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Viral vectors are increasingly used as delivery means to induce a specific immunity in
humans and animals. However, they also impact the immune system, and it depends
on the given context whether this is beneficial or not. The attenuated vaccinia virus
strain modified vaccinia virus Ankara (MVA) has been used as a viral vector in clinical
studies intended to treat and prevent cancer and infectious diseases. The adjuvant
property of MVA is thought to be due to its capability to stimulate innate immunity.
Here, we confirmed that MVA induces interleukin-8 (IL-8), and this chemokine was
upregulated significantly more in monocytes and HLA-DRbright dendritic cells (DCs) of
HIV-infected patients on combined antiretroviral therapy (ART) than in cells of healthy
persons. The effect of MVA on cell surface receptors is mostly unknown. Using mass
cytometry profiling, we investigated the expression of 17 cell surface receptors in
leukocytes after ex vivo infection of human whole-blood samples with MVA. We found
that MVA downregulates most of the characteristic cell surface markers in particular
types of leukocytes. In contrast, C-X-C motif chemokine receptor 4 (CXCR4) was
significantly upregulated in each leukocyte type of healthy persons. Additionally, we
detected a relative higher cell surface expression of the HIV-1 co-receptors C-C motif
chemokine receptor 5 (CCR5) and CXCR4 in leukocytes of HIV-ART patients than in
healthy persons. Importantly, we showed that MVA infection significantly downregulated
CCR5 in CD4+ T cells, CD8+ T cells, B cells, and three different DC populations.
CD86, a costimulatory molecule for T cells, was significantly upregulated in HLA-DRbright

DCs after MVA infection of whole blood from HIV-ART patients. However, MVA was
unable to downregulate cell surface expression of CD11b and CD32 in monocytes and
neutrophils of HIV-ART patients to the same extent as in monocytes and neutrophils of
healthy persons. In summary, MVA modulates the expression of many different kinds
of cell surface receptors in leukocytes, which can vary in cells originating from persons
previously infected with other pathogens.

Keywords: AIDS, chemokine, cytokine, mass cytometry, modified vaccinia virus Ankara, poxvirus, surface marker,
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INTRODUCTION

Protection of humans against infectious diseases by vaccination
is considered as one of the greatest successes in the history of
medicine. In particular, 40 years ago, the world health assembly
officially declared smallpox eradicated. Vaccinia virus (VACV)
has been successfully used to vaccinate against smallpox, but
it can cause severe side effects (1, 2). Therefore, as an effort
to attenuate VACV in a way that increases its safety while
keeping its immunogenic potential, chorioallantois vaccinia
virus Ankara (CVA) was passaged multiple times in chicken
embryo fibroblasts (CEFs). This yielded a modified VACV
strain, which does not replicate in primary human cells (3).
Vaccination of persons with the modified vaccinia virus Ankara
(MVA) was well tolerated in more than 120,000 persons (4),
and recently, the safety and efficacy of MVA were confirmed
in a phase 3 clinical trial designed for the usage of MVA
against smallpox (5).

Additionally, MVA has been widely used as a viral vector
in clinical studies intended to treat and prevent cancer and
infectious diseases (6–9). The safety of virus-vectored vaccines
is intensively discussed and regulatory guidelines for their usage
are being established (10, 11). The effectiveness of a vaccine
depends not only on its specific composition but also on the
individual immunological status of a person to be vaccinated
(12). The latter point is highly relevant for the development of
therapeutic HIV vaccines because HIV-1-infected patients suffer
from chronic inflammation even when receiving antiretroviral
therapy (ART) (13).

MVA has been applied as a viral vector in several clinical
trials that enrolled HIV-1-infected patients (14–18) and healthy
persons (19–21). Therein, MVA has indeed proved to be safe,
and its ability to stimulate innate immunity has been considered
as a beneficial adjuvant effect (22, 23). Although there are
some studies about MVA-induced cytokine expression (24–26),
only limited information is available about the effect of this
virus on cell surface receptors in leukocytes (27–29). However,
such information is necessary for a better understanding of
the complex immune responses triggered by this virus in
vaccinated individuals.

