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Throughout the gastrointestinal (GI) tract, a distinct mucus layer composed of highly

glycosylated proteins called mucins plays an essential role in providing lubrication for

the passage of food, participating in cell signaling pathways and protecting the host

epithelium from commensal microorganisms and invading pathogens, as well as toxins

and other environmental irritants. These mucins can be broadly classified into either

secreted gel-forming mucins, those that provide the structural backbone for the mucus

barrier, or transmembrane mucins, those that form the glycocalyx layer covering the

underlying epithelial cells. Goblet cells dispersed among the intestinal epithelial cells

are chiefly responsible for the synthesis and secretion of mucins within the gut and are

heavily influenced by interactions with the immune system. Evidence from both clinical

and animal studies have indicated that several GI conditions, including inflammatory

bowel disease (IBD), colorectal cancer, and numerous enteric infections are accompanied

by considerable changes in mucin quality and quantity. These changes include, but

are not limited to, impaired goblet cell function, synthesis dysregulation, and altered

post-translational modifications. The current review aims to highlight the structural and

functional features as well as the production and immunological regulation of mucins

and the impact these key elements have within the context of barrier function and host

defense in intestinal inflammation.
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INTRODUCTION

The mammalian gastrointestinal (GI) tract harbors a dynamic and complex ecosystem with gut
microbes, food particles, foreign substances and the host cells participating in constant interaction.
As such, the host requires relentless surveillance and persistent protection in order to maintain
strict homeostatic conditions. As the bridge between the internal and external environments, it is no
surprise then that roughly 70% of the immune system resides within the GI tract (1). Though these
imperative defensive mechanisms span the initial innate responses to the more complex adaptive
pathways, the physical aspects of protection should not be overlooked. One such physical aspect is
themucus layer of the GI tract which is responsible for providing lubrication for the passage of food,
protecting the underlying epithelium from commensal microbes and establishing a physical barrier
against invading pathogens, as well as toxins and other environmental irritants (2, 3). The mucus
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layer, particularly through its transmembrane components, also
influences several cell signaling pathways that can modulate
inflammatory responses, impact cell-cell interactions as well as
regulate proliferation, differentiation and apoptosis (4–6).

The intestinal mucus layer is principally comprised of a
subset of high molecular weight glycoproteins called mucins,
which play a crucial role in physical protection as well as in
regulating the concentration and passage of water, ions, and
other immune mediators such as antimicrobial peptides (AMPs)
and immunoglobulin-A (IgA) within the gut (2, 3, 7). Uniquely,
the stomach and colon contain a dual-layer of mucus that
is composed of polymeric sheets of these highly glycosylated
mucins (Figure 1). These two layers can be categorized into
the dense inner layer which is firmly attached to the epithelial
cells below and impermeable to bacteria, vs. the outer layer
which is loosely attached to, and easily removed from, the dense
underlying layer (8, 9). This outer layer is also penetrable by
bacteria. In contrast, the small intestine contains only one loose
layer of mucus, which is penetrable by bacteria [Figure 1; (8, 9)].

Goblet cells, as well as the three other principal cells
(enterocytes, enteroendocrine cells, and Paneth cells) of the gut
mucosa arise from multipotent stem cells at the base of crypts
of Lieberkühn (10). Among these unique cell types, goblet cells,
are chiefly responsible for the production and preservation of the
mucus blanket via mucin production and are heavily influenced
by interactions with the immune system (3). Enterocytes also
minorly contribute to the production of secreted mucins (11–
13). It should also be noted that the distribution and density of
goblet cells within the GI tract varies; numbers increase distally
and reach a peak in the distal ileum and rectum (14). Within the
stomach, mucus production is vital to protect the gastric mucosa
from digestive enzymes and the harsh acidic environment of
the lumen. Of the five main cell types that contribute to the
biochemical milieu of the gastric lumen (including parietal cells,
chief cells, and enterochromaffin-like cells), surface mucus cells
or foveolar cells, and mucus neck cells are, as the names suggest,
the main producers of gastric mucus (15–18). Within the distinct
regions of the stomach, the organization of the invaginations
that house these cells varies. In the proximal corpus, stem cells
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NLRs, nucleotide-binding oligomerization domain (NOD)-like receptors; LPS,
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patterns; LBP, lipopolysaccharide (LPS) binding protein; NF-κB, nuclear factor

kappa-light-chain-enhancer of activated B cells; ASGM1, asialoGM1; ILC,

innate lymphoid cell; CLP, common lymphoid progenitor; RORα, retinoic acid

receptor-related orphan receptor alpha; GATA3, GATA binding protein 3; Ach,
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receptor, M3R, type 3 muscarinic receptor; VIP, vasoactive intestinal peptide;

VPAC, vasoactive intestinal peptide (VIP) receptor; Chrm3, cholinergic receptor
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1 β1,3-galactosyltransferase; C3GnT, core 3 β1,3-N-acetylglucosaminyltransferase;

FMT, fecal microbiota transplantation; FAS, fatty acid synthase.

are largely located within the isthmus and are confined to the
upper third of the gastric pits. In contrast, stem cells in the
distal antrum are typically located in the bottom third of the
invagination. In either case, these multipotent progenitor cells
can move bidirectionally to either the mucosal surface or the base
of the gastric pits differentiating and maturing into the principal
epithelial cells of the stomach as they do so (19). Over the course
of their migration, those cells destined to become surface mucus
and mucus neck cells differentiate and gradually release mucin
glycoproteins into the lumen (15).

Given the primary role of the mucus layer in physical defense,
the influence that it has on GI inflammatory pathologies is
increasingly of interest. Often these pathologies are accompanied
by impaired goblet cell function as well as dysregulated mucin
biosynthesis with considerable qualitative and quantitative
changes (20, 21). One group of diseases that is strongly influenced
by the proper function of goblet cells and their secreted mucins
is inflammatory bowel disease (IBD) which is broadly classified
into Crohn’s disease (CD) and ulcerative colitis (UC) (22).
These conditions are characterized by chronic inflammation
of the GI tract and are increasing in prevalence, particularly
as newly industrialized countries become progressively more
“westernized” (23). Unfortunately, both cause and cure remain
elusive. Colorectal cancer also presents alterations in GI
mucin production and function. Lastly, bacterial and parasitic
infections, which are more prevalent in developing countries,
are also associated with mucin dysfunction and inflammation of
the GI tract (3, 24). The present review aims to highlight the
structural and functional features as well as the production and
immunological regulation of mucins, and the impact these key
elements have within the context of barrier function and host
defense in intestinal inflammation.

STRUCTURAL FEATURES AND
CLASSIFICATION OF MUCINS

Thus far, more than 20 mucin genes have been identified (25).
Though the corresponding glycoproteins associated with each
of these genes have distinct differences, mucins, in general,
share conserved structural features. The protein backbone
contains tandem repeat units of varying length consisting of
the amino acids proline, serine, and threonine, which create
sites for O-glycosylation by O-linked oligosaccharides (26). The
majority of these O-linked oligosaccharides are composed of N-
acetyl galactosamine (GalNAc), N-acetyl glucosamine (GlcNAc),
galactose (Gal), fucose (Fuc), and are often terminated by sialic
acids (2, 26, 27).

