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The central nervous system (CNS) harbors its own immune system composed

of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the

perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances

in understanding the CNS resident immune cells gave new insights into development,

maturation and function of its immune guard. Microglia and CAMs undergo essential

steps of differentiation and maturation triggered by environmental factors as well as

intrinsic transcriptional programs throughout embryonic and postnatal development.

These shaping steps allow the macrophages to adapt to their specific physiological

function as first line of defense of the CNS and its interfaces. During infancy, the CNS

might be targeted by a plethora of different pathogens which can cause severe tissue

damage with potentially long reaching defects. Therefore, an efficient immune response

of infant CNS macrophages is required even at these early stages to clear the infections

but may also lead to detrimental consequences for the developing CNS. Here, we

highlight the recent knowledge of the infant CNS immune system during embryonic and

postnatal infections and the consequences for the developing CNS.

Keywords: microglia, CNS-associated macrophages, prenatal infections, postnatal infections, TORCH, maternal

immune activation

INTRODUCTION

During fetal and postnatal development the central nervous system (CNS) is constantly rearranged
to construct and elaborate neuronal circuits needed to fulfill complex neuronal tasks later in
life (1). Even though the CNS is supposed to be immune privileged to a certain degree (2, 3),
infant infections are able to reach the CNS and can cause immunopathologies, severe long-term
sequelae of the CNS or even death. In 2015, 5.9 million children below the age of 5 died due to
different circumstances including preterm birth complications, but alsomalnutrition and infections
(4–6). Roughly half of these deaths are caused by infectious diseases such as pneumonia, diarrhea,
neonatal sepsis and malaria, mostly in low- and middle-income countries (7, 8). During the
last two decades, the numbers of child mortality due to infections were dramatically reduced by
improvements in hygienic standards, vaccination programs and introduction of new antimicrobial
drugs (9). However, there are still millions of children worldwide reported with prenatal and
postnatal infections affecting the CNS and causing CNS pathologies (10). Therefore, fetal and early
infant stages until the first years of life seem to present a vulnerable window where infections
reaching the CNS can cause detrimental pathologies and malformations.
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The CNS is one of the earliest formed organs during
embryogenesis and needs immune cell coverage early on to
assure correct CNS development and immune defense against
pathogens (11). Therefore, macrophages appear in the brain
very early during development. Microglia and CNS-associated
macrophages (CAMs) are the tissue resident macrophages of the
brain, the former residing in the CNS parenchyma and the latter
inhabiting the CNS interfaces such as the perivascular space, the
meninges and the choroid plexus (12–14). In mice, it was shown
that microglia derive from erythro-myeloid progenitors (EMP)
from the yolk sac and start to colonize the brain parenchyma at
embryonic day (E) 9.5 (12, 13, 15–17). As soon as the progenitors
enter the tissue they extensively expand by proliferation,
distribute throughout all brain regions during development
and differentiate into mature microglia (12, 18). Interestingly,
microglia are not exchanged by hematopoietic stem cell (HSC)-
derived circulating progenitors during later development and
adulthood during steady state (19–21). Even though the HSC-
independent development and endogenous maintenance is
assumed for mammals during physiological conditions, it was
shown in other species such as the zebrafish that microglia
can be derived from different hematopoietic origins during
development (22, 23). However, upon neuroinflammation in the
mammalian CNS, for example during infections, recruitment
of monocyte-derived macrophages is widely described due to
release of chemokines and cytokines in the parenchyma and
opening of the blood-brain barrier (BBB) (24).

Similar to microglia, most CAM populations also arise
from EMP-derived macrophage progenitors in mammals (14,
25). However, it has been shown that subpopulations of
the choroid plexus macrophages and meningeal macrophages,
namely stromal and dural macrophages, are partially replaced by
bone marrow-derived circulating monocytes during adulthood
(14, 26). In mice it was described that CAMs start to colonize
their specific niche in the CNS interfaces from E12.5 when
anatomical structures of the brain interface start developing
(14). However, the exact timing and distribution of the cells in
the developing interfaces during development is ill-defined. In
humans, there is only limited data available on the development
of CNSmacrophages. Formicroglial progenitors, it was described
that they colonize the developing neuroectoderm starting around
gestational week 4.5 (27–29). Post-mortem studies indicate that
ionized calcium binding adaptor molecule 1 (Iba-1)+ microglial
progenitors enter the brain via the meninges, choroid plexus and
ventricular zone (28, 29). HumanCAMs are detected shortly after
in the developing CNS interfaces. Macrophages in the meninges
of the human optic nerve were described as early as gestational
week 8 (30). Another study describes first stromal choroid plexus
macrophages around gestational week 11 (31). Future studies are
needed to explore the development of human CNS macrophages
in more depth.

CNS macrophage differentiation is a highly dynamic process
during pre- and postnatal development controlled by both an
intrinsic genetic program and extrinsic factors and is essential
for CNS tissue homeostasis. Microglia differentiation depends
on the transcription factors spleen focus forming virus (SFFV)
proviral integration oncogene (Sfpi, encoding PU.1), interferon

regulatory factor 8 (Irf8) and spalt like trancription factor 1
(Sall1) while independent of cellular myeloblastosis oncogene
(c-Myb), inhibitor of DNA-binding 2 (Id2) and basic leucine
zipper ATF-like transcription factor 3 (Batf3) (13–15, 26, 32,
33). Microglia and CAMs require steady colony stimulating
factor 1 receptor (Csf1r) signaling (13). For microglia it was
further shown that their dependence on the two ligands, colony
stimulating factor 1 (CSF1) and Interleukin-34 (IL-34), seems
to differ between brain regions and developmental time points
(34). While CSF1 seems to be important for the whole microglial
entity during embryonic and fetal development (35–37), gray
matter microglia seem to depend more on IL-34 and white
matter microglia on CSF1 during postnatal phases and adulthood
(34, 38). It remains elusive whether a similar heterogeneity exists
for CAMs in the CNS interfaces. In contrast to CAMs, microglia
expansion is highly dependent on tumor growth factor β (TGF-
β) signaling both during development and maintenance in the
adult CNS (26, 39). Another major factor influencing microglial
development, maturation and function is the endogenous gut
microbiota. Absence of the host microbiota results in pre- and
postnatal maturation defects in microglia and further leads
to dysfunctional microglia with a hampered immune answer
(18, 40). Interestingly, fetal microglia only encounters minor
transcriptional changes in the absence of microbiota, whereas
the effects become more pronounced in early postnatal and
adult microglia (18, 41). Therefore, a detrimental contribution
of microbiota to the maturation of regulator networks in
microglia upon weaning is suggested. Though, the encounter
with pathogenic bacteria and viruses or a dysregulated maternal
microbiome during embryonic development can have effects on
microglial function later in life. Furthermore, maternal immune
activation due to a viral infection during pregnancy can result
in microglial pre-priming and a wide spectrum of neuronal
abnormalities and phenotypes (42–45).