Moreover, it is necessary to reveal potential differences in
vaccine responsiveness between infected and healthy persons to
improve vaccine design for example for people living with HIV.
Therefore, we investigated by mass cytometry the effects of MVA
on cytokine expression and the expression levels of some selected
cell surface receptors including C-C motif chemokine receptor
5 (CCR5) and C-X-C motif chemokine receptor 4 (CXCR4),
the two major co-receptors for HIV entry (30), in leukocytes
of HIV-1-infected patients receiving ART in comparison to
healthy persons.

MATERIALS AND METHODS

Patients
Whole-blood samples from five HIV-infected patients on
combined ART (HIV-ART patients) and five healthy persons

were collected in lithium heparin tubes by the Etablissement
Français du Sang (EFS, Hôpital Saint Louis, Paris, France) and
the Hôpital du Kremlin Bicêtre, respectively. The age (range),
infection route, number of CD4+ T cells, viral load, year of
HIV detection, year of the beginning of ART, type of ART, and
adherence to ART were provided for each HIV-infected patient
(Table 1). Their age ranged from 45 to 60 years, the CD4 cell
counts from 427 to 811 cells/mm3, and the plasma HIV RNA
levels were <40 copies/ml. The age (range) of each healthy subject
is provided in Table 2.

In this study, viral loads were used to determine whether ARTs
were effective. We concluded that the adherence to treatments
was correct and the treatments were effective, as the viral loads
were <40 copies/ml for all patients.

Virus
MVA clonal isolate F6 was made available to the CEA by
Gerd Sutter (LMU Munich, Germany) on the basis of a
Material Transfer Agreement with the Ludwig-Maximilians-
Universität München (LMU-MTA). MVA was propagated in
primary CEFs, which were cultivated in Eagle’s minimum
essential medium (Sigma-Aldrich) supplemented with 2% fetal
calf serum. Afterwards, cells were freeze-thawed three times
and the cell debris were removed by centrifugation at a
relative centrifugal field (RCF) of 453 × g for 15 min.
The supernatant was centrifuged again at an average RCF of
22,700 × g for 3 h. The resulting pellet was dissolved in
10 mM Tris–HCl, pH 9.0, and stored at −80◦C. Titration
was performed on CEFs as described (31). MVA preparations
were regularly screened for potential mycoplasma and other
bacterial contaminations.

Cell Infection, Stimulation, and Storage
Fresh whole-blood samples were infected with MVA at a
multiplicity of infection (MOI) of one and incubated at 37◦C
under 5% CO2 in six-well plates (BD Biosciences). After 1 h,
brefeldin A (BFA), dissolved in dimethyl sulfoxide (Sigma-
Aldrich), was added to the cells at a final concentration of
1 µg/ml to perform intracellular cytokine staining as described
(32), and cell incubation was continued for 16 h. Then,
cells were fixed and erythrocytes were lysed as described
previously (33). In detail, the fixation mixture (FM) contained
18.5% glycerol (Sigma-Aldrich, Lyon, France) in 1X Dulbecco’s
phosphate-buffered saline (DPBS) without CaCl2 or MgCl2, pH
7.4 (Gibco by Life Technologies, Villebon-sur-Yvette, France)
and 5% formaldehyde, which was prepared from a 36%
paraformaldehyde solution (VWR BDH Prolabo, Fontenay-sous-
Bois). Ten-milliliter FM was added to 1 ml blood, which
was incubated for 10 min at 4◦C and then centrifuged at
800 × g for 5 min at room temperature (RT). Red blood
cells present in the pellets were lysed by adding 10 ml Milli-
Q water. After incubation at RT for 20 min, cells were
washed two times with 1X DPBS and centrifuged between
washes at 800 × g for 5 min at RT. Then, cells were
counted, resuspended in FM to 200-µl aliquots containing
3 × 106 cells, and stored at −80◦C. This procedure enabled
freezing and recovery of all blood leukocytes without damage,
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TABLE 1 | Characteristics of HIV-ART patients.