The O-glycosylation process originates with GalNAc
attachment to either a serine or threonine residues within the
protein backbone, which can then be further elongated by
additional carbohydrate residues. These initial additions can be
classified as one of six common “core” regions which encompass
the GalNAc-peptide attachment point and any sugars directly
linked to this GalNAc. This core region is either terminated
by a sialic acid residue or extended to form the backbone and,
eventually, the peripheral regions of the glycan, the addition of
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FIGURE 1 | The mucus layer of the small intestine and colon. (A) In the small intestine, only one layer of loosely attached mucus is present and is penetrable by

resident microbes. (B) Primarily produced by goblet cells, colonic mucus is comprised of two layers: an outer layer permeable to bacteria and a tightly adhered inner

layer impermeable to bacteria. Here, secreted gel-forming mucins, largely MUC2, are the main components of this mucus layer and provide its viscoelastic properties.

(Continued)
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FIGURE 1 | Transmembrane mucins including MUC3A/B, MUC12, MUC13, MUC15, and MUC17, form a carbohydrate-rich layer called glycocalyx lying between the

secreted mucins and the underlying epithelial cells in both the small intestine and colon. Simplified structures of transmembrane mucins and gel-forming mucins can

be seen in the magnified sections. Transmembrane mucins are generally comprised of two subunits; the heavily glycosylated and larger extracellular subunit and the

shorter subunit consists of a small extracellular domain, a transmembrane domain and a cytosolic compartment. The extracellular protein backbone contains tandem

repeat units of varying lengths consisting of the amino acids proline, serine, and threonine which create binding sites for O-linked oligosaccharides. This protein

backbone and O-linked glycan structure are also present in secretory/gel-forming mucins.

which marks the termination of O-glycosylation (28). Variation
in both the number and type of residues added, as well as,
substrate availability and competition among transferases
generates immense structural variability in mucin glycoproteins
and results in a range from short linear structures to more
complex branched forms (28). Within the mucin structure,
O-linked oligosaccharides can be added as frequently as one in
three amino acids and can substantially increase the molecular
weight of mucins and help attract water to the mucus layer. The
O-glycosylation of mucins also provides these proteins resistance
to the activity of proteases and helps to prevent degradation
(28, 29).

Mucins can be broadly classified into gel-forming or
transmembrane based on their structural and functional features.
Secreted gel-forming mucins, such as MUC2, MUC5AC,
MUC5B, and MUC6, are the main components of the mucus
layer and provide its viscoelastic properties (Figure 1). These
mucins undergo homo-oligomerization through the formation of
disulfide (S–S) bonds at their cysteine-rich N- and C-terminals
aiding in the creation of a flexible network (11, 30). In the
intestine, MUC2 is the predominant gel-forming mucin that
contributes to the formation of the mucus barrier. MUC5AC,
which is normally present in the stomach, can also be upregulated
within the intestines during enteric infection (31) suggesting
these mucins may have crucial roles at multiple mucosal sites.
MUC5B can also be expressed in low levels in the colon while
MUC6 is preferentially expressed in the stomach and duodenum
(32, 33). MUC7 is a secreted mucin found in saliva and within
the oral cavity and is often categorized separately from the rest of
the secreted mucins (26). The differential classification of MUC7
is due to its low molecular weight and the fact that it does not
significantly contribute to the viscoelastic properties of mucus
(34). Unlike other gel-forming mucins, MUC7 lacks cysteine-
rich terminals, does not polymerize and exists primarily as a
monomeric structure (35).

Transmembrane mucins, such as MUC1, MUC3, MUC4,
MUC13, and MUC17, are expressed on the apical surfaces
of epithelial cells and form a carbohydrate-rich layer called
glycocalyx which acts as a protective barrier between the
secreted mucins and the underlying epithelial cells [Figure 1;
(36, 37)]. The rigid structure of these mucins spans the
length of the cell membrane and participates in intracellular
signaling with their C-termini located inside the cell (11, 38).
Transmembrane mucins are generally comprised of two subunits
held together by non-covalent sodium dodecyl sulfate-labile
bonds. The larger subunit, which is primarily extracellular,
contains serine and threonine repeat units and is heavily
glycosylated. The shorter subunit is comprised of a small
extracellular domain, a transmembrane domain, and a cytosolic

compartment (39). Although the exact mechanisms remain
unknown, transmembrane mucins have been heavily implicated
in cell signaling (6). The function MUC1 displays in the
downregulation of the Toll-like receptor (TLR)-initiated innate
immune response is a well-established instance of cell signaling
by transmembrane mucins (40).

GOBLET CELL DIFFERENTIATION, MUCIN
PRODUCTION, AND SECRETION

The major specialized intestinal epithelial subtypes including
goblet cells, Paneth cells, and enteroendocrine cells, originate
from stem cells located at the base of intestinal crypts and are
derived from a common secretory precursor cell. Enterocytes,
the most abundant cell type within the epithelial layer of the gut,
develop from non-secretory lineages of stem cells (41).

Lineage differentiation of these specialized intestinal epithelial
cells is, in part, regulated by Notch signaling. Notch is a
cell-surface receptor which is responsible for the regulation
of various DNA-binding proteins (42). Although the exact
mechanism is not known, inhibition of the Notch pathway leads
to preferential differentiation of intestinal stem cells into goblet
cells, the primary producers of secreted mucins within the GI
tract (14, 43, 44).

During their maturation, goblet cells undergo substantial
morphological changes as theymigrate from the base of intestinal
crypts to the villi. At the base of the crypt, stem cells are fated
into early goblet cell lineages via Wnt-signaling, which give
rise to immature goblet cells. These immature cells are large
in size, pyramidal, and contain mucin granules interspersed
among the organelles. During maturation, goblet cells begin
to lose cytoplasmic volume (14, 45). In this process, SAM
pointed domain-containing ETS Transcription Factor (SPDEF)
drives terminal differentiation into mature goblet cells (46).
The apical region of mature goblet cells, called the theca, is
cup-like in appearance and is packed with mucin granules,
while the organelles and nucleus congregate to the basal stem
of the cell (14, 47). In addition to morphological changes,
goblet cell differentiation is also accompanied by alterations
in the chemical composition of the produced mucins. During
maturation, secreted mucins become more acidic and develop
more sites for N- and O-glycosylation (14, 48).

After synthesis, mucin-packed granules are transported to the
apical cell surface via secretory vesicles and are released into
the lumen by the processes of basal secretion or compound
exocytosis/regulated secretion (49). Basal secretion, occurring
under normal physiological conditions, involves the continuous
fusion and release of single mucin granules into the gut
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lumen. This steady and unstimulated release maintains the
thickness of the mucus barrier and protects the underlying
epithelia from the constant threat of luminal contents (50).
Compound exocytosis, on the other hand, is a process induced
or stimulated by inciting factors such as microbial products,
hormones, inflammatory cytokines and neurotransmitters such
as acetylcholine (26, 49, 51–53). Here, centrally stored mucin
vesicles rapidly fuse and empty their contents in response to these
secretagogues (54). Since the 1980s, the morphological process,
molecular mechanism, and relationship between immune and
non-immune regulators of compound exocytosis have been
active areas of research.

IMMUNOLOGICAL REGULATION OF
MUCIN PRODUCTION

The immune response can be broadly divided into the innate
and adaptive systems. The innate system relies on evolutionarily
conserved, somatically-encoded receptors to recognizemolecular
patterns on microbes (55, 56). In contrast, the adaptive immune
response relies on the specific recognition of pathogenic antigens
for initiation of said immune response (57).

Innate Immunological Regulation
Within the innate domain, pattern recognition receptors
(PRRs) such as TLRs and cytoplasmic nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs) play an
essential role in mucin synthesis (58). TLRs are a family of
11 evolutionarily conserved transmembrane receptors which
are located on the cell surface or on intracellular endosomes.
These receptors are activated by pathogen-associated molecular
patterns (PAMPs). This activation terminates with the induction
of the NF-κB family of transcription factors and the upregulation
of the immune response (25, 59).

