible system based on the
original bacterial system. Studies are undergoing to investigate
the advantage of these systems for immunotherapy applications.

Immunogenicity of the Components
The immunogenicity of all the elements required to achieve
the transgene induction is another key point in the success of
the system for clinical applications. In general, human proteins
are going to be less immunogenic than viral and bacterial
components, although in some cases this could not always be
the case. The only system that is 100% human is the platform
based on rapamycin. All other systems include yeast, bacterial,
or viral components that are generally highly immunogenic and
to which healthy individuals will mount an immune response. In
particular, the immunogenicity of Tet-transactivator-dependent
systems has been studied in detail finding that both cellular and
humoral responses are mounted when using viral (141, 142)
and non-viral (143–145) systems for in vivo delivery. Therefore,
final strategies using these systems should include strategies
that achieve immune tolerization of these components if a
durable effect is desired. In fact, different approaches are being
investigated to avoid these responses (146), including different
routes of administration (147) that successfully achieved long
term regulation in animal models.
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