Patients PAT-1 PAT-2 PAT-3 PAT-4 PAT-5

Current age 45–50 55–60 50–55 50–55 55–60

Infection routes Sexual Sexual Unknown Unknown Sexual

Number of CD4+ T cells (cells/mm3) 559 427 624 758 811

Viral load <40 <40 <40 <40 <40

Detection 2000 1985 2009 1999 1995

Treatments starting 2015 1990 2009 1999 1995

Treatment Emtricitabine
Rilpivirine Tenofovir

Emtricitabine
Rilpivirine Tenofovir

Emtricitabine
Rilpivirine Tenofovir

Abacavir
Lamivudine
Dolutegravir

Emtricitabine
Disoproxil fumarate

Tenofovir

Adherence to treatment Yes Yes Yes Yes Yes

The current age (range), contamination pathway, viral load, year of detection and starting treatment, and ongoing treatment are shown for each HIV-infected patient.

TABLE 2 | Characteristics of healthy persons.

Patients HEA-1 HEA-2 HEA-3 HEA-4 HEA-5

Current age 45–50 60–65 25–30 30–35 55–60

The age (range) of each healthy subject is shown.

especially polymorphonuclear cells, which are highly labile and
cryopreservation-sensitive (34).

Staining and Acquisition
For each sample, 3 × 106 cryopreserved fixed cells were
washed twice with staining buffer [PBS-0.5% bovine serum
albumin (BSA), Sigma-Aldrich] and labeled with conjugated
antibodies according to the following procedures. Cells were
incubated at 4◦C for 30 min with a mixture of the metal-labeled
surface antibodies (Abs) in staining buffer. After two washes
with 1X DPBS, cells were incubated in fixation solution [PBS-
1.6% paraformaldehyde (PFA), Electron Microscopy Sciences
Hartfield] at RT for 20 min, and permeabilized with 1X
Perm/Wash buffer (BD Biosciences) at RT for 10 min. Staining
with metal-labeled intracellular Abs and an iridium nucleic
acid intercalator in 1X Perm/Wash buffer was carried out
as for extracellular staining. Cells were stored overnight in
0.1 µM iridium nucleic acid intercalator in a fixation solution.
The following day, cells were washed with Milli-Q water,
resuspended in 1 ml Milli-Q water, and filtered using a 35-µm
nylon mesh cell strainer (BD Biosciences), before the addition
of EQ Four-Element Calibration Beads (Fluidigm), according
to the manufacturer’s instructions. The acquisition of each
sample was manually performed two times in succession on
a CyTOF-1 instrument (Fluidigm). The metal and clones of
all antibodies used in the mass cytometry panel are shown in
Table 3.

Characterization of Modified Vaccinia
Virus Ankara-Specific Immune
Responses
Following data acquisition, cells were gated to
exclude beads, doublets, and non-specific background
(Supplementary Figure S1A). A Spanning-tree Progression

TABLE 3 | Mass cytometry panel.