To protect the CNS during pre- and postnatal development,
CNS macrophages are equipped with a wide range of pattern
recognition receptors (PRRs) such as Toll-like receptors (TLRs)
or nucleotide-binding oligomerization domain-like receptors
(NLRs) (46–51). Upon recognition of invading pathogens via
PRRsmicroglia become activated and efficiently remove invading
pathogens via phagocytosis (52). This process is accompanied
by a release of proinflammatory cytokines and chemokines to
activate neighboring microglia but also to recruit other immune
cells to the CNS to resolve the infection (53–59). Microglia
also upregulate genes involved in the production of inducible
nitric oxide synthetase (iNOS) generating reactive oxygen species
(ROS) and secrete tumor necrosis factor α (TNF-α), Interleukin-
1β (IL-1β) and Interferon γ (IFN-γ) (60, 61). However, these
immune defense mechanisms exist together in a fragile balance
between fighting off damaging pathogens and causing tissue
damage in the developing CNS. This tissue damage is either
caused by the invading pathogen itself, but also to a major
extent from the immune reaction against the pathogen such
as release of ROS, interferons and cytokines which can be
neurotoxic, but also T-cell mediated cell lysis, resulting in in
neuronal apoptosis, tissue necrosis and CNS malformations
(62–64).
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In the following, we will explore the current knowledge
and literature of different infections occurring during prenatal
and early postnatal development of the brain, the responses
of microglia and CAMs and their long-lasting implications on
brain function.

FETAL INFECTIONS

In a healthy pregnancy the fetus is considered a sterile
environment devoid of any living microorganisms under
physiological conditions (65). However, upon maternal infection
the maternofetal transfer of microorganisms or their by-products
can have severe effects on the fetal development (Figure 1).
Investigations over the last decades focused on understanding
the consequences of these infections on the developing fetal
immune system, but also on their effects on the developing
CNS (65, 66).

Certain layers of protection are in place to guarantee that
no infectious agents are granted access to the developing
fetus. The main barrier separating the maternal from the fetal

blood circulation is the placenta that develops shortly after
conception (67). Beside its barrier function, the placenta links
the maternal blood circulation to the embryo to deliver nutrients
but also antibodies that protect the developing fetus from
blood-borne pathogens via passive immunization (68, 69). In
most cases, viral infections of the mother are not transmitted
to the fetus (70–72). Besides the physical cell-cell barrier of
the placenta, the expression of antiviral interferons (IFNs)
produced by the trophoblast and secretion of antimicrobial
peptides further inhibits replication and pathogenesis (73, 74).
However, infectious pathogens have developed different routes
how they can breach this barrier and cause harmful damage
to the developing fetus. Maternal infections can be transmitted
vertically to the fetus either via the maternal/fetal blood
interface (75), the cervical/amniotic sac interface (76, 77) or via
transvaginal ascension (78, 79). Mostly at early stages of fetal
development during the first and beginning of second trimester,
the risk of devastating sequelae is remarkably high mainly due
to the critical establishment of the placenta and the beginning
of organogenesis.

FIGURE 1 | Consequences of early CNS infections and peripheral immune activation for CNS development. Illustration of prenatal and postnatal infections and

indirect effects of maternal immune activation (MIA) on the fetus. Different viral, bacterial and parasitic infections can endanger the correct development of the CNS of

the fetus leading to a plethora of symptoms grouped under the name “TORCH” syndrome. Also, maternal infection without the transmission of the pathogen to the

fetus can have detrimental effects on CNS development which have robustly been linked to schizophrenia and autism spectrum disorder (ASD). Birth and the

accompanying contact to environmental pathogens pose a great threat to the unchallenged immune system of the newborn in the worst cases leading to bacterial

sepsis, viral encephalitis, and systemic candidiasis.
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The most prevalent congenital diseases are caused by a set of
microorganisms grouped under the term “TORCH” whomanage
to overcome the placenta. This acronym stands for Toxoplasma
gondii, other (Listeria monocytogenes, Treponema pallidum,
varicella zoster virus, human immunodeficiency virus (HIV),
parvovirus B19 and some more), rubella virus, cytomegalovirus
and herpes simplex virus 1 and 2 (80). A new member added
to this category is the Zika virus mostly due to its recent
outbreak in South America (81). TORCH pathologies are
grouped because they produce common clinical manifestations
like microcephaly, hearing loss, ocular abnormalities and other
congenital abnormalities leading in the worst case to fetal
loss (Figure 1) (82). The severity of each of these disorders
depends on the pathogen and in which gestational period the
infection occurs. However, most of these TORCH infections
represent with severe CNS infections and malformations (83).
How TORCH pathogens are transmitted to the fetus remains
predominantly unknown. Addressing the current severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, a
recent case study suggested amaternal to fetal transmission in the
last trimester of pregnancy. The virus seemed to be transmitted
through the placenta since the placental tissue, and both the
maternal and fetal blood were positive for the SARS-CoV-
2. Interestingly, magnetic resonance imaging showed bilateral
gliosis of the white matter of the infant at 11 days of life, but no
further long-term deficits (84).

Besides the barrier established by the placenta, the fetus
itself has cellular immune protection in place to defend itself
against intruders. For a long time, it was thought that the
human fetal immune system was immature and will only fully
develop during childhood (85, 86). This view has been challenged
using new single-cell multi-omic approaches painting a more
accurate picture in which both the innate and adaptive arm of
the fetal immune system maintain immunity from 4 weeks post
conception onwards (87–90).

The mechanism by which maternal infections translate into
compromised CNS functionality, malformation and cognitive
impairment of the offspring is under extensive research. In the
following section we want to take a closer look on the most
important TORCHpathogens, their impact onCNS development
and the so far known role of the CNS immune system,
especially CNS macrophages, on neuropathological outcome
after congenital infection.

Zika Virus (ZIKV)
Zika virus (ZIKV) infection during pregnancy has been linked
to severe congenital malformations of the CNS (91–93). ZIKV
belongs to the family of Flaviviridae and was first discovered
in Uganda’s tropical Zika forest in 1947 (94). The virus is
transmitted from mosquitoes of the Aedes species to humans
which prior to 2007 spared the western hemisphere (95). A
widespread outbreak occurred in 2015 in South America, most
prominently in Brazil correlating with a strong increase in
children born with microcephaly (Table 1) (136). The virus was
shown to transmit vertically from the mother to the developing
fetus and can then be detected inside the fetal brain (113).
ZIKV is able to cross the placenta and infect Hofbauer and