Expression profiles of TLRs differ throughout the GI tract.
Recently, by utilizing five strains of TLR reporter mice, the spatial
expression of TLRs in intestinal epithelial tissue was visualized.
TLR2, 4, 5, 7, and 9 were found to be minimally or not expressed
in the small intestinal epithelium while TLR2, 4, and 5 expression
levels were substantially higher in the colon (60). Further, TLR3
was expressed at similar levels in both small intestinal and colonic
epithelial cells (60). Only TLR5 was expressed by goblet cells
in the small intestine while colonic goblet cells were found to
express TLR1, 2, 4, and 5 (61) suggesting intrinsic TLR-meditated
mucin regulation in these cells.

Through their activation of TLRs, ligands such as
lipopolysaccharide (LPS) found on the outer membrane of
most Gram-negative bacteria, lipoteichoic acid (LTA) on the cell
wall of Gram-positive bacteria, and flagellin found in bacterial
flagella are all potent activators of MUC2 expression (25, 62). For
instance, upon stimulation by their respective ligands TLR2/1,
TLR4, and TLR5, promote the downstream activation of the
NLRP6 inflammasome in subpopulations of sentinel goblet cells
located at the entrance of colonic crypts. This inflammasome,
a multiprotein complex located in the cytoplasm of these cells,
functions as a sensor for cellular stresses and plays a key role in

intestinal barrier maintenance, infection defense and mucosal
renewal (54, 63). These TLR-initiated cascades stimulate the
compound exocytosis of MUC2 and trigger mucin secretion
from adjacent goblet cells through intercellular gap junction
signals. This subsequent increased MUC2 secretion can thus
aid in the expulsion of bacteria from the upper part of the
crypts (54). Recent studies have shown that TLR4 activation is
important in goblet cell response during Citrobacter rodentium
infection (64) and can regulate the differentiation of goblet cells
in intestinal organoids (65). The activation of TLR4, involving
the binding of lipid A moiety of LPS to the LPS binding protein
(LBP), can upregulate the expression of MUC2 through the
Ras-MEK1/2-Erk1/2 and NF-κB pathways (66). Establishing
whether the particular crypt location of the goblet cells is a
determining factor in mucin production in response to various
TLR ligands will be a worthwhile direction for future research.

Further evidence gleaned from genetic knockout models
have helped highlight the differential effects of TLRs on mucin
regulation. For instance, naïve Tlr1−/− mice have defective
production and/or secretion of MUC2 in the colon leading to
a patchy and significantly depleted mucus layer (67). Tlr5−/−

mice display a mosaic phenotype; a subset of these mice develop
spontaneous colitis while the majority do not. Interestingly,
compared to wild-type mice, colitic Tlr5−/− mice do not display
the normal dual-layer of colonic mucus; only a disorganized
and largely penetrable layer is present. In contrast, non-colitic
Tlr5−/− mice had a normal though slightly thinner mucus
layer (68).

Scant research exists involving the interaction between TLRs,
goblet cell function, and mucin regulation in intestinal parasitic
infection in vivo and this area remains largely unexplored.
In vitro, however, antigens from the intestinal trematode
Gymnophalloides seoi have been found to induce the expression
of both TLR2 and MUC2 in HT-29 cells in an IFNγ-dependent
manner. Further, co-stimulation with G. seoi antigen and
antibodies against both TLR2 and TLR4 have been shown to
diminish MUC2 expression in HT-29 cells compared to those
cells treated with the antigen only. Thus, the authors of this
study hypothesize that the induction of MUC2 expression as
an antiparasitic response in human IECs, may, at least in part,
be a result of TLR activation (69). Additional in vivo and in
vitro research will provide valuable insights into the interaction
between TLRs, goblet cell function and mucin regulation in
parasitic infection.

In contrast to the transmembrane TLRs, NLRs are a family
of innate intracellular receptors (70). However, similar to TLR
signaling, activation of NLRs such as NOD1 and NOD2 by
intracellular ligands (i.e., bacterial peptidoglycans) ultimately
results in the activation of important transcription factors, such
as NF-κB, to induce immune responses (71). An enteric infection
model using the helminth, Trichuris muris, has revealed that
NOD1 and NOD2 receptors are necessary for MUC2 synthesis
and parasitic expulsion; knocking out both of these genes (Nod-
DKO) result in infected mice with lower goblet cell numbers and
decreased MUC2 expression (72).

Other receptors can also impact mucin production via the
innate response. LTA fromGram-positive bacteria can upregulate

Frontiers in Immunology | www.frontiersin.org 5 September 2020 | Volume 11 | Article 2054

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grondin et al. Mucins and Intestinal Mucosal Defense

MUC2 expression by acting on platelet-activating factor receptor
(PAFR) and, through a multistep process, activate the Ras-
MEK1/2-Erk1/2 and NF-κB pathways (25). Moreover, flagellin
signals through the glycolipid receptor asialoGM1 (ASGM1)
ultimately lead, again, to upregulated expression of MUC2 (73).
ASGM1-mediated upregulation of MUC2 involves the sequential
activation of phospholipase C, an increase in calcium ion levels as
well as ERK1/2 and NF-κB activation (73).

Dendritic Cells and Macrophages
In the local draining lymph node, antigen presenting cells
(APCs) such as dendritic cells and macrophages present the
phagocytosed and processed antigen to aid in the differentiation
of naïve CD4+ T cells to Th2 cells. These cells then secrete
effector cytokines such as IL-13 and, thusly, contribute to
mucus production and goblet cell hyperplasia (74). In addition,
macrophages, primed by the canonical type 2 cytokines
IL-4 and IL-13, can transition into alternatively activated
or M2 macrophages (75). Moreover, alternatively activated
macrophages can be generated by IL-33 and polarization was
associated with increased induction of IL-13 (76), suggesting
these APCs may also play a more direct role in the regulation of
mucin via this cytokine.

Innate Lymphoid Cells (ILCs)
ILCs are a recently discovered group of innate immune cells that
play an essential role in host immunity, tissue protection, and
adaptive immune regulation, particularly within the intestinal
mucosal barrier (77–79). ILCs bridge the gap between the
innate and adaptive immune responses by producing immune-
regulatory cytokines. Based on the effector cytokines that ILCs
secrete, the transcription factors that regulate their development,
and markers dotting their cell surfaces, this family of cells can be
subdivided into three groups: ILC1, ILC2, and ILC3 (77, 78).

ILC1

T-bet, a transcription factor expressed by ILC1s, is widely known
as an important regulator for type 1 immunity. However, it has
also been shown to protect against intracellular pathogens, such
as Salmonella enterica. During Salmonella infection, ILC1s play
an important role by producing IFN-γ and, thus, driving the
secretion of mucus-forming glycoproteins (80).