Metal Antibody Clone Provider

Pr141 CD66 TET2 Miltenyi

Nd142 HLA-DR L243 (G46-6) Biolegend

Nd143 CD3 UCHT1 BD Bioscience

Nd144 CD64 10.1.1 BD Bioscience

Nd145 CD86 2331 (FUN-1) BD Bioscience

Nd146 IL-6 MQ2-13A5 Miltenyi

Sm147 IFN-α LT27:295 Miltenyi

Nd148 IL-1β H1b-98 Biolegend

Sm149 CD14 M5E2 BD Bioscience

Nd150 CD11b ICRF44 BD Bioscience

Eu151 CD38 AT1 Clinisciences

Sm152 CD16 B73.1 BD Bioscience

Eu153 CD154 TRAP1 BD Bioscience

Sm154 CD8A 37006 R&D systems

Gd155 CD32 2E1 Miltenyi

Gd156 CCL4 D21-1351 BD Bioscience

Gd158 IP10 6D4 Clinisciences

Tb159 TNF-α MAb11 BD Bioscience

Gd160 IL-1α 364/3B3-14 eBioscience

Dy161 NKp80 4A4D10 Miltenyi

Dy162 IL-12 C8.6 Miltenyi

Dy163 Perforin dG9-DTAG9 BD Bioscience

Dy164 CXCR4 12G5 BD Bioscience

Ho165 CD11a HI111 BD Bioscience

Er166 CCR5 3A9 BD Bioscience

Er167 IL-8 NAPII eBioscience

Er168 CD11c B-ly6 BD Bioscience

Tm169 CD4 L200 BD Bioscience

Er170 CCL5 2D5 BD Bioscience

Yb171 IFN-g 25723 R&D systems

Yb172 CD25 BC96 Biolegend

Yb173 CD123 7G3 BD Bioscience

Yb174 CD19 HIB19 BD Bioscience

Yb175 IL-1RA AS17 BD Bioscience

Yb176 CCL2 5D3-F7 Biolegend

Ir191/Ir193 Intercalator-Ir – –

The antibodies used in this study are shown along with the metal isotope and clone
for each. CCL, C-C motif chemokine ligand; CCR, C-C motif chemokine receptor;
CXCR, C-X-C motif chemokine receptor; IFN, interferon; IL, interleukin; TNF, tumor
necrosis factor.
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Analysis of Density-normalized Events (SPADE) was performed
on the cytometric profiles of the entire dataset (35). The
SPADE analysis was parameterized to generate 100 cell clusters
using a downsampling of 5%. SPADE clustering was based on
the levels of CD3, CD4, CD8, CD11c, CD14, CD16, CD19,
CD32, CD64, CD66, CD123, HLA-DR, NKp80, and Perforin
(Supplementary Figures S1B,C).

T cell, B cell, natural killer (NK) cell, polymorphonuclear
neutrophil (PMN), basophil, monocyte, conventional DC (HLA-
DRhigh and HLA-DRbright), and plasmacytoid DC (pDC)
populations were identified by annotating clusters generated
by the SPADE analysis based on their expression of CD3,
CD11c, CD14, CD16, CD19, CD64, CD66, CD123, and HLA-
DR (Supplementary Figures S1B,C). HLA-DRhigh and HLA-
DRbright DC populations were defined based on the expression
of HLA-DR (Supplementary Figure S1D). Finally, CD4+ T
and CD8+ T-cell populations were split using classical gating
(Supplementary Figure S1E).

Gating Strategy
T cells were identified as CD3+, B cells as HLADR+
CD19+, NK cells as HLA-DR− CD16+, PMNs as CD66+,
basophils as HLA-DR− CD123+, monocytes as HLADR+
CD14+ CD64+, conventional DCs as HLA-DR+ CD11c+
CD64−, and plasmacytoid DCs as HLADR+ CD123+ CD11c−.
The percentages of each leukocyte population isolated from
healthy persons and HIV-ART patients are illustrated in
Supplementary Figure S2.

Cytometry Data Analysis and Statistics
Cytometry data were normalized using Rachel Finck’s MATLAB
normalizer based on EQ Four-Element Calibration Beads (36).
FCS files were concatenated using the FCS file concatenation tool
(Cytobank). SPADE analysis was performed on the Cytobank
platform, whereas FlowJo software (TreeStar version 9.9) was
used to determine the median signal intensity (MSI) of cell
surface receptors (for each cell population) and the percentage
number of cells producing cytokines. Phenotypic heatmaps were
obtained using Tableau software. Statistical comparisons of cell
cluster abundances were performed using the Mann–Whitney
test available in R software (R Core Team).

RESULTS

Modified Vaccinia Virus Ankara Induces
a Higher Percentage Number of
Leukocytes Producing Interleukin-8 in
the Blood of HIV-ART Patients
It is well established that MVA induces cytokine production
(24–26), but it is mostly unknown whether cells of
immunocompromised persons including those of HV-
1-infected patients respond to this viral vector equally.
Therefore, we investigated whether MVA differentially induces
cytokine expression in leukocytes of HIV-ART patients
and healthy persons. For that, the expression of C-C motif

chemokine ligand (CCL)2, CCL4, interferon (IFN)-α, IL-1α,
IL-1β, IL-1RA, IL-6, IL-8, IL-12, and tumor necrosis factor
(TNF) was determined for each cell type as classified in
Supplementary Figure S1.