cytotrophoblast cells (114–116), however the exact mechanism
of transmission is still unknown (76). Infections occurring in
the first trimester of pregnancy have the worst consequences
for fetal brain development leading to cerebral atrophy and
resulting in microcephaly and intracranial microcalcifications
(Figure 2) (113, 117, 118). Other infection-related conditions
include growth restrictions and ocular abnormalities (137).
These symptoms newly added ZIKV onto the list of “TORCH”
diseases (76). Additionally, a paraplacental route of infection
was described in which the ZIKV was shown to infect the
parietal decidua and the amniochorionic membranes (115).
Whereas, infections in the first two trimesters cause the above
mentioned symptoms, infections during the last trimester do
not pose adverse risks for abnormalities in newborns (138,
139). Currently, there are neither vaccines nor therapies against
infection of this mosquito-borne disease. It was shown that ZIKV
is neurotrophic, meaning that the infection mainly targets the
brain (Figure 2) (113). Though some researchers also isolated
viral RNA from other fetal organs such as lung, liver, muscle
and spleen (114), tissue damage was only observed inside
the brain parenchyma (113). Indeed, it was shown that the
virus targets neuronal progenitor cells (NPCs), astrocytes and
microglia, while only being cytotoxic in NPCs and causing their
growth arrest and apoptosis (140, 141). Especially microglia
are among the main suspects to disseminate ZIKV in the
brain as the particular susceptibility between E6.5-E8.5 in mice
coincides with a critical window of microglia development
and the beginning of their migration via the newly formed
blood circulation toward the brain (142). It was shown that an
acute ablation of CSF1R resulting in a depletion of microglia
results in a decreased viral load in the brain, supporting
a “Trojan horse” model of ZIKV infection (142) (Figure 2).
In vivo and in vitro data underlined that murine microglia
progenitor cells from the yolk sac are indeed susceptible to
ZIKV infection (142). In vitro data showed that infected human
induced pluripotent stem cell (iPSC)- derived microglia-like
cells co-cultured with neural spheroids leads to propagation of
the virus to the neural tissue which supports the claim that
microglia act as a viral reservoir for ZIKV and push ahead neural
infection in the fetal brain (140). Infected microglia-like cells
remained amoeboid with high amounts of phagocytic vesicles
compared to uninfected cells taking residency inside the brain
spheroid assuming a homeostatic ramified morphology (140).
Furthermore, the infected amoeboidmicroglia only colonized the
spheroid underneath the surface and signs of neurodegenerative
processes and viral particle release were detected in the spheroids
(140). Electrophysiological activity drastically decreased in the
infected neuronal spheroids which is not reinstated over time
suggesting irreversible neuronal degeneration (140). In line
with these results, an in vivo study using a mouse model
for adult ZIKV infection, showed the presence of the virus
in neuronal stem cells in the adult hippocampus leading
to the recruitment of IFN-γ producing T cells accompanied
by microglial nodules and neuronophagy (143). This specific
location together with a resulting reduced Homer-1 expression
in synapses let to the speculation that ZIKV infection of
hippocampal NPCs leads to cognitive decline in infected adult
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TABLE 1 | Overview of prenatal and postnatal CNS infections.

Pathogen Critical time for CNS

infection

Route(s) of infection CNS pathology References

Congenital infections

T. gondii Third trimester Transplacental Microcephaly, hydrocephalus, intracerebral calcifications, epilepsy,

intellectual disabilities, encephalitis

(96–99)

Listeria

monocytogenes

First trimester Transplacental Meningoencephalitis, meningitis, hydrocephalus (99–102)

Varicella zoster

virus

Third trimester Transplacental Paralysis, seizures, microcephaly, encephaloclastic lesions (103–105)

Parvovirus B19 Second trimester Transplacental Perivascular calcifications, encephalopathy, aseptic menengitis,

cerebellar hemorrhage, small cerebellum

(106–108)

Rubella virus First trimester Transplacental Meningoencephalitis correlated with motor and intellectual

disabilities, chronic progressive panencephalitis, microcephaly,

intracranial calcifications

(109–111)

CMV Third trimester Transplacental Seizures, intellectual disabilities, optic atrophy, sensorineural

hearing loss, hydrocephalus, cerebral hypoplasia, periventricular

calcifications, cerebral atrophy, porencephaly, delayed myelination

(8, 97, 109, 112)

Zika virus First and second trimester Transplacental Microcephaly, cerebral atrophy, intracranial microcalcifications (113–118)

Postnatal infections

HIV Prenatal—breastfeeding Transplacental,

intrapartum,

breastfeeding

Microcephaly, developmental delays, focal white matter lesions (109, 119–121)

HSV Perinatal Intrapartum Encephalitis, aseptic meningitis, microcephaly, hydrocephalus,

Encephalomalacia

(109, 122–124)

Candida albicans Perinatal Nosocomial,

intrapartum

Mycotic meningoencephalitis (125, 126)

GBS Perinatal Intrapartum

(transvaginal

ascension)

Bacterial meningitis, meningoencephalitis, cerebral palsy, cognitive

retardation

(78, 127, 128)

Chikungunya virus Perinatal Intrapartum Encephalopathy, meningoencephalitis, microcephaly, cerebral

palsy, intraparenchymal hermorrhages

(129–133)

Escherichia coli Perinatal Intrapartum Meningitis (134, 135)

A variety of pathogens responsible for congenital and postnatal CNS infection, the time in which most of the CNS infections occur, the routes of infection and the CNS pathology

is shown.

FIGURE 2 | Infections of the prenatal CNS. (a) Illustration of the healthy central nervous system (CNS) including the vasculature, the perivascular space, and the brain

parenchyma. (b) A typical ZIKV infection mostly affecting CNS macrophages inducing neuronal progenitor cell (NPC) apoptosis and recruiting peripheral monocytes

and neutrophils to the site of infection via various cytokines and chemokines. The blood-brain barrier (BBB) integrity is compromised in this process. Microgliosis,

astrogliosis and microglia nodules around NPC bodies are often observed. (c) A typical parasitic CNS infection by Toxoplasma gondii is shown. The pathogen gains

access to the CNS with the help of circulating monocytes, carrying the parasite to through the compromised BBB, also known as a “Troian horse” infection. This

causes microglia nodules, abundant cytokine release by microglia and CNS-associated macrophages (CAMs), and subsequent infiltration by monocytes and

granulocytes.
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individuals (143). As already mentioned above, microglia were
shown to have an activated phenotype in histological sections
of human fetal brains and microglial nodules are described
throughout the gray and white matter of the infected fetal
CNS (Figure 2) (113). Cultured primary murine microglia
showed a proinflammatory phenotype upon ZIKV infection with
increased release of IL-6, IL-1β, and TNF-α correlating with an
increased neurotoxicity toward fetal NPCs. Culturing of fetal
murine NPCs with conditioned media from infected primary
cultured microglia revealed a decrease in NPC proliferation and
neuronal differentiation (144). These findings could indicate a
crucial role of fetal microglial activation and microglial-mediated
neurotoxicity during fetal ZIKV infection in humans. A recent
study investigated the role of lipid metabolism of ZIKV infected
human fetal microglia in vitro and linked a higher production of
lysophosphatiylcholine (LPC) to the proinflammatory cytokine
profile but also to the release of ROS by the infected cells (145).
LPC is known to induce inflammasome activation and micro-
and astrogliosis. Therefore, the metabolic changes observed in
infected microglia could support microglial activation during
the infection course (146). However, these findings need
further evaluation in vivo. Another study performed ZIKV
infections in adult macaques revealed a high incidence of
neuroinflammation in infected animals and a disruption of
the BBB (Figure 2) (147). Here, long-term increased levels
of C-X-C motif chemokine ligand 12 (CXCL12), which is a
chemokine involved in lymphocyte trafficking and neural repair,
were described. Additionally, the authors observed inflammation
in the perivascular space and meninges, accompanied by
lymphocytic infiltrations (147). This was also reported in fetal
human brains, where an infiltration of T and B cells was
observed in the perivascular space during ZIKV infection
(Figure 2) (113). Lymphocytic infiltrates are observed in
neonatal and adult mouse models of ZIKV infections (143, 148),
however an infiltration of monocytes or granulocytes could not
be observed in infected human brain parenchyma or animal
models. In the perivascular space of infected human fetuses,
lymphocytic and monocytic accumulations were described and
summarized as signs of meningitis. However, it was not further
solved if the accumulated mononuclear cells are recruited
monocytes or proliferating perivascular macrophages (149).
Though, fetal mciroglia seem to play a detrimental role as
a reservoir of ZIKV, the viral spread and the neurological
symptoms observed, there is so far no data available on the role
of fetal CAMs during ZIKV infection.