ILC2

ILCs bridge the gap between the innate and adaptive immune
responses by producing immune-regulatory cytokines. It is
becoming increasingly apparent that ILCs, particularly ILC2,
have emerged as a crucial innate immune cell critical for
the production of mucin through T helper 2 (Th2) immune
responses. ILC2s arise from common lymphoid progenitor (CLP)
cells (81) and express the transcription factors, retinoic acid
receptor-related orphan receptor α (RORα) and GATA binding
protein 3 (GATA3) (82). Mature ILC2s respond to epithelial cell-
derived cytokines including IL-25, IL-33, and thymic stromal
lymphopoietin (TSLP) to produce Th2 cytokines such as IL-4, IL-
5, IL-9, and IL-13 (83–86). These effector cytokines support the
development of type 2 inflammation as well as mucin production

in the context of parasitic immunity and allergic diseases (82).
Recently, the function of these cells in helminth infection
resistance has been demonstrated, particularly with regards to
the impact of IL-13-secreting ILC2s on mucin-producing goblet
cells. IL-33 has been shown to indirectly induce intestinal goblet
cell differentiation and MUC2 expression via IL-13-secreting
ILC2s (87). Moreover, IL-33-deficient (Il33−/−) mice fail to
expel Nippostrongylus brasiliensis worms due to impairment of
ILC2 (88), further demonstrating the essential role of ILC2s in
helminth infection immunity.

ILC3

ILC3s are also implicated in the maintenance of gut homeostasis.
ILC3s express the transcription factor, RORγt, and IL-22, one of
the effector cytokines secreted by ILC3s (89). Upon binding to
its receptors, IL-22R1 and IL-10R2, on the intestinal epithelial
cells, IL-22 induces mucin generation and goblet cell hyperplasia
(90, 91). In addition, IL-22 promotes the activation of NOD
signaling which leads to mucin secretion by goblet cells (92).

Adaptive Immunological Regulation
Unlike the innate immune system which relies on germ-line
encoded PRRs, the adaptive immune system generates specific
receptors to recognize the substantial diversity of harmful
antigens through a process called somatic recombination (93).
The principal cell types of the adaptive immune system are T and
B lymphocytes which are vital in maintaining gut homeostasis
as well as host protection in GI diseases (94). Consequently, T
lymphocytes play an important role in the regulation of mucin
release by goblet cells (95). Initial studies demonstrated that
during N. brasiliensis infection, anti-CD4 antibody treatment in
mice prevented spontaneous recovery. These mice also displayed
T-helper cell depletion along with a reduction in mucin levels,
despite unchanged goblet cell counts (96).

The immune response to intestinal helminth infection is
characterized as a Th2-dominant response accompanied by the
upregulation of cytokines, such as interleukin (IL)-4, IL-5, and
IL-13 (97, 98). Animal models of enteric infections including
N. brasiliensis (99), Strongyloides ratti (100), T. muris (98),
and Trichinella spiralis (101) have shown that these helminth
infections are also accompanied by goblet cell hyperplasia and
an increase in mucin production and secretion that aid in worm
expulsion (102). It is postulated that these changes in mucin
production and goblet cell hyperplasia are at least partially
the result of the Th2-mediated immune response (103). As
an activator of Th2 immune responses, signal transducer and
activator of transcription factor 6 (Stat6) has been identified
as a critical inducer of goblet cell hyperplasia (3, 104). This
factor’s crucial role is neatly illustrated in Hymenolepis diminuta
infection; STAT-6 knockout mice infected with this tapeworm
were unable to clear this infection due, in part, to diminished
goblet cell response, unlike their IL-13 and IL-4 deficient
counterparts at 12 days post-infection (105). Interestingly, it
has been shown that goblet cell hyperplasia may also occur
in a Th2-independent manner without the influence of IL-4
and IL-13 in some parasitic infections, including Schistosoma
mansoni (106). It should also be noted that with the discovery
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of ILC2s, our understanding of the type 2 immune response has
expanded. Both ILC2 and Th2 cells can be activated by IL-33,
IL-25, and TSLP, and release type 2 effector cytokines (e.g., IL-
5 and IL-13) during parasite infections, and thus, contribute to
type 2 immunopathology. Further, Th2 cells respond to antigen
stimulation by dendritic cells which also receive signals from
cytokines released by ILC2s (107). These findings suggest that
Th2 immune responses may be initiated by ILC2 since the
activation of ILC2s occurs during the early phase of type 2
immune responses (108, 109).

Moreover, emerging evidence suggests a novel role for other
cytokines in mucus production. Previously considered a non-
factor in mediating parasitic expulsion, IL-22, a member of
the IL-10 family of cytokines, has been shown to induce
goblet cell hyperplasia and mucin release. IL-22-deficient
(Il22−/−) mice have defective goblet cell responses during N.
brasiliensis infection despite strong Th2 cytokine induction (110).
Furthermore, evidence suggests that, following infection with T.
trichiura, the human gut accumulates IL-22-producing Th cells
within the intestinal mucosa and the resultant increase in IL-22
production and Th2 cytokines promotes goblet cell hyperplasia
and mucus production (111). Similarly, humans infected with
Necator americanus, a parasitic hookworm, showed upregulated
IL-22 production as well as a robust systemic and mucosal
Th2 and T-regulatory (Treg) response, ultimately promoting
goblet cell hyperplasia and worm expulsion (112). In addition to
quantitative changes, cytokines can also regulate the quality and
composition of mucins. A recent study found that administration
of IL-10 reduces endoplasmic reticulum (ER) stress and prevents
the misfolding of MUC2 in an in vitro model (LS174T) of
intestinal goblet cells (113). Consequently, T lymphocytes play
an essential role in controlling the release of mucins through
signaling by Th2 cytokines (e.g., IL-4, IL-5, and IL-13) and other
mediators such as IL-22.

In addition to Th2 cytokines, several Th1 cytokines have been
shown to regulate mucin biosynthesis. In the intestinal cancer cell
line, LS180, it was observed that the pro-inflammatory cytokines,
including IL-1, IL-6, and TNF-α, increased the expression
of MUC2 mRNA (95). Due to the influx of Th1 cytokines,
reduced mucin glycosylation via incomplete processing of N-
glycans was also present (95). In addition, several in vitro and
in vivo models have demonstrated the relationship between
downregulated MUC2 expression and increased IL-6 in the
context of colon cancer. Interestingly, this inverse relationship
tends to be associated with liver metastasis and the promotion of
tumor growth in mice (114, 115). Further, in BALB/c duodenal
explants, macrophage-derived IL-1 and human rIL-1β have the
ability to induce mucin secretion from goblet cells (116). The
authors suggest that this dose-dependent process may act as
a protective mechanism by aiding in the clearance of toxic
substances from the gut in periods of mucosal inflammation
(116). In contrast, in a murine model of C. rodentium infection,
the Th1 cytokines, IFN-γ, and TNF-α, decreased intestinal
mucin production and its speed of transport from the Golgi to
secretory vesicles. Lending further support to this finding, in
vitro treatment of infected and non-infected intestinal mucosal
surfaces with IFN-γ and TNF-α decreased the number of goblet

cells, mucus thickness and transport (117). The contrasting data
in the above paragraph implies that the effect of Th1 cytokines on
mucin synthesis, transport, and secretion depends critically on,
not only, the type of cytokine but also the pathological process
in question.

Though extensive, the presented results highlight the need for
further exploration of mucin’s diverse immunological functions
and the impact that the immune system itself has on mucin
production. Indeed, these findings establish the crucial role
mucin plays in barrier and immune function as well as the
importance of immune-associated signaling on the regulation
of mucin composition and function. Figure 2 highlights various
immunological regulations that affect mucin production and
goblet cell function within the gut.

Enteric Nervous System Regulation
It is increasingly apparent that the enteric nervous system
(ENS) also contributes to mucin production. Recent studies
have shown that mucosal neurons, which are situated in close
proximity to lamina propria immune cells (e.g., APCs and ILCs),
interact with epithelial cells and act as key regulators of mucin
production at intestinal mucosal surfaces. Acetylcholine (ACh) is
a primary parasympathetic neurotransmitter that is released by
preganglionic nerve fibers and the vagus nerve (118). Previously,
it has been established that ACh is important for goblet cell
degranulation and can induce mucin secretion (54, 119, 120).