We found that ex vivo infection of whole blood with
MVA significantly induced the production of IL-8, CCL2,
and CCL4 in monocytes and HLA-DRhigh DCs of HIV-ART
patients and healthy persons (Figures 1A,B). The percentage
number of IL-8-producing monocytes was significantly higher
in MVA-infected blood of HIV-ART patients (67.32%) than in
MVA-infected blood of healthy persons (31.16%) (Figure 1A).
MVA also significantly induced the production of CCL4
in HLA-DRbright DCs of HIV-ART patients and healthy
persons, but IL-8 and CCL2 were significantly induced only
in HLA-DRbright DCs from MVA-infected blood of HIV-ART
patients. Thus, the percentage number of HLA-DRbright DCs
producing IL-8 was significantly higher in MVA-infected blood
of HIV-ART patients (34.30%) than in MVA-infected blood
of healthy persons (20.82%) (Figure 1C). No production of
cytokines was detected in pDCs (Figure 1D) and also not in
other cell types.

Modified Vaccinia Virus Ankara
Downregulates Cell Surface Markers but
Upregulates C-X-C Motif Chemokine
Receptor 4 in Leukocytes of Healthy
Persons
Studies about the effect of MVA on the expression of cell surface
markers are rare (27, 28). However, such information would
be very valuable to better understand the intrinsic adjuvant
properties of MVA when used as a viral vector in vaccine
development (8, 22). Therefore, using mass cytometry, we
simultaneously investigated the expression of 17 characteristic
cell surface markers (CD3, CD4, CD8, CD11a, CD11b, CD11c,
CD14, CD16, CD19, CD32, CD64, CD66, CD86, CD123,
CCR5, CXCR4, and HLA-DR) in leukocytes of healthy
persons and HIV-ART patients after ex vivo infection of
whole blood with MVA (Figure 2). MVA downregulated most
of the characteristic cell surface markers expressed in the
different leukocyte cell types from healthy persons, except for
CXCR4, which was upregulated in each cell type investigated
(Figures 2A, 3B).

Chronic HIV-1 Infection Impacts the
Expression of Cell Surface Receptors
Previously, it was shown that leukocytes of HIV-infected patients
display increased cell surface levels of CCR5 (37, 38). Here, we
confirmed by using mass cytometry that CCR5 is significantly
upregulated in monocytes, CD4+ T cells, CD8+ T cells, and
B cells of HIV-ART patients as compared with cells of healthy
persons (Figures 2A–C, left panels). We also found high CCR5
cell surface expression in all three DC populations but not in
natural killer cells. Monocytes of HIV-ART patients additionally
had increased cell surface expression of CD14 and decreased cell
surface expression of CD64 and CD11b.
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FIGURE 1 | Modified vaccinia virus Ankara (MVA) induces chemokine
expression in cells of whole blood from healthy persons and HIV-ART patients.
Whole-blood samples of healthy persons and HIV-ART patients were infected
with MVA for 16 h or left non-infected. Phosphate-buffered saline (PBS)
served as a control. Monocytes, HLADRhigh dendritic cell (DC), HLADRbright

DC, and plasmacytoid DC (pDC) populations were computationally isolated.
The percentage numbers of (A) monocytes, (B) HLADRhigh DCs, (C)
HLADRbright DCs, and (D) pDCs producing interleukin (IL)-8, C-C motif
chemokine ligand (CCL)2, and CCL4 are presented. Blue points correspond
to the percentage number of cells obtained from healthy persons; red points
to those from HIV-ART patients. Significant differences (p < 0.05) between
samples are indicated by an asterisk.

CXCR4 cell surface expression was upregulated in each
leukocyte type of HIV-ART patients except in basophils, which
had the same level as observed in samples of healthy persons.
Neutrophils of HIV-ART patients additionally had increased cell

surface expression of CD66 and decreased cell surface expression
of CD11b (Figure 2C, left panel).