Cytomegalovirus (CMV)
Congenital cytomegalovirus (CMV) infection occurs in roughly
0.2–2.2% of intrauterine infections making it the most common
congenital viral infection and the main cause of long-
term pediatric conditions (8, 150). CMV belongs to the
betaherpesvirinae, which is a subfamily of the herpesviridae
family. After primary infection of a mammal host, the virus
persists in a latent state with a low virus titer periodically
reactivating throughout life (96, 151). It is transmitted most
frequently to pregnant women via smear infection i.e., contact

with for example infectious urine and saliva of children (97). 40–
50% of pregnant women infected with CMV transmit the virus to
the developing fetus (8, 97). CMV is able to cross the placenta
and is thus transmitted from the maternal blood to the fetus
where it takes residency inside the fetal brain (112). Only 10%
of congenitally infected infants are symptomatic (97). However,
an infection with CMV is particularly severe during the first and
second trimester of pregnancy as it may cause an infection of
the trophoblast and interfere with correct development of the
placenta often leading to fetal loss (77). Sequelae of congenital
CMV infection mainly concern the infant brain and include
microcephaly, mental and motor retardation, epilepsy and a
progressive loss of vision and hearing (Table 1) (152). Other
non CNS-related conditions are hepatosplenomegaly and growth
retardation (8, 153, 154). Some studies also proclaimed a link
between fetal CMV infection and the development of autism
spectrum disorder (98). Like ZIKV, CMV can cross the human
placenta thus being transmitted from the maternal to the fetal
compartment (77). It is not fully understood how CMV invades
the fetus through the placenta, however one study suggests
maternal IgG-mediated transcytosis as a potential mechanism
(155). The main cellular targets of CMV are brain macrophages,
including microglia and CAMs, as well as NPCs in the cerebrum
(156). Though, CMV replication has been reported in a wide
range of glial cells and neurons in the CNS (157). The number of
microglia, perivascular and meningeal macrophages is increased
in the murine CMV-infected fetal brains which is not accounted
for by proliferation, but rather a recruitment of cells from
other areas of the brain as well as transvascular migration from
the meninges (156). Even though, it was suggested here that
these cells are recruited monocyte-derived macrophages from
the fetal liver invading the infected meninges and later the
parenchyma (156). Microglial cell numbers increase in infected
areas but also in regions where the viral antigens are not
detected (156). Interestingly, choroid plexus macrophages were
also described to be elevated in numbers in this murine model
for fetal CMV infection (156). As also reported during fetal ZIKV
infection, microglia assemble in nodules in infected CMV foci
in the brain tissue (156, 158, 159). They are located around
degenerating CMV-infected neurons engaging in neuronophagy
and clearance of dead cells (158, 159). In vitro studies of
human fetal microglia and astrocytes showed that CMV-infected
microglia can secrete TNF-α, IL-1β, and IL-6 orchestrating an
antiviral response and dampening viral replication for example in
infected astrocytes (55). This study suggested that CMV-infected
fetal astrocytes are not competent in mounting an antiviral
response but rather secrete cytokines such as CC-chemokine
ligand (CCL2) to recruit microglia (55). In vitro infection of
a murine microglial cell line with CMV showed extensive
metabolic alteration with a shift of microglia metabolism
toward glycolysis supporting the proinflammatory phenotype
and activation previously reported upon CMV infection (160).
Microglia and CAMs are a cellular target of CMV and are
associated with neuronal degeneration and tissue damage at
infectious foci in the brain. Therefore, further investigations
should be performed if these CNS immune cell populations are
potential therapeutic targets during fetal CMV infections. First
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results already suggested that targeting fetal microglia and CAMs
during CMV infection in rats by intracranioventricular injection
of depleting clodronate liposomes resulted in an improvement
of survival, neuropathology and cognitive functions in the born
litter (161).

Toxoplasma gondii (T. gondii)
The obligate intracellular protozoan parasite Toxoplasma gondii
(T. gondii) causes one of the most prevalent chronic infections
with around 30% of the world population being infected (162,
163). The only known sexual stages of the T. gondii life cycle
take place in the family of the felidae (164). Here oocysts or
sporozoites are formed and excreted in cat feces (165). Ingestion
of oocysts by intermediate hosts such as rodents and birds (166)
lead to a transformation into rapidly proliferating tachyzoites
which are able to spread into different tissues via the blood
stream, infected all nucleated resident cells and cause host
cell lysis (167). Within the host cells tachyzoites replicate in
specialized parasitophorous vacuoles escaping lysosomal fusion,
finally induce lysis of the host cell and disseminate adjacent cells
(168). Once they arrive in tissues like the CNS or muscle, they
convert into bradyzoites or tissue cysts, allowing them to evade
from the immune system and persist for many years (165). T.
gondii can be transmitted into humans through consumption
of contaminated food or water with cat fecal oocysts (169).
Alternatively, oocysts can be ingested by livestock forming tissue
cysts which are then transmitted into humans by consumption of
uncooked contaminated tissue (165). In rarer cases T. gondii is
transmitted via blood transfusion or organ transplantation (170,
171). T. gondii infection in immunocompetent adult individuals
is asymptomatic or causes only mild flu-like symptoms in
most cases, but opportunistic reactivation from cysts into
tachyzoites can occur in immunosuppressed individuals, such
as HIV patients, leading to a toxoplasmic encephalitis in
adults (Table 1) (172, 173). However, vertical transmission
of T. gondii from the mother to the fetus can be harmful
or even fatal. Though, maternal to fetal transmission only
occurs when the mother is primary infected during or up
to 10 weeks before pregnancy (174). While infection in early
pregnancy poses a small risk to fetal transmission (less than
6%), rates of transmission increase up to 81% in the third
trimester (175). This was assumed to be due to a differential
expression of placental TLRs during pregnancy (176). However,
the consequences of fetal T. gondii infection are highest in
early embryos and may result in severe congenital toxoplasmosis
with CNS pathologies, including microcephaly, hydrocephalus,
intracerebral calcifications, epilepsy, intellectual disabilities or
even spontaneous abortion and fetal death (Table 1) (175, 177–
181). Fetuses infected in late gestation are born normal, but
can develop CNS symptoms and retinochoroiditis after birth
(175). Studies suggest that maternal-fetal transmission starts
with initial infection of the uterus, followed by the extravillous
trophoblasts of the placenta as the parasite moves from cell
to cell, and eventually lead to the infection of the fetus (182).
Similar to the adult infections, it is assumed that T. gondii infects
circulating cells of the developing fetus such as macrophages

and use these cells as a “Trojan horse” to gain access to
immune privileged sites such as the CNS or reaches the CNS
via paracellular and transcellular infection routes (Figure 2)
(183–187). T. gondii can infect almost any nucleated cell, but
chronic infection seems to be neurotropic in a sense, since
it is cleared in other tissues over time (except musculature)
(172, 188). While neurons, astrocytes and microglia are infected
during the acute phase by tachyzoites, it seems that bradyzoite
cysts develop mostly in neurons as shown in humans and mice
(172, 189, 190). In vitro studies with rat CNS cells showed that
10% of neurons and 30% of microglia were infected with T.
gondii (191). However, 93% of the parasitophorous vacuoles only
contained one to two degenerated parasites in microglia, while
neurons contained up to 8 proliferating parasites and most of
the bradyzoites four days after acute infection (189). During
congenital toxoplasmosis, multifocal diffuse tissue necrosis in the
developing brain is mainly caused by parasite induced lysis of
infected neurons (192). Close to these lesion sites, accumulation
of microglial nodules have been described (Figure 2) (192). Most
of the studies investigating the role of microglia and CAMs
during T. gondii infection focused on studies of the adult CNS,
whereas only less information is so far available on their role
during congenital toxoplasmosis. In the adult CNS,microglia and
infiltrating CD11b+ CD45high monocyte-derived macrophages
are one of the main source of IFN-γ during T. gondii infection,
which is critical to control parasitic spread in acute but also
chronic infection (193). One study showed that 37% of the IFN-γ
positive cells were CD11b+CD45low microglia while 63% were
CD11b+CD45high positive cells, most likely monocyte-derived
macrophages (193). Recruited Ly6Chigh monocytes, but also
infiltrating Ly6G+ granulocytes are a detrimental source of IFN-
γ (194). Deficiency of IFN-γ upon T. gondii encephalitis in adult
mice resulted in a reduced chemokine and cytokine release in
the CNS parenchyma with a decrease in leukocyte infiltration
to the infected CNS tissues (195). Beside IFN-γ, several more
effector molecules such as nitric oxide (NO), TNF-α and IL-12
were shown to be involved in the inhibition of parasitic spread
in the adult CNS (196, 197). Besides the upregulation of effector
molecules, microglia exhibit a hypermigratory phenotype upon
T. gondii infection (198). A recent study reported hypermigration
of primary murine neonatal cortical microglia through signaling
of the neurotransmitter γ-aminobutyric acid (GABA) after T.
gondii infection, which was not visible after lipopolysaccharides
(LPS) or heat-inactivated T. gondii stimulation, and inhibition
of GABA synthesis, receptors and regulators led to an inhibition
of the hypermotility of microglia (199). To this day, data
about disease mechanisms of congenital T. gondii infection
remains scarce and there is an urgent need to address the
role of microglia and CAMs in congenital toxoplasmosis. The
neurotoxic properties of T. gondii and the resulting microglial
activation are likely to cause malformation of the neuronal
network in the developing fetal CNS, resulting in the typical
neurodegenerative symptoms of the prenatally acquired disease.
Therefore, understanding microglial involvement in the disease
manifestation during fetal development could be key for new
treatment paradigms.
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MATERNAL IMMUNE ACTIVATION (MIA)

There is increasing evidence that maternal infection and
consequential immune activation during pregnancy can have
detrimental effects on fetal brain development and cause
morbidity even without transmitting the pathogen to the fetus
(200, 201). Recently, maternal immune activation (MIA) was
implicated in long-term changes within the CNS which can affect
CNS function much later in life. It is not entirely solved yet what
the molecular mechanisms are for these long-term effects on the
CNS, but the spotlight is turned on a detrimental involvement of
the immune system (202). Most of all, schizophrenia and autism
spectrum disorders (ASD) have been linked to a dysregulated
fetal immune system which can induce changes during CNS
development and maturation and many studies suggest that
this is traced back to an initial activation in the womb due to
non-transmitted maternal infection during pregnancy (Figure 1)
(203). Elevated levels of serum proinflammatory cytokines in the
infected mother may be harmful for placenta barrier integrity
and lead to increased induction of cytokine levels in the fetus
(204). It is thought that an overexpression of proinflammatory
molecules such as IL-6, TNF-α, and IL-1β, which are required
for neurodevelopment under physiological circumstances (205),
can interfere with correct development of the neuronal network
(206). Studies indicate that elevated maternal cytokines such as
IL-8 or TNF-α correlate with a higher incidence of schizophrenia
in their uninfected offspring (Figure 1) (207, 208). In many
studies, absence of fetal infection is rarely confirmed, making
it more difficult to assess whether long-term neurological
differences are due to indirect effects of maternal inflammation
or direct cytopathic effects in the fetus. To investigate the causal
mechanisms behindMIA and immune dysregulation in the fetus,
researchers have developed several rodentMIAmodels where the
maternal immune system is manipulated by injections of poly-
(I:C) or LPS to mimic viral or bacterial infections in the mother.
Injection of poly-(I:C) into pregnant females was shown to cause
disrupted prepulse inhibition in the offspring, similar to what
was observed in schizophrenic patients (209). Injection of LPS in
pregnant mice caused behavioral changes (210), altered synaptic
pruning (211) and structural changes in the hippocampus leading
to impairedmemory and learning abilities (212) in their offspring
(Figure 1). IL-6 was shown to be elevated after maternal immune
activation both inmaternal serum and fetal tissue (209). Injection
of recombinant IL-6 or antibody mediated depletion of IL-6
demonstrated that elevated IL-6 levels were in part responsible
for the exploratory, social, and other behavioral abnormalities
observed in the offspring of poly-(I:C) injected pregnant mice
(209). In line with these findings in poly-(I:C) treated pregnant
mice, injection of LPS into the mother also led to increased IL-
6 expression in the fetal brain (212). Beside IL-6, IL-1β, and
IL-10 levels were also increased following poly-(I:C) injection
into pregnant mice (213–215). Elevated CXCL-8 in maternal
serum was shown to induce neuroanatomical alterations in the
offspring (216). Interestingly, these regions often coincide with
regions shown to be dysregulated in schizophrenia patients
such as parahippocampal and superior temporal gyrus volume
reductions (216). Injection of LPS into pregnant mice induced

elevated levels of TNF-α in the fetal brain (217). It seems
that fetal microglia are primed by MIA via potential epigenetic
imprints leading to a magnified immune response later in
life upon a secondary challenge (43, 218, 219). MIA offspring
that received an LPS injection later in adulthood displayed an
increase in IL-1β in the hippocampus (220). However, this effect
was brain region specific (220). It was shown that microglia
activation steadily increases throughout early life, peaking during
adolescent which coincides with behavioral abnormalities also
observed in schizophrenia patients (221). Many studies report
an elevated number of reactive amoeboid microglia expressing
high levels of major histocompatibility complex (MHC) class
II and CD68 in the fetal and neonate brain indicating an
activated status after injection of poly-(I:C) or LPS into pregnant
mice (222–225). However, these results are highly debated as
many groups fail to confirm elevated microglia numbers (226),
nor do they report the presence of activated Mac-2 expressing
microglia in fetal CNS parenchyma after poly-(I:C) injections
(227). The same discrepancy is also present in post-mortem
studies quantifying microglia numbers in the brain of diseased
schizophrenia patients (228). Microglia in MIA offspring were
shown to display different migratory dynamics as tangential
and radial spreading to the hippocampus, corpus callosum,
striatum and somatosensory cortex seems to be delayed (229).
This in turn could alter developmental processes where microglia
involvement is required (229). Even though epidemiological
studies linking MIA during pregnancy to neuropsychiatric
diseases in the offspring are still sparse, newly developed animal
models start to shed light on the role of microglia in this process
while the role of CAMs remains to be explored.

POSTNATAL INFECTIONS

Birth is the first direct contact of the newborn with the outside
environment including a plethora of different microbes (230). In
general, the human body lives in symbiosis with many different
microbes including the species colonizing our gut and skin. The
mucosa of the female genital tract is inhabited by a variety of
commensal bacteria and fungi unique to every woman and vitally
important for her health (231). However, beside the beneficial
microbiota the human body is constantly eradicating potentially
harmful pathogens which can enter the body via different routes
or co-colonize microbiotic niches such as the mucosa of gut, lung
or the reproductive tract. During birth, these mucosal organisms
can come into contact with the newborn and its unchallenged
immune system. With that said, the intrapartum period is a
critical time for microbiotic colonization but also where serious
infections may occur (Table 1) (232, 233). Transmission of
pathogenic microorganisms from the maternal vaginal tract to
the newborn can lead to dissemination to several organs of
the infant, possibly resulting in long lasting morbidities or
even death (Table 1) (234, 235). After birth, the infant body
is immediately in contact with different microorganisms either
beneficial or pathogenic. Therefore, the breastfeeding period
plays a major role in preventing early diseases since it not only
includes nutrients, enzymes, antimicrobial proteins/peptides,
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FIGURE 3 | Infections of the neonatal CNS. (a) Illustration of the healthy CNS including the vasculature, the perivascular space, and the brain parenchyma. (b) Group

B streptococcus (GBS) infection. GBS enters the CNS either paracellularly, via transcytosis or exploiting trafficking phagocytic host cells. This leads to the secretion of

inflammatory cytokines by resident macrophages in the perivascular space and meninges. As GBS spreads more into the CNS this inflammatory response is also

mounted by endothelial cells and microglia, leading to leakage of the BBB and therefore an increase number of monocytes and neutrophils in the CNS. (c) HIV

infection. HIV infects CD4+ T cells, monocytes, and macrophages. Infection of circulating monocytes helps HIV to enter the CNS where it infects other tissue-resident

macrophages. This leads to an acute immune response with secretion of proinflammatory cytokines. (d) Candida albicans infection. Candida albicans enters the CNS

either para- or intracellularly or shuttled inside circulating monocytes. Infection of the CNS leads to an activation of microglia, astrocytes, and oligodendrocytes

resulting in the secretion of cytokines and chemokines and subsequently to the recruitment of neutrophils and other circulating monocytes.

growth factors, antioxidants, anti-inflammatory elements but
also transfers maternal immunoglobulins through the breast milk
to compensate for the lack of immune memory in the newborn
(236–239). Furthermore, studies showed that human breast milk
facilitates the establishment of the neonatal microbiota indicating
long term benefits for the infant beyond the breastfeeding period
(239, 240). To further protect the newborn in this critical time
the WHO recommended vaccination as soon as possible after
birth, optimally in the first 24 h to guarantee protection against
polio, hepatitis B and tuberculosis. However, vaccinations cannot
establish immunity against infections occurring shortly after
birth and many infections occurring in the first few weeks do not
have a vaccine yet (241). Accompanied by profound changes of
an immune system which needs to be fine-tuned to guarantee a
balance between tolerance and immunity, the encounter of a vast
assortment of antigens pose a high risk for infections to occur
(Table 1) (242, 243). Studies have shown that the adaptive arm
of the immune system presents certain differences compared to
later time points in life (244–247). One interesting divergence
is the shifted T helper (Th) cell balance in favor of a Th2 cell
response during fetal and early postnatal development (248, 249).
This in turn inhibits Th1 and Th17 response backing tolerance
to the mother, however, making the newborn more susceptible
to bacterial and fungal infections (248, 249). Furthermore, it was
shown that suppressive regulatory T cells and impaired antigen-
presenting cells in the fetus increased disease susceptibility at
birth and may hinder effective early vaccination (244–247). As
mentioned above, this was a long time assumed to point toward
an immature immune system, which was recently revoked by
several multi-omics studies (87–90). The maturation of the
resident immune cells of the CNS was only recently started to
be explored during postnatal stages using bulk and single cell
RNA-sequencing (250–252). However, it is clear that CAMs and
microglia play important homeostatic functions during early

postnatal phases (253). In the following we will discuss how
the most prevalent neonatal infections are able to establish CNS
infection and explore the role of CNSmacrophages in this context
and the far-reaching consequences for the developing infant.

Human Immunodeficiency Virus (HIV)
Human immunodeficiency virus (HIV) is a lentivirus and
belongs to the family of the retroviridae (254). Retroviruses
are single-stranded RNA viruses that are able to integrate their
genome after reverse transcription into the hosts DNA and
thereby induce a latent infection which can persist for several
decades (255). Infected cells convert the viral RNA into double-
stranded DNA by using an enzyme called reverse transcriptase
which is then incorporated into the hosts genome with a viral
integrase and other host co-factors (256). There are two different
types of HIV, HIV-1 and HIV-2, with the first being responsible
for most of the global HIV infections (255). HIV is transmitted
by sexual contact, exposure to infected body fluids and from
mother to child during pregnancy, birth, and breastfeeding
(109). The risk of vertical transmission decreased dramatically
after the development of antiretroviral therapy (ART) during
pregnancy and breastfeeding period for infected women in
developed countries (257, 258). Primary infant infection ismostly
asymptomatic, but disease progression is significantly faster than
in adults (259). Before the introduction of ART, half of the
infected children developed progressive HIV-1 encephalopathy
(PHE) resulting in microcephaly, developmental delays, and
focal white matter lesions (Table 1) (119–121). PHE further
manifests in basal ganglia calcification and white matter lesions
(Table 1) (260). In PHE lesions, microglial cells were often
found to accumulate in nodules and seem to be the major cell
type infected with the virus. Perivascular lesions with infected
proliferating microglia and infiltration of CD8+ T cells and
monocytes were further seen in children with HIV encephalitis
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(Figure 3) (261). Though, chronic neurological impairment is
still obtained in HIV-1 seropositive children under ART (262–
264). HIV is mostly known for infecting peripheral helper T cells
via the cluster of differentiation 4 (CD4) receptor and either C-
X-C chemokine receptor type 4 (CXCR4) or C-C chemokine
receptor type 5 (CCR5) as a co-receptor, leading to a loss of
these cells during acute infection (265). However, CD4+ T cell
numbers recover after acute infection but decrease in the course
of years, ultimately leading to the development of the acquired
immunodeficiency syndrome (AIDS) which is characterized by
low T cell counts in the blood and the occurrence of rare
opportunistic diseases (266, 267). Tissue resident macrophages
across different organs and circulating monocytes are also used
as a viral reservoir, since they also express low levels of CD4
and the co-receptors CXCR4, CCR5 and also CCR3 in infants
and adults (268). Despite CXCR4 expression macrophage-tropic
(M-tropic) HIV variants mostly use CCR5 as a co-receptor to
enter the cell. These viruses can bind CD4 more efficient and
show enhanced interactions of their envelope glycoprotein 120
(gp120) with CCR5 (269–271). Especially yolk sac-derived tissue-
resident macrophages represent an ideal viral reservoir because
they are long-lived and self-renewing, making them a perfect
target for latent infection (272). Yet the role of macrophages as
long-term reservoirs for replication-competent viruses remained
controversial. A recent study showed the presence of macrophage
reservoirs in the brain of simian immunodeficiency virus (SIV)
infected macaques, which is the equivalent to HIV in humans
(272). Perivascular macrophages and parenchymal microglia
were shown to be infected during acute SIV infection in adult
macaques and acute HIV infection in adult humans (273–275).
Furthermore, human fetal microglia can be efficiently infected
with HIV-1 in ex vivo cultures (276). Data suggested that
HIV reaches the brain via infection of bone marrow-derived
monocytes which are visible in the CNS during acute infection
and through the cerebrospinal fluid (CSF), using them as a
“Trojan horse” similarly as described for T. gondii infection
(Figure 3) (277–280). Release of proinflammatory cytokines
and ROS from infected microglia, as well as synthesized viral
molecules such as gp120 and trans-activator of transcription
(Tat) can lead to neurotoxicity and neural injury (264, 281–
283). A new mechanism of microglial activation was described
for neonatal microglia in vitro where exposure to viral Tat
resulted in the downregulation of microRNA-124 (miRNA-124),
leading to increased methyl CpG binding protein 2 (MECP2)
and signal transducer and activator of transcription 3 (STAT3)
expression (284). Tat-mediated neonatal microglial activation
was also induced by upregulation of miRNA-34a leading to the
downregulation of NOD-like receptor C5 (NLRC5), which is a
negative regulator of NF-κB signaling, and by NLR family pyrin
domain containing 3 (NLRP3) inflammasome activation, both
leading to enhanced cytokine release including IL-6 and IL-1β
(285, 286). Primary human microglial activation was further
shown by the upregulation of pro-inflammatory molecules upon
HIV infection such as IL-8, IL-6 CCL2, TNF-α, CCL5 and
activation of IL-1β and caspase-1 (287, 288). In adult patients
but also in young infants, constant microglial activation is
implicated in HIV-associated neurocognitive disorders (HAND),

such as HIV-associated dementia (HAD) (289, 290). This
correlates with elevated levels of TNF-α, IL-1β, caspase-1
and iNOS in microglia of HAD patients (291–293). In adult
patients with HIV encephalitis, perivascular infiltration of
CD14+ CD16+ HIV-infected monocytes was also correlated
with the onset of dementia (290). A recent study showed that
other human macrophage populations from lung and abdomen
are able to restrict viral spread via sterile alpha motif and
histidine/aspartic acid domain-containing protein 1 (SAMHD1)
effectively compared to human microglia, which express similar
levels of SAMHD1, but are more susceptible to HIV-1 infection
(294). Even in the absence of neurological symptoms, HIV
infected patients showed signs of immune activation in the CNS.
Obtained microglial activation markers include MHC class II,
CD163, IL-1β, and TNF-α levels in the cerebral cortex and
white matter of seropositive patients (295–297) and TNF-α,
β2-microglobulin and neopterin in the CSF, which are further
markers of microglia as well as CAM activation (295). Overall,
data suggest that microglia and CAMs at the CNS interfaces
can serve as a potential reservoir for HIV even in infants
and viral-induced constant microglial activation leading to
neurodevelopmental impairment in children and potential onset
of neurodegenerative disease later in age.

Herpes Simplex Virus (HSV)
Herpes simplex viruses (HSV) belong to the family of the
herpesviridae and are split into two different serotypes: HSV-1
and HSV-2 (298). Like all herpesviruses they contain double-
stranded DNA and are able to cause a latent infection (298).
HSV infections, if symptomatic, often manifests in oral or genital
lesions (298). Both of these viruses are, together with varicella
zoster virus, the only herpesviruses that are neurotropic and
establish a latent state in dorsal root ganglia (299). Therefore,
HSV infection can also occur in the CNS, leading to more
severe outcomes such as herpes simplex encephalitis (HSE)
and aseptic meningitis (Table 1) (122). Interestingly, HSV-
1 is the cause of 90% of HSE in adults, while HSV-2 is
mostly associated with neonatal HSE and immunocompromised
patients (300). Neonatal herpes is rare but fatal in 60% of cases
if not treated (301). Even with treatment, neonatal infection
of the CNS can still be fatal and leads to moderate-to-severe
neurological abnormalities in more than 50% of the cases
(Table 1) (123, 302). Human fetal astrocytes and neurons have
been shown to be efficiently infected in vitro by HSV-1, but do
not show an induction of cytokine and chemokine expression
upon infection (303). Fetal human microglia, however, did not
support viral replication but showed an extensive induction
of proinflammatory factors such as CXCL10, TNF-α, CCL5,
or IL-1β (303). Interestingly, CXCL10 was found to reduce
viral replication in neurons, indicating a protective role of
microglial-derived CXCL10 (303). Therefore, microglia could
play an essential role in controlling HSV-1 replication also in the
neonatal brain, as also indicated by other studies during adult
encephalitis (304, 305). Upregulation of glutamate transporter
1 (GLT-1) and glutathione was found in microglia, which is an
antioxidant with antiviral properties (306). Additionally, IL-6
produced by microglia was shown to protect against neuronal
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loss after HSV-1 infection (307) underlining the importance of
microglia in this context. Purinergic receptor P2Y12+ microglia
processes extended to HSV-1 positive neurons in adult HSE
in humans and were shown to accumulate in an amoeboid
shape around them (308). Extensive cytokine and chemokine
expression of cultured human microglia such as TNF-α, IL-
1β, IL-10, IFN-α/β/γ and CXCL10, CCL2, CCL4 and CCL5
was observed during HSV-1 infection and upregulation of these
effector molecules is partially mediated by TLR2 (303, 309).
Higher expression of CXCL10, CCL2, and CXCL9 was also
found in infected BALB/c mice (310). TLR3, which recognizes
double-stranded viral RNA, was also shown to be highly relevant
in fighting HSV infection as two otherwise healthy children
with a dominant-negative TLR3 allele were reported with HSE
(311). More cases of children with HSE were found with
deficiencies in proteins involved in the TLR3-signaling pathway
such as TNF receptor asscociated factor 3 (TRAF3), TIR-
domain-containing adapter-inducing interferon-β (TRIF) and
Unc-93 homolog B (UNC93B) (312–315). Yet, an involvement
of microglia and CAMs, which do express high levels of TLR3,
needs to be elucidated in this context (316, 317). A recent
study, however, demonstrated that adult microglial type I IFN
production is dependent on stimulator of interferon genes
(STING) and cyclic GMP-AMP synthase (cGAS) (305). Adult
mice deficient in cGAS and STING were shown to be susceptible
to HSE (305). STING deficiency in isolated neonatal microglia
was shown to lead to a higher viral load in the cells and
microglial type I interferons production is dependent on STING
signaling (305). In conclusion, neonatal HSV infection of the
CNS is still a threat and more research is needed to balance a
strong immune response restricting viral spread and constant
neuroinflammation damaging the developing CNS.

Candida albicans
Fungal infections pose a serious threat to nurseries and intensive
care units as newborns, especially premature ones, seem to
be most at risk (318). Candida albicans is the most prevalent
fungus inhabiting the oropharynx and genital tract of humans
and is part of the commensal gut microbiota of 60% of the
population (319, 320). At the same time, it is also the major
cause of fungal related pathology (Table 1) (319). Opportunistic
infections can become rampant if the immune system is
disturbed or suppressed for example during pharmacological
treatments or immunodeficiency diseases resulting in systemic
candidiasis (321). This puts mostly preterm newborns at risk,
presenting with an unchallenged immune system and often
undergoing heavy antibiotic or corticosteroid treatments, the
latter destined to support correct development of the premature
lung (322, 323).C. albicans is transmitted to the fetus in utero and
to the newborn either nosocomially (in the hospital), or during
birth (125, 126). Typically, mucosal membrane colonization is an
important event to protect the healthy newborn from invasive
candidiasis, while leaving an incidence of 0.5–20% of newborns
in the US which are still developing systemic candidiasis
(Table 1) (324). Another risk factor for developing candidiasis
is necrotizing enterocolitis which was shown to facilitate fungal
invasion into the blood stream (325). The mortality rate

of newborns suffering from an acute candida infection is a
staggering 35–40% despite therapy (325). Involvement of the
CNS constitutes a major complication and occurs in more
than half of fungal infections with conditions like brain abscess
and mycotic meningoencephalitis (326, 327). Although the
mechanism of how C. albicans breach the BBB is unclear, it
is believed that it can either cross para- or intracellularly or
shuttled inside circulating monocytes (328, 329). C. albicans
produces a toxin called candidalysin which was shown to activate
microglia, astrocytes and oligodendrocytes (330). Furthermore,
microglia do express TLR2, Dectin-1 and complement receptor 3
which are essential to recognize invading C. albicans in the CNS
(328, 330). Studies in adult mice indicate that microglia together
with astrocytes and oligodendrocytes secrete CXCL1 and CXCL2
which induces neutrophil recruitment to the brain and essentially
supports clearance of the pathogen from the brain (Figure 3)
(330). It is not clear whether the same interplay of glial cells
and neutrophils takes effect in newborns. An interesting parallel
is that neutrophils isolated from newborns have decreased
chemotactic capabilities compared to adults (331). Neutropenia
in the CSF has been observed in certain cases of newborn CNS
candidiasis (324, 326). It is unknown whether microglia display
any deficiencies explaining the grim outcome of candidiasis
affecting the CNS. This interplay of glial cells and neutrophils was
shown to be crucial for containment and efficient clearance of the
pathogen as patients with neutropenia suffered worse outcomes
of the infection. This interplay is essentially dependent on the
downstream pattern recognition receptor adaptor molecule C-
type lectin receptor–Syk adaptor (CARD9) (330). The secreted
toxin candidalysin inducedmicroglia to release IL-1β and CXCL2
which in turn resulted in the efficient recruitment of neutrophils
to the CNS (Figure 3) (330). Furthermore, microglia recruited
Ly6C+ monocytes to the infected CNS which can further
contribute to the recruitment of neutrophils (Figure 3). Specific
deletion of Card9 in microglia resulted in an impaired neutrophil
recruitment and might trigger fungal susceptibility (330). In
line with these findings, it was shown that young patients
with a defect in the Card9 gene cannot produce neutrophil
targeted chemokines and suffer from uncontrolled fungal growth
and primary immunodeficiency (330). Recruited neutrophils
start secreting chemokines themselves, amplifying this positive
feedback loop and driving inflammation of the CNS (332).
Interestingly, Card9 deficiency did not result in candida invasion
of other organs like the spleen, liver or kidney (333). It is currently
unknown whether the CARD9 adaptor protein is also important
for other microglia functions like phagocytosing or killing yeast
cells. This detrimental role of microglia in the recruitment of
neutrophils suggest a central role in the immune answer against
C. albicans infection in infants and might also be a key target in
understanding neonatal susceptibility to C. albicans infections.
So far there is only limited data on the specific role of CAMs in
neonatal C. albicans infections available.

Group B Streptococcus (GBS)
Group B streptococcus (GBS) or Streptococcus agalactiae is a
gram-positive encapsulated bacterium. Infection with GBS is
particularly dangerous for newborns presenting a high rate
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of morbidity of infected individuals who survive the primary
neonatal infection (334). GBS is a major, potentially lethal cause
of bacterial meningitis in newborns which is an infection of
the CNS membranes covering brain and spinal cord (Table 1)
(335–337). Affected newborns most frequently suffer from
neurological consequences such as cerebral palsy, cognitive
retardation, loss of vision and hearing and seizures (Table 1)
(127). GBS naturally colonizes the genital tract of 1 in 4 healthy
women, only in a minority of cases leading to an ascending in
utero infection of the neonate via the amniotic fluid or during
delivery via aspiration of vaginal fluids (338, 339). However, GBS
is the leading cause of neonatal sepsis with an occurrence of
around 42 cases per 100.000 live births and a mortality rate of
around 9% (340, 341). Sepsis is divided into early onset sepsis if
it occurs within the first 7 days of life and late onset sepsis
if it occurs until 3 months after birth (341). Late onset sepsis
often leads to meningoencephalitis which has a mortality rate
currently of around 8.3% (Table 1) (340). Here, an intestinal
route of GBS infection was suggested in neonates (337). Often
GBS enter via the microvasculature in the choroid plexus where
they adhere to endothelial cells and are able to cross the BBB
either paracellularly, via transcytosis or exploiting trafficking
phagocytic host cells (342, 343). In the interfaces of the brain,
they encounter, besides recruited circulating monocytes, also the
resident perivascular and meningeal macrophages (337). It was
shown that perivascular and meningeal macrophages play an
important role during bacterial infection of the CNS by secreting
pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6
and phagocytose invading bacteria (Figure 3) (344). A robust
inflammation is mounted by both endothelial cells outside the
brain, as well as CAMs inside the brain facilitating the entry of
more pathogens through the now leaky BBB and increasing the
number of emigrating Ly6Chigh monocytes and neutrophils at
the site of infection (Figure 3) (345). In vitro studies have shown
that microglia react to GBS by TLR2/Myeloid differentiation
primary response 88 (MyD88) dependent pathways leading to
NO secretion specifically inducing apoptosis in neurons (346).
Newborns consequently develop hydrocephalus, ischemia and
increased intracerebral pressure and brain injury leading to
more neuronal apoptosis (Table 1) (347). In a mouse model of
vaginally colonized pregnant females, the authors were able to
recapitulate most of the hallmarks of neonatal infection with GBS
and following meningitis (348). Immunofluorescent imaging
of infected neonatal mouse brains confirmed an activated
amoeboid phenotype of microglia (348). However, in this new
model of vaginal infection with GBS of pregnant mothers, the
authors did not observe an increase in inflammatory cytokines
when comparing infected and uninfected pups indicating that
neuronal damage is rather induced by the secretion of ROS
(348). In contrast, studies performed in GBS infected adult
mice attribute a high importance to IL-1β signaling as they
show that IL-1β deficient mice cannot keep GBS infection
from disseminating to target organs such as the brain and
leading to death (349). Long term sequelae of pups infected
with GBS indicate a decrease in exploratory behavior in these
animals impaired learning and memory and decreased glutamate

levels (348). This is in line with the observation that over
30% of children that survived GBS meningitis suffer from
neurodevelopmental impairment (128). As previously suggested,
the exact role of microglia and CAMs in GBS mediated
meningoencephalitis remains ill-defined and needs to be further
explored (337).

CONCLUDING REMARKS

Besides the many improvements in hygiene and preventive
treatments in recent decades, CNS infections are still a threat for
the developing fetus and newborn. Information about pathogen-
specific infection mechanisms remains scarce. This is due to the
limited accessibility of human samples, however the refinement
of in utero animal infectionmodels will help to further investigate
this issue in the future. A growing body of evidence implicates
that especially microglia are an important factor for the outcome
of such infections. Their crucial role in CNS development and
their interplay with all different cells in the CNS, which is
required for the establishment of a functional neuronal network
and maintaining CNS homeostasis, may be disrupted in the
presence of a pathogen. Whether tissue damage is directly
caused by the necrotic properties of pathogens or through the
constant activation of CNS macrophages and the subsequent
secretion of proinflammatory molecules resulting in long-term
complications, is dependent on the respective type of infection
and needs to be studied accordingly. The embryonic origin of
CAMs has only recently been revealed. Thus, prior studies did
not separate long-lived CAMs from infiltrating monocytes in the
context of an infection. However, CAMs should not be neglected
since they are the “gatekeeper” in the interfaces of the brain and
come in contact with intruders earlier than microglia. Due to
the longevity of CAMs and microglia a potential role as viral
reservoirs needs to be considered and was implicated in recent
studies. In conclusion, understanding the impact of prenatal and
neonatal CNS infection on the development and the functionality
of CNS macrophages may help to comprehend the underlying
mechanisms leading to pathogenesis and long-term sequelae of
the infant.
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