Muscarinic ACh receptors (MRs) are one of the two types
of cholinergic receptors along with nicotinic ACh receptors
(NRs) (121). Of increasing interest, type 3 muscarinic receptors
(M3Rs) have received significant attention for their key role in
maintaining mucosal barrier function (122) and in regulating
mucin production and secretion within the GI tract (123). In
addition, M3Rs contribute to host defense against N. brasiliensis
(124, 125) and C. rodentium (121). Despite N. brasiliensis
infection, mice deficient in the muscarinic acetylcholine receptor
M3 (Chrm3−/−) show an absence of typical goblet cell expansion
(125). These mice also display impaired immunity to C.
rodentium along with decreased goblet cell number and MUC2
gene expression in the colon compared with WT mice on day 13
post-infection (121).

Similar to MRs, vasoactive intestinal peptide (VIP) also
participates in regulating intestinal goblet cell numbers and
function at baseline; VIP-deficient mice show impaired goblet
cell development and reduced expression of MUC2 (126, 127).
VIP is a 28-amino-acid peptide secreted by enteric neurons and
regulates gut motility (126). There are three known receptors
for VIP: the higher affinity receptors, VIP receptor 1 (VPAC1)
and VPAC2, and the lower affinity receptor PAC1 (128). Among
these, VPAC1 mRNA is the most highly expressed on the apical
membrane of the intestinal epithelium and receives signals from
VIP fibers (129). Although VPACs are expressed on airways
(130) and ocular mucosa (131), there is no direct evidence that
intestinal goblet cells express VIP receptors. However, a recent
study has reported that ex vivo treatment with VPAC antagonists
resulted in a substantial decrease in goblet cell counts in the
mouse ileum indicating potential ongoing VIP regulation of
goblet cell production (126). Furthermore, lamina propria ILC2
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FIGURE 2 | Immunological regulation of mucin production and goblet function within the GI tract. Several immunological factors regulate and alter the production of

mucins and the goblet cell function within the gut. (1) Bacterial components, including lipopolysaccharide (LPS), lipoteichoic acids (LTA) and flagellin, are potent

activators of MUC2 expression via Toll-like receptors (TLRs). The latter two of these components can also stimulate MUC2 expression via platelet-activating factor

(Continued)
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FIGURE 2 | receptor (PAFR) and glycolipid receptor, asialoGM1 (ASGM1), respectively. In parasitic models, NOD-like receptors (NLRs) are necessary for MUC2

synthesis and parasitic expulsion. (2) In the context of parasitic infection, mature ILC2s respond to epithelial cell-derived cytokines including IL-25, IL-33, and TSLP to

produce IL-4, IL-5, IL-9, and IL-13; supporting the development of type 2 inflammation, as well as, mucin production. (3) These cells are also impacted by NmU

derived from glial cells stimulated by the ESPs of certain parasites as well as IEC-derived IL-33. (4) Enteric parasitic models also incite Th2 cytokines, IL-4, and IL-13

promote goblet cell hyperplasia and mucus production. (5) From the enteric nervous system (ENS), acetylcholine (ACh) plays a role in for goblet cell degranulation and

can induce mucin secretion. Several Th1 cytokines such as IL-1β, IFN-γ, and TNF-α can also regulate mucin biosynthesis (not shown).

function is also regulated by VIP via VPAC2 during parasite
infection (132).

Interestingly, recent studies have also indicated indirect
regulation of mucin production by a neuropeptide called
neuromedin U (NmU) via ILC2 (89, 133, 134). During N.
brasiliensis infection, glial cells sense intestinal epithelial
cell-derived IL-33 and N. brasiliensis excretory/secretory
products (ESPs) and trigger NmU production in a MyD88-
dependent pathway (133). NmU not only induces smooth
muscle contractions but also binds to NmU receptor 1 (Nmur1)
on ILC2s promoting the secretion of IL-13, and, potentially
impacting mucin secretion (135).

MUCIN PRODUCTION IN INTESTINAL
INFLAMMATION: EVIDENCE FROM
CLINICAL STUDIES

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is an umbrella term which
includes chronic inflammatory conditions of the gastrointestinal
tract such as ulcerative colitis (UC) and Crohn’s disease (CD). UC
is characterized by superficial inflammation radiating proximally
from the rectum, whereas CD is characterized by zones of deeply
inflamed and non-inflamed tissue that can extend throughout the
GI tract (136). These conditions affect millions worldwide, and
the incidence is increasing globally (137).

Early studies suggested that single nucleotide polymorphisms
in certain mucin genes including MUC3A, MUC3B, MUC12,
and MUC17, predisposed individuals to CD and UC, however,
these findings have not held up in more recent genome-wide
association studies (GWAS) (138). Meta-analyses of several
GWAS have more recently identified the gene encoding MUC1
(139) and the locus of leucine-rich repeat kinase 2 (LRRK2)
which contains the MUC19 gene, (140) to have significant
associations with CD.

Both CD and UC are accompanied by dysregulation of
mucin synthesis and altered post-translational modification
leading to barrier dysfunction (138). In UC, changes including
reduced glycosylation and sulphation (141) as well as increased
sialylation alter the efficacy of the mucins present and hinder
their ability to maintain effective intestinal barrier function (20)
particularly with regards to bacterial penetration (142, 143).
Healthy colonic mucus is often heavily sulphated with increasing
levels of sulphation extending from proximal to distal regions
and conferring increasing resistance to bacterial enzymatic
degradation. In both CD and UC, however, this phenomena
is muted (20, 141). In inflamed tissue, goblet cell depletion
is present in both UC and CD compared with controls (144)

and altered mucus layer thickness has also been found in both
conditions (145).

UC is associated with a relatively thin and discontinuous
mucus layer, goblet cell depletion and reduced MUC2 synthesis
(145–147). Reduced sulfate content of MUC2 has also been
noted, though compensatory and preferential secretion of this
mucin in active disease results in overall unaltered sulfate levels in
the colon of UC patients (147). Interestingly, MUC5AC, a mucin
not normally present in the colon, has been found in UC patients
undergoing surgery (148). In addition, site-specific increases
in MUC1 expression and decreases in MUC2 expression were
observed in UC patients at the site of crypt abscesses and
adjacent to ulceration, respectively (149). Reduction in MUC9
(150) and MUC20 (151) gene expression was also noted in
both active and quiescent UC compared with healthy controls.
Increased gene expression of MUC16 has also been described
in UC patients with active disease as well as those in remission
compared to healthy controls (151). Sialylation also plays a
similar role to sulphation, increasing the resistance to enzymatic
degradation. In rectal biopsies of UC patients an increased
average extent of sialylation per mucin oligosaccharide was
noted rather than a simple increase in oligosaccharide chains
(152). Intriguingly, glycan “profiles” have been established
whereby healthy controls and those UC patients with inactive
disease displayed similar glycan/glycosylation patterns; abundant
levels of complex and larger glycans and relatively small
amounts of shorter glycans. In opposition, those with active UC
displayed increased presence of shorter glycans and a marked
decrease in several complex glycans (153). Furthermore, these
aberrant glycosylation profiles were associated with the degree
of inflammation and severity of disease (153). Similarly, in a
large-scale proteomics study, van der Post et al. established a
core colonic mucus proteome, a set of 29 core secreted and
transmembrane proteins that form the mucus barrier in healthy
controls and UC patients in remission. Several of these proteins
were found to be reduced in active UC patients including
core structural components, MUC2 and IgGFc-binding protein
(FCGBP), and other goblet cell products including calcium-
activated chloride channel regulator 1 (CLCA1) and zymogen
granule protein 16 (ZG16). Interestingly, this trend occurred
independent of local inflammation and was associated with
increased bacteria penetrability and activation of IL-18 (143).
In active UC, contributing to the thinner and penetrable mucus
layer, insufficient replenishment or exhaustion of sentinel goblet
cells in response to successive microbial challenges has been
noted and may precede the activation of disease and/or local
inflammation (142, 143).

While the relationship between UC and mucus thickness is
relatively well-established, the relationship regarding CD and
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mucus thickness remain under dispute. Early findings suggested
CD patients displayed increased mucus layer thickness compared
to healthy controls (146), however, more recent work has
indicated that mucus layer thickness in CD patients was not
significantly different compared with healthy controls (145). In
seeming contradiction, a recent systematic review and meta-
analysis concluded that, on average, patients with CD have
a 34% reduction in total mucin levels due to significantly
decreased levels of MUC5AC,MUC5B, andMUC7 (154). Similar
to UC, ileal CD has also been linked with aberrant protein
expression of MUC5AC and decreased expression of MUC2
(155). Aberrant expression of MUC6 has also been noted in ileal
CD (156). Moreover, in the ileum of CD patients, a marked
decrease in MUC1 mRNA was also observed in inflamed vs.
non-inflamed tissue from the same patient (156). Interestingly,
reduced gene expression of the transmembrane mucins, MUC3
and MUC4, as well as the secreted mucin MUC5B have been
noted in non-inflamed tissue sections of CD patients compared
with healthy controls (156) suggesting local inflammation is
not necessarily a precursor for these alterations. Alterations in
oligosaccharide length have also been noted in CD patients
and although it has been established that levels of sulphation
remain unchanged compared with healthy controls, changes in
glycosylation levels in CD patients have not been thoroughly
explored (20, 141, 147, 152).

From the above evidence, it is clear that alterations in mucin
expression and function play a unique role in IBD. However,
because of significant dispute in the literature, it is challenging
to characterize distinct mucin expression profiles associated with
IBD, and it should be noted that significant heterogeneity exists.

Colorectal Cancer
Colorectal cancer is the third most common cancer in the world
and accounts for substantial mortality every year (157). The
expression of secreted and transmembrane mucins is altered
in colorectal cancer patients. MUC1 expression was found
to be increased in colon cancer patients and was correlated
with poor prognosis and metastasis (158). Though MUC1 is
usually undetectable with tandem repeat peptide antibodies in
healthy colons due to heavy glycosylation, this post-translational
modification is reduced in colorectal cancer patients which may
account for the observed differences (159, 160). In addition,
MUC2 expression was found to be decreased in colorectal cancer
instances, other than in mucinous adenocarcinomas (12, 161).
Moreover, MUC5AC, a normal component of gastric mucus
which is usually absent from the colon, was shown to be expressed
de novo in colorectal cancer (162, 163).

MUCIN PRODUCTION IN INTESTINAL
INFLAMMATION: EVIDENCE FROM
ANIMAL EXPERIMENTS

Chemical Colitis
Since the 1990s, the dextran sulfate sodium (DSS)model has been
used extensively in rodents to understand the pathophysiology of
colitis (164). The cytokine profile associated with this chemical

model is predominantly within the Th1 immune response with
the upregulation of the cytokines, IL-12, IFN-γ, and TNF-α (165).
Animal studies using DSS have highlighted the important and
diverse roles of mucins in modulating intestinal inflammation.

As previously mentioned, MUC2 is a secreted gel-forming
mucin and the main structural component of intestinal mucus
which contributes significantly to host protection in the context
of intestinal inflammation. In vivo results show that rats placed on
DSS regimen undergo goblet cell depletion; however, depending
on the observed location within the colon, the expression of
MUC2 was unaltered or increased (166). Under a different
DSS regimen, mucin expression was shown to vary with the
progression of colitis. Compared with controls, DSS-treated rats
showed initial upregulation of MUC2 and MUC3, followed by
a rapid reduction in expression over time (167). Within 12 h of
DSS administration, decreased mucus thickness and increased
mucus permeability in the colon allows commensal microbes to
penetrate the inner mucus layer and reach the intestinal epithelial
cells. It is thought that this early bacterial invasion plays a critical
role in eliciting the infiltration of immune cells and driving the
development of colitis (168).

Despite the lack of consistent expression patterns in the above
results, it is evident that MUC2 is an important component of the
protective mucus layer of the intestine. In fact, MUC2-deficient
(Muc2−/−) mice develop spontaneous colonic inflammation
characterized by weight loss, changes in stool consistency,
and increased expression of pro-inflammatory cytokines (169).
Muc2−/− mice also show increased severity of inflammation
and disease activity when exposed to DSS (169). Therefore, it
is clear that MUC2 offers significant protection against colonic
inflammation and that a well-maintained colonic mucus layer
is vital in preventing murine colitis. In contrast to this distinct
protective role of MUC2, not all mucins have shown to have
protective functions in a DSS-induced colitis model.

Unlike MUC2, MUC4 is a transmembrane mucin and a
component of the glycocalyx found in the intestine. Mice
deficient in MUC4 show resistance to DSS colitis and have
reduced levels of pro-inflammatory cytokines compared to
wild-type animals (170). Although the mechanism behind the
protective role of MUC4 deletion is unknown, it is possible that
Muc4−/− mice respond by upregulating protective mucins in
a compensatory manner to resist DSS-induced colitis. In fact,
Muc4−/− mice challenged with DSS colitis have been found to
have higher expression of both MUC2 and MUC3 compared to
wild-type mice (170). Similarly, mice deficient in MUC1, another
transmembrane mucin, develop less severe colitis accompanied
by a reduction in T cell infiltration (171). The lower severity of
colitis inMuc1−/− mice may also be attributed to compensatory
increases in the expression of MUC2 and MUC3 (171, 172).

Genetic Models
Besides chemical models, genetically modified animals are also
commonly utilized to study intestinal inflammation and mucin
production. One suchmodel is the IL-10 knockout murinemodel
(173). If kept in non-germ-free housing, mice deficient in IL-10
spontaneously develop colitis. This unprompted inflammation is
accompanied by a reduction in the number of mucin-producing
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goblet cells in the intestine (173). In contrast, mice lacking the IL-
1rn gene, coding for the IL-1 receptor antagonist, spontaneously
developed IBD-like abnormalities including increased immune
cell infiltration and secretion of pro-inflammatory cytokines,
and had an increased number of goblet cells in the jejunum
and ileum compared to wild-type mice. Dosh et al. reasoned
that this rise in goblet cell number was due to increased
expression of the transcription factors, Hath1 and Kruppel-
like factor 4 (KLF4) in the inflammatory process (174). The
contradictory findings of goblet cell number in IL-10 and IL-
1rn deficient mice demonstrate the implications and importance
of studying various genetic models reflective of the pathogenesis
of intestinal inflammation. Furthermore, genetically altered mice
with tamoxifen-induced villin-Cre-dependent intestinal deletion
of kindlin 1 and 2 manifest UC-like features due to modified
mucus composition and hydrophobicity. These mutant mice
develop mucosal colonic inflammation secondary to defective
tight junction morphology and extended paracellular space in
the mucosal barrier. Here, defective tight junctions prevent
the paracellular transport of phosphatidylcholine (PC) causing
reduced mucus PC content and a >50% reduction in mucus
hydrophobicity. Consequently, the mucosa was predisposed to
microbial invasion and subsequent inflammation (175). This
finding highlights the role of altered mucus composition as
a driving event in UC and not merely a secondary result
of inflammation.