Modified Vaccinia Virus Ankara
Differentially Affects Cell Surface
Expression of C-C Motif Chemokine
Receptor 5 and C-X-C Motif Chemokine
Receptor 4
Since MVA is applied as a viral vector in several clinical
trials that enrolled HIV-infected patients (14–17), knowledge
about the potential effects of MVA on HIV/AIDS progression
would be of great interest. Here we found that infection of
whole blood of HIV-ART patients with MVA significantly
downregulated CCR5 in B cells (p = 0.001), HLA-DRbright

DCs (p = 0.012), HLA-DRhigh DCs (p = 0.016), pDCs
(p = 0.008), CD4+ T cells (p = 0.008), and CD8+ T
cells (p = 0.008) (Figure 3A). In healthy persons, CCR5
expression was significantly downregulated by MVA only in
neutrophils (Figure 3B).

In contrast, MVA significantly increased cell surface
expression of CXCR4 in B cells (p = 0.015), monocytes
(p = 0.012), NK cells (p = 0.008), neutrophils (p = 0.008), and
CD8+ T cells (p = 0.008) of HIV-ART patients (Figure 3A) and
in each leukocyte population of healthy persons (Figure 3B).

Modified Vaccinia Virus Ankara
Differentially Affects Cell Surface
Expression of CD86, CD32, and CD11b
Previously, it was shown in human monocyte-derived DCs that
MVA increases cell surface expression of CD86/B7-2 (27), a co-
stimulatory molecule for T-cell activation expressed by antigen-
presenting cells (39). Here, we observed a slight upregulation of
CD86 in HLA-DRbright DCs from MVA-infected blood samples of
healthy persons, but this was not statistically different from non-
infected cells of healthy persons (Figure 2A). However, CD86
cell surface expression was significantly upregulated by MVA in
HLA-DRbright DCs of HIV-ART patients as compared to non-
infected cells of HIV-ART patients (Figure 2B). We also observed
higher levels of CD86 in monocytes from MVA-infected blood
samples of HIV-ART patients as compared to non-infected cells
of HIV-ART patients, but, most probably due to the low number
of samples, the difference was not significant.

CD32 cell surface expression was significantly downregulated
in monocytes and neutrophils of healthy persons (Figure 2A)
and HIV-ART patients (Figure 2B) after infection of whole
blood with MVA. However, the decrease of CD32 was less in
monocytes and neutrophils from MVA-infected blood samples of
HIV-ART patients, resulting in significantly higher CD32 levels
as compared with cells from MVA-infected blood samples of
healthy persons (Figure 2C, right panel).

Modified vaccinia virus Ankara abrogated CD11b surface
expression in cells of healthy persons (Figure 2A) but had no
significant effect on CD11b surface expression in monocytes and
neutrophils of HIV-ART patients (Figure 2B). This resulted in
significantly higher surface expression of CD11b in monocytes
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FIGURE 2 | Modulation of cell surface receptor expression by modified vaccinia virus Ankara (MVA) in healthy persons and HIV-ART patients. Whole-blood samples
of healthy persons (A) and HIV-ART patients (B) were infected with MVA for 16 h or left non-infected. Cells were stained with a panel of 35 cell markers and analyzed
with Tableau and R software as described in the section “Materials and Methods.” The median expression level [median signal intensity (MSI)] of each cell surface
receptor of each cell population is illustrated by an individual heatmap. The expression level ranges from dark green (lowest expression) to dark red (highest
expression). Significant differences in the level of cell surface receptor expression between non-infected [(A,B) left panel] and MVA-infected [(A,B) middle panel] cell
populations are indicated for healthy persons [(A), right table] and HIV-ART patients [(B), right table]. (C) Significant differences in the level of cell surface receptor
expression between healthy persons and HIV-ART patients are indicated for non-infected [(C), left table] and MVA-infected [(C), right table] cell populations.
Differences with p < 0.05 were considered significant.

Frontiers in Immunology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 2096

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02096 September 6, 2020 Time: 20:42 # 7

Leite Pereira et al. Cell Receptor Modulation by MVA

Healthy persons

HIV-ART patientsA

B

●●
●●

●●
●●

●●

●●
●●

●●

●●
●●

●●
●●

●●

●●

●●
●●●●

●●
●●

●●
●●

●●●●●●●●

●●●●
●●
●●●●

●●
●● ●●●●●●

●●
●●

●● ●●
●●

●●

●●
●●
●●

●●

●●

●●
●●
●●

●●

●●●●
●●
●●
●●●●

●●●●●● ●● ●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●
●●●●

●●

●●●● ●●
●●

●●

●●
●●

●●
●●

●●
●●

●●●●●●●●

●●

●●●●●●●●
●●

●●
●●●●

●●

●●

●●●●
●● ●●

●●

●●●●
●●●●

●●

●●
●●
●●

●●●●●●
●●●●●●

●●

●● ●●●●●●
●●●●

●● ●●●●

●●

●●
●●
●●

●●

●●●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●

●●

●●
●●●●

●●
●●
●●

●●
●●

●●

●●

●●
●●

●●
●●

●●

●●
●●

●●
●●

CXCR4

CCR5

B cells Basophils DCs HLADR bright DCs HLADR high Monocytes NK cells pDCs PMNs CD4 T cells CD8 T cells

0

1

2

3

4

0

1

2

3

4

M
S

I

●●●●
●●●●

●●
●●●●

●●
●●

●●
●●●●

●●
●●●●

●●
●●

●●●● ●● ●●●●
●●●●

●●
●●

●●
●●
●●

●● ●●
●●●● ●●

●●
●●
●●
●●●●

●● ●●
●●

●●●●

●●
●●●●

●●●●
●●

●●●●
●●●●●●●● ●●

●●●●●● ●●●●
●●●●

●●
●● ●●
●● ●●

●● ●●●●
●●●●

●●

●●
●●●●

●●

●●

●● ●●

●●●●

●●
●●●●●●

●●
●●

●●●●

●●●●

●●
●●●●●●●●

●●

●●●●

●●

●●

●●

●●
●●●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●●●●●
●●

●●

●●
●●

●●

●●

●●
●●
●●●●

●●
●●

●●●●

●●
●●

●●

●●●●●●

●●

●●
●●

●●
●●

●●

●●

●● ●●●●●●
●●

●●
●●

●●

●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●

●●
●●●●
●●

●●
●● ●●

●●

●●

●●
●●●●●●

●●
●●

●●●●

●●

●●

●●

●●●●●●
●●

●●

CXCR4

CCR5

B cells Basophils DCs HLADR bright DCs HLADR high Monocytes NK cells pDCs PMNs CD4 T cells CD8 T cells

0

1

2

3

4

0

1

2

3

4

M
S

I

* * * * *

******

*

*

* * * * * * * **

FIGURE 3 | Modified vaccinia virus Ankara (MVA) affects cell surface expression of C-C motif chemokine receptor (CCR5) and C-X-C motif chemokine receptor 4
(CXCR4) in leukocytes of HIV-ART patients and healthy persons. Whole-blood samples of HIV-ART patients (A) and healthy persons (B) were infected with MVA (red
boxes) for 16 h or left non-infected (gray boxes). Cells were stained with a panel of 35 cell markers and analyzed with R software as described in the section
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and neutrophils from MVA-infected blood samples of HIV-ART
patients as compared to cells from MVA-infected blood samples
of healthy persons (Figure 2C, right panel).

DISCUSSION

Cell surface receptors enable intercellular communication
and thereby they regulate cell proliferation, differentiation,
migration, and death. Additionally, cell surface receptors mediate
intracellular signaling leading to gene expression and the
exchange of molecules with the cell environment. Obligate
intracellular pathogens such as viruses can use cell surface
molecules to get access to necessary resources, which enable their
replication. It depends on the nature of the virus how this works
in detail and whether this process is highly specific as in HIV-1 or
promiscuous as in orthopoxviruses (40, 41).

In the present study, we confirmed previous findings that
CCR5 expression is low in leukocytes of healthy persons
and significantly increased in HIV-1-infected patients (37, 38).
CCR5 is the main co-receptor of HIV-1 and expressed in
many different hematopoietic and non-hematopoietic cell types.
Decreased CCR5 surface expression delays AIDS progression
and can prevent infection of cells with an R5-tropic HIV
strain. It seems even possible to cure HIV-infected patients
by transplantation of stem cells having a homozygous CCR5
gene with a 32-bp deletion that causes the total absence of
CCR5 at the cell surface (42, 43). Consequently, CCR5 has
been recognized as a key drug target against HIV (44), and
here we discovered that infection of whole-blood samples
with MVA downregulates cell surface expression of CCR5 in
DCs, CD4+ T cells, CD8+ T cells, and B cells of HIV-1-
infected patients. This result is in agreement with the finding
of Guerra et al. (45) who detected by an RNA microarray that
MVA downregulates CCR5 mRNA levels in human monocyte-
derived DCs.

Modified vaccinia virus Ankara-infected cells were found in
the blood and draining lymph node of cynomolgus macaques,
which were inoculated intramuscularly with MVA (46). Systemic
spread of MVA was also detected in mice and ferrets although
MVA is unable to replicate in most mammalian cells (47–
50), suggesting that MVA-infected cells acquire the ability to
migrate to lymph nodes and other locations distant from the
site of inoculation. Here, we found by mass cytometry that MVA
increases cell surface expression of CXCR4 in each cell type of
healthy persons but does not further increase the high level of
CXCR4 surface expression in DCs, basophils, and CD4+ T cells of
HIV-ART patients. Thus, MVA-infected cells should migrate into
organs, which express C-X-C motif chemokine ligand 12 (51),
the only natural agonist for CXCR4 (52). Indeed, this was shown
previously for neutrophils, which migrated into the draining
lymph node and bone marrow after being infected with MVA in
the skin (53). CXCR4 surface expression in leukocytes of HIV-
ART patients was increased, which is in accordance with a recent
study (54) but in contrast to previous findings in HIV-1-infected
patients (38) and simian immunodeficiency virus (SIV)-infected
cynomolgus macaques (55).

On the other hand, we could not confirm the upregulation
of CD11b, CD32, and CD64 surface expression in monocytes
and neutrophils of HIV-ART patients as reported (54). We
even detected less CD11b surface expression in monocytes
and neutrophils of HIV-ART patients as compared to cells
of healthy persons. Upregulation of CD11b surface expression
in human monocytes and neutrophils was reported for the
reverse transcriptase inhibitor abacavir but not for tenofovir
(56). Tenofovir in combination with emtricitabine and rilpivirine
was used to treat patients in the present study except for
patient number 4, who received abacavir in combination with
lamivudine and dolutegravir. Probably, the potential stimulating
effect of abacavir on CD11b surface expression was blocked by
dolutegravir, which inhibits activation of nuclear factor (NF)-κB
(57), an essential transcription factor for CD11b expression in
neutrophils (58) and monocytes (59).

It was shown that MVA increases cell surface expression of
CD86 in human monocyte-derived DCs (27). Here, we confirmed
the upregulation of CD86 by MVA in DCs of HIV-ART patients,
and the level of CD86 cell surface expression was even higher
than in MVA-infected DCs of healthy persons. There is evidence
that MVA increases the expression of CD86 in human monocyte-
derived DCs mainly in non-infected bystander cells (60). Thus,
we have to state that the effects of MVA on cell surface receptors
as well as on chemokine expression that we observed cannot
clearly be assigned to either infected cells or non-infected
bystander cells. Consequently, that means that there could be a
much higher number of cells affected by MVA than MVA-infected
cells are virtually present in a system. This feature of MVA
together with its ability to spread in vivo might have a systemic
effect on the expression of cell surface receptors including CCR5.

Additionally, there is a consensus that cells of the
monocyte/macrophage lineage are primarily infected by
MVA in vitro and in vivo (29, 46, 61), and monocyte-derived
tissue macrophages have a life span of months to years (62).
Taken together, it could be possible that locally administered
MVA modulates some systemic immune parameters for weeks
or even months, which fits well in the concept of trained
immunity (63, 64). In summary, here we found that MVA
modulates the expression of many cell surface receptors, which
can be different in healthy persons and HIV-ART patients
in terms of quality and quantity. Moreover, we confirmed
the ability of MVA to mature DCs and to induce chemokine
expression in whole blood of HIV-ART patients and healthy
persons. However, since many essential surface receptors were
downregulated by MVA, it remains an open question whether
the immunostimulatory activity of MVA is based only on the
paracrine effects of MVA-induced cytokines or perhaps also on
a not yet identified surface molecule, which is upregulated in
MVA-infected cells.
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