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Liver allograft rejection remains a significant cause of morbidity and graft failure in
liver transplant recipients. Rejection is caused by the recognition of non-self donor
alloantigens by recipient T-cells. Antigen recognition results in proliferation and activation
of T-cells in lymphoid tissue before migration to the allograft. Activated T-cells have
a variety of effector mechanisms including direct T-cell mediated damage to bile
ducts, endothelium and hepatocytes and indirect effects through cytokine production
and recruitment of tissue-destructive inflammatory cells. These effects explain the
histological appearances of typical acute T-cell mediated rejection. In addition, donor
specific antibodies, most typically against HLA antigens, may give rise to antibody-
mediated rejection causing damage to the allograft primarily through endothelial injury.
However, as an immune-privileged site there are several mechanisms in the liver
capable of overcoming rejection and promoting tolerance to the graft, particularly in
the context of recruitment of regulatory T-cells and promotors of an immunosuppressive
environment. Indeed, around 20% of transplant recipients can be successfully weaned
from immunosuppression. Hence, the host immunological response to the liver allograft
is best regarded as a balance between rejection-promoting and tolerance-promoting
factors. Understanding this balance provides insight into potential mechanisms for novel
anti-rejection therapies.
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INTRODUCTION

Liver transplantation is currently the only effective treatment for end-stage liver disease. In the
last 40 years the remarkable improvement in the surgical technique and the development of
immunosuppressive drugs alongside improved post-transplant medico-surgical management has
significantly prolonged transplant recipient survival. The host immunological response to the
liver allograft is best regarded as a balance between rejection-promoting and tolerance-promoting

Abbreviations: APC, antigen presenting cell; CAR, chimeric antigen receptor; DC, dendritic cell; HLA, human leukocytes
antigens; ICAM1, intracellular adhesion molecule 1; IFN-γ, interferon-gamma; KC, Kupffer cell; LSEC, liver sinusoidal
endothelial cells; MHC, major histocompatibility system; NK, natural killer; TGF-β, tumor growth factor-beta; Th, T helper
cell; Treg, regulatory T cell; VCAM1, vascular adhesion molecule 1.
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factors. Whilst the unique features of the liver as an
immunoregulatory organ promote an enhanced tolerogenic
response in the allograft recipient compared with other organs,
immunological rejection remains a significant clinical problem.
For this reason the majority of liver transplant recipients require
lifelong immunosuppression conferring an increased risk of
severe complications such as infection and neoplasia (1–3).
Therefore, new therapeutic strategies to induce long-term
immune tolerance are required.

The majority of rejection episodes occur within the first month
following transplantation and are readily amenable to treatment
with high dose steroids. Acute rejection episodes can also occur
in the later post-transplant period when the presentation may
be less typical (4). Up to 35% of patients may experience at
least one episode of acute rejection, although some will have
sub-clinical disease (5). Repeated acute episodes may lead to
chronic rejection. Whilst historically this was more common
and occurred within a few months following transplantation, in
the current era of immunosuppressive therapy the incidence of
chronic rejection is probably 2–3% at most and may occur several
years post-transplant (6, 7). Chronic rejection has a complex
and only partly understood etiology probably representing the
end stage of a number of different immunological processes
(8, 9).

The objective of this review is to provide an overview of
the main immunological principles governing rejection and
tolerance in the liver allograft and to outline current novel
therapeutic approaches aiming to induce long lasting immune
tolerance after liver transplantation. Given its low incidence
and complex etiology, chronic rejection will not be considered
further in this review.

PRESERVATION-REPERFUSION INJURY

A certain degree of ischemic injury to the allograft is an
unavoidable consequence of transplantation. This occurs during
organ transportation to the transplant center (known as the cold
ischemia time because the liver is transported in cold storage) and
during organ harvesting and subsequent implantation (known
as the warm ischemia time). An additional element of warm
ischemia time is unavoidable for donation after circulatory death
(DCD) as opposed to donation after brainstem death (DBD)
livers because of the time lag between circulatory collapse and
organ retrieval.

Ischemia leads to depletion of intracellular adenosine
triphosphate particularly in hepatocytes and liver sinusoidal
endothelial cells (LSEC), resulting in cell damage and death.
Upon reperfusion further damage is elicited by release of
reactive oxygen species and pro-inflammatory cytokines such as
TNFα, IFN-γ and IL-1 by activated Kupffer cells (10). Within
this acute pro-inflammatory environment LSEC are induced
to upregulate cellular adhesion molecules including ICAM-
1 and VCAM-1, facilitating recruitment of leukocytes to the
allograft (11). Thus, the overall effect of transplantation is to
induce a pro-inflammatory microenvironment within the liver
allograft resulting in tissue damage, a phenomenon termed

preservation-reperfusion injury (PRI, also known as ischemia-
reperfusion injury) (12).