In addition to immunemarkers, recently, significant emphasis
has been placed on studying the role of autophagy in mediating
intestinal inflammation, and genetically modified animal models
have been created to study this phenomenon. Autophagy
is an evolutionarily conserved, catabolic cellular mechanism
whereby cytoplasmic contents are delivered to, and degraded
in, the lysosome (176, 177). A link between autophagy and
intestinal inflammation has been proposed, and genome-wide
association studies have identified the gene encoding ATG16L1,
an autophagy-related protein, as a susceptibility locus for CD
(178). Further, mice deficient in the autophagy-related protein,
ATG7 in the intestinal epithelial cells (Atg71IEC), have been
shown to develop more severe symptoms of colitis when placed
on a DSS regimen compared to wild-type mice (179). These
mice also had reduced expression of anti-microbial and anti-
parasitic peptides, and an increased abundance of gut microbial
content. Moreover, evidence suggests that Atg71IEC mice also
have diminished release of intestinal mucins, particularly MUC2,
and a less thick mucus layer. These findings indicate that the
altered abundance, as well as the increased severity of colitis in
Atg71IEC mice, could at least be partially caused by the reduced
levels of intestinal mucins released from goblet cells (179).

Lack of proper glycosylation has been illustrated in UC
patients (20, 141, 180) and several genetic models regarding
this process provide insight into the implications of altered
glycosylation in intestinal inflammation. As mentioned
previously, O-linked oligosaccharides, in particular core
1- and core 3- derived mucin type O-glycans, are crucial
components in the maintenance and stability of the colonic
mucus layer, helping to prevent the penetration of this layer
by microbial species via protease degradation and to avert

unwarranted activation of the immune response (28, 29, 181).
Found throughout the colon, core 1 β1,3-galactosyltransferase
(C1GalT1) controls the synthesis of core 1 O-glycans (181). Due
to the impaired glycosylation and disrupted mucus integrity
found when knocking out this protein’s corresponding gene,
mice with intestinal epithelium-specific deficiency of core 1
derived O-glycans (C1galt11IEC) develop spontaneous colitis in
the distal regions of the colon (181) characterized by myeloid
cell infiltration, crypt abscess, epithelial ulceration, goblet cell
loss, reduced mucin levels, disrupted mucus layer, and increased
epithelial–microbial interaction (153, 180). In contrast to
C1GalT1, core 3 β1,3-N-acetylglucosaminyltransferase (C3GnT)
expression, which regulates core 3 O-glycan formation, is
more localized to the proximal colon (181). C3Gnt−/− mice
show increased susceptibility to colitis and colorectal cancer
(182–184). Loss of both intestinal core 1- and 3-derived O-
glycans generate mice that develop colitis ranging from the
proximal to distal regions of the colon and display earlier onset
and more severe intestinal inflammation when compared to
C1galt11IEC mice and C3Gnt−/− mice suggesting the loss of
these vital components confers compounding deleterious effects
(182, 184). Further, the above phenomena with regards to
impaired glycosylation of the mucins and its effects on intestinal
inflammation seem to be dependent, at least somewhat, on
the presence of the resident microbiota; several studies have
shown that antibiotic treatment lessens the severity of colitis and
boosted mucus layer integrity in these models (180, 181, 183).
Thus, evidence from the C1galt1IEC, C3Gnt−/−, and double
knockout models suggest proper glycosylation is crucial in
maintaining the integrity of the colonic mucus layers, and
suggests these O-glycans are a key factor in protecting the
underlying epithelium from abnormal microbial interaction and
preventing unsolicited intestinal inflammation.

From the above evidence, it is clear that within different
physiological environments, different mucins, and different
alterations in those mucins can greatly affect the host
susceptibility to intestinal inflammation. These findings highlight
the essential role of mucin in the pathogenesis of intestinal
inflammation and exemplify the importance of maintaining
mucin levels within a healthy homeostatic range. Because of
this complexity, further research must be carried out to clearly
elucidate the various roles of mucins in IBD.

Enteric Infection
Trichuris trichiura is a soil-transmitted helminth which affects
millions of people, particularly children, around the world
(185). To gain a more comprehensive understanding of the
immune response against T. trichiura, enteric parasitic animal
models have been developed. One such model which has been
extensively used in both our laboratory and others is the murine
infection, T. muris. Resistant mice or those that are able to
expel worms successfully display a characteristic Th2 immune
response with the upregulation of IL-4 and IL-13. In contrast,
susceptible hosts such as AKR mice develop a Th1 immune
response associated with chronic infection and increased worm
burden (186). Changes in mucin production, both qualitative
and quantitative, can affect host protection against parasitic
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infections, and thus, the protective role of mucins in T. muris
infection is increasingly being explored.

There are several methods through which mucins contribute
to parasitic clearance. Firstly, it has been shown that some
mucins, such as MUC5AC, have direct damaging effects on
worms and reduce their viability (31). Thus, it comes as no
surprise that mice deficient in MUC2 or MUC5AC show delayed
worm expulsion in response to T. muris infection (31, 187).
Secondly, mucins can create a thick and impermeable physical
barrier to protect the underlying epithelial cells from T. muris
invasion. In fact, T. muris infection leads to an increase in the
thickness of glycocalyx, particularly due to the upregulation of
MUC4, MUC13, and MUC17 proteins (103). Interestingly, the
serine proteases secreted by T. muris can degrade MUC2, but
not MUC5AC, giving this mucin considerable influence on the
successful clearance of these invaders (31, 188).

Entamoeba histolytica, a human protozoan parasite, causes
amebic colitis, and liver abscess, a condition collectively called
amebiasis (189). Mostly present in the developing world,
symptoms manifest in 10% of infected individuals possibly
due to variation in host immune response (189). Interestingly,
MUC2 plays a vital role in the development and progression
of amebiasis (189). After ingestion of contaminated food or
water, E. histolytica colonizes the colonic outer mucus layer by
binding to glycans on the MUC2 molecule via its Gal/GalNAc-
lectin (190). The protozoa then cleave MUC2 by glycosidases and
proteases and subsequently, comes in to contact with intestinal
epithelial cells (191, 192). Thus, the strength of the mucin layer is
a key player in the physical defense against E. histolytica-induced
inflammation and epithelial invasion. In addition to MUC2
degradation, altered MUC2 production is found in intestinal
amebiasis. E. histolytica has been found to bind to αvβ3 integrins
on goblet cells and stimulate the hypersecretion of mucus by
exocytosis (193). Contrasting data suggests, however, that E.
histolytica impairs the regulation of Math1 transcription factor
required for goblet cell differentiation and can actually lead
to decreased mucus production (194). In addition, during E.
histolytica infection, MUC2, possibly by acting either as a cAMP
ligand or by activating TLRs, can promote elevated levels of
antimicrobial peptides such as cathelicidins (195).

Clostridium difficile is an anaerobic, spore-forming bacterium
that causes worldwide epidemics with significant mortality rates
(196). Initial infection by this enteric pathogen is characterized
by an acute inflammatory response with a substantial influx
of neutrophils, diarrhea, and weight loss (197). Fortunately,
murine colitis models utilizing C. difficile have provided a
better understanding of this infection. Previously, it has been
shown that patients with C. difficile infection secreted acidic
mucus primarily composed of MUC1 and have decreased MUC2
expression indicating defective mucosal barrier function (198).
Moreover, patients with C. difficile infection exhibited altered
mucus composition with higher GLcNAc and galactose levels,
but lower GalNAc levels (198). Intriguingly, fecal microbiota
transplantation (FMT) has received a growing interest as an
effective therapeutic strategy to treat this infection. Recently,
it has been shown that upon IL-33 treatment, C. difficile-
infected mice exhibited increased goblet cell number and mucin

production via activation of IL-13-secreting ILC2s and FMT
rescued IL-33 expression in the colon after antibiotic-mediated
depletion (199). Other enteric bacterial infections have also
illustrated the implications of alteration within the mucus layer.
For instance, animal studies have shown that deficiency in the
transmembrane mucin, MUC1, results in increased susceptibility
and more severe intestinal damage in response to infection with
Campylobacter jejuni (200). Similarly, mice deficient in MUC2,
the main ingredient of colonic mucus, had increased intestinal
permeability and were more susceptible to S. enterica serovar
Typhimurium infection (201, 202).

In addition to alteration in quantity, post-translational
modifications can also affect the ability of mucin to maintain
intestinal barrier integrity. One such modification, the addition
of fatty acids called palmitoylation, is particularly important
for maintaining this barrier function. Inactivation of the
enzyme, fatty acid synthase (FAS) in intestinal epithelial cells
prevents palmitoylation of MUC2, and ultimately leads to
an increase in intestinal permeability (203, 204). Improper
sulfonation, or the addition of sulfate anions to mucins, has
similar effects of intestinal permeability in C. jejuni infection
(205). In addition, barrier function and pathogen adhesion
are largely regulated by the diverse glycosylation pattern of
mucins. Analysis of gastric mucin glycosylation profiles reveal
important roles of terminal α1,2-fucose residues on Lewis-b
and H type 1 structures expressed on MUC5AC (206). By
utilizing α1,2-fucosyltransferase-deficient (FUT2−/−) mice, it
has been established that the binding capacity of the infectious
agent, Helicobacter pylori, to Lewis-b and H-type antigens is
impaired due to the loss of gastric MUC5AC fucosylation
(207). Similarly, norovirus infection is dependent on the
fucosylation status of soluble mucins within the GI tract (206,
208). It is speculated that reduced mucin fucosylation in the
GI tract results in decreased mucus thickness and increased
intestinal permeability to pathogens (206). Further, inhibition
of the enzyme, core 3 β1,3-N-acetylglucosaminyltransferase
(C3GnT) which plays a crucial role in the addition of O-
linked oligosaccharides, can alter the structural and functional
features of mucins and has been shown to decrease MUC2
levels and increase intestinal permeability (184, 209). Moreover,
goblet cells in mice resistant to chronic T. muris infection
contain high levels of sulphated mucins in contrast with
the goblet cells of susceptible mice which are dominated by
sialylated mucins. Consequently, sulphation of mucins promoted
by Th2 immune mediators, such as IL-13, augments the
protection offered by mucins by aiding in their ability to resist
degradation (210).

Table 1 summarizes the various and dynamic changes in
mucins and the mucus layer in the context of the aforementioned
pathologies and animal models.

DISCUSSION

In the current review, we have highlighted the structural and
functional features as well as the immunological regulation
of mucins and have examined, within the context of
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TABLE 1 | The intestinal mucus layer is a dynamic part of the innate immune system which undergoes quantitative and qualitative changes in response to inflammation.

Evidence collected in clinical studies, as well as information gained from animal experiments, have shed light on some of these changes.

Condition Effects observed References

Crohn’s disease ↑Mucus thickness or no change

↓MUC2, MUC3, MUC4, MUC5B, MUC7

MUC5AC and MUC6 present

Goblet cell depletion

(145, 146)

(155, 156)

(155)

(144)

Ulcerative colitis ↓Mucus thickness

↓Glycosylation and sulphation

↑Sialylation

↓MUC2, MUC9, MUC20

↑MUC1, MUC16

MUC5AC present

Goblet cell depletion

(145, 146)

(20)

(147, 150, 151)

(149, 151)

(148)

(144)

Colorectal cancer ↑MUC1

↓MUC2

De novo MUC5AC synthesis

(158)

(12, 161)

(162, 163)

Chemical colitis ↑MUC2 (or no change)

↑MUC2 followed by rapid reduction

↑Th1 cytokines (IL-12, TNF-α etc.)

(166)

(167)

(165)

Enteric parasitic infection ↑Th2 cytokines (IL-4 and IL-13 etc.)

↑Mucin production/goblet cell hyperplasia

↑Thickness of glycocalyx/MUC4, MUC13, MUC17

(97, 98, 186)

(98–103)

(103)

Genetic models:

1) Muc4−/−

2) Muc2−/−

3) Atg71IEC

4) IL-1rn−/−

5) C1galt11IEC

↓DSS inflammation severity

↑MUC2 and MUC3

↑DSS inflammation severity/spontaneous colitis

↑DSS inflammation severity

↓MUC2/mucus layer thickness

↑Goblet cell number

Spontaneous colitis

Microbially breached mucus layer

(170)

(169)

(179)

(174)

(153, 180, 181)

intestinal inflammation, the changes associated in goblet
cell biology and mucin production. The collection of
evidence herein gives credence not only to the significant
role mucins play in barrier function but also to the
bidirectional relationship between mucus production and
the immune system.

Several inferences can be made from the evidence presented.
Firstly, the intestinal mucus layer is a highly dynamic system
which responds to various pathological alterations within the
GI tract, including changes in enteric infection, colorectal
cancer, and IBD. While examining the evidence, it was noted
that much of the research investigating the role of mucins in
intestinal inflammation focuses on animal models and enteric
infection. Hence, further clinical research would promote a better
understanding of the role of mucin in these pathogeneses and
also potentially open up new avenues of treatment. Secondly,
dysfunction, whether qualitative or quantitative, of the mucus
layer causes a sharp reduction in its ability to maintain
barrier function. The presented evidence has highlighted the
critical role of mucins in offering protection in the context
of intestinal inflammation. The conflicting results with respect
to several gel-forming and transmembrane mucin knockout
models such as Muc2−/− and Muc4−/− illustrate that not

all mucins confer similar effects within the context of colitis.
Inability to maintain a delicate balance of the proper ratios
and varieties of mucins, thus, can significantly affect the host
susceptibility to intestinal inflammation. Due to this complexity,
more research must be done to further clarify the various
roles of mucin in IBD pathogenesis. Similarly, the above
analysis has illustrated that post-translational modifications such
as sialylation, sulphation, and O-glycosylation are altered in
response to several pathological conditions and can greatly
alter the functional properties of the mucus layer. Investigating
if reversing or supplementing the effects of these altered
post-translational modifications also attenuates disease severity
will prove interesting. Thirdly, via TLRs, NLRs, ILCs, and T
lymphocytes through several Th2 cytokines, the immune system
can significantly influence the production of mucins and the
quality and efficacy these mucins display in maintaining the gut
barrier. Though not exclusively touched on in this review, the
impact pathogenic organisms have on the resident gut microbial
community and how these changes influence goblet cell function
and mucin production will provide an interesting area for
further exploration.

Above all, evidence from clinical and animal models
profoundly suggests that alterations in the mucus layer, aberrant
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post-translational modifications, and differential expression of
key mucins are critical factors in the pathogenesis and severity of
several conditions including enteric infection, colorectal cancer,
and IBD, further emphasizing the importance of maintaining
mucin levels within a healthy homeostatic range. Future studies
on the impact of mucins within these conditions can only further
our understanding of the immunological regulation and clinical
implications of mucins within the GI tract.
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