The method of organ retrieval and the presence of donor-
related liver disease influence the extent of PRI related
damage. The prolonged warm ischemia time of DCD livers
results in exaggerated PRI principally causing additional
damage to hepatocytes and resulting in inferior clinical
outcomes (13). Steatotic livers are being increasingly utilized
for transplantation. Steatosis is associated with increased PRI
as measured by molecular markers of inflammation (14) and
reflected histologically as increased hepatocyte necrosis (15).
Clinically, the sequelae of PRI in DCD livers include an increased
risk of primary non-function and ischemic-type biliary lesions
and overall reduced graft survival (16).

THE IMMUNOLOGICAL BASIS OF
T-CELL MEDIATED REJECTION

T-cell mediated rejection (TCMR, also previously known
as “acute cellular rejection”) occurs most commonly in the
early post-transplant period and is generally amenable to
treatment with immunosuppression (17). It typically presents
with non-specific clinical symptoms and predominantly
cholestatic liver biochemistry. Liver biopsy is required for
diagnostic confirmation and shows a dense portal-based mixed
inflammatory cell infiltrate with evidence of damage to biliary
epithelium, portal and hepatic vein endothelium and hepatocytes
(18) (Figure 1). Early episodes of TCMR do not impact on
long-term outcomes (19) although persistent rejection episodes
refractory to standard therapies remain problematic. This section
of the review will outline our current understanding of the
immunological mechanisms that give rise to TCMR and the
mechanisms of allograft damage elicited by the cellular infiltrate.

Major Histocompatibility Complex
Antigen Expression
The main antigens responsible for driving rejection are the
major histocompatibility complex (MHC) molecules. MHC class
I molecules are constitutively expressed by all nucleated cells
and present intracellular epitopes to CD8 + cytotoxic T-cells.
In contrast, expression of MHC class II molecules is more
restricted, presenting epitopes derived from extracellular material
to CD4 + helper T-cells. In the normal liver there is strong and
diffuse MHC class I expression in all cells whereas MHC class
II expression is limited to Kupffer cells and other liver-resident
antigen presenting cells. During liver inflammation expression of
MHC class I is increased in all cells and MHC class II expression
is stimulated in endothelium, biliary epithelium and hepatocytes
(20). Thus, liver inflammation upregulates expression of MHC
molecules, priming toward a rejection response.

Preservation-Reperfusion Injury
PRI has long been recognized as important factor in skewing
the recipient immunological response in favor of rejection
(21). Damaged hepatocytes and LSEC release damage-associated
molecular pattern molecules (DAMPs): HMGB1, free fatty acids
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FIGURE 1 | (A) Acute TCMR 6 days post liver transplant. This high-power image (hematoxylin & eosin (H&E), ×600) of a portal tract shows infiltration of a large
number of inflammatory cells. Typical examples of a lymphocyte (square), neutrophil (triangle), eosinophil (circle) and two macrophages (hexagon) are highlighted,
demonstrating the contribution of cells from both the innate and adaptive immune systems. The majority of the lymphocytes will be T-cells, capable of mediating cell
damage through direct cytotoxicity and the release of pro-inflammatory cytokines. There is clustering around the bile duct (B) and portal vein (PV, inset, with damage
to endothelium seen at 4 o’clock). Neutrophils and macrophages migrate to the liver in response to pro-inflammatory cytokines, enhanced by Th1 and Th17
responses. Eosinophils are also present in early rejection infiltrates and are more typically associated with a Th2 response. Treatment with high dose pulsed
methylprednisolone was able to suppress the rejection episode in this patient and tolerance has since been maintained using a standard immunosuppressive
regimen. (B) Immune tolerance 8 days post liver transplant. In contrast to Figure 2A, a portal tract from this biopsy (H&E, ×600) contains only a small number of
lymphocytes, macrophages and neutrophils with no evidence of damage to biliary epithelium (B) or portal vein endothelium (PV). Tolerance to the liver allograft is
promoted by multiple factors including the relatively low levels of MHC class II expression on hepatic-resident cells, a tendency toward tolerogenic antigen
presentation by the dendritic cells, macrophages, stellate cells and epithelial cells resident in the liver, the dominance of a regulatory T-cell infiltrate and the action of
donor-derived NK cells on the recipient immune system. Indeed, a biliary complication of surgery was found to be the reason for liver dysfunction in this patient, and
tolerance was maintained on follow-up by means of a standard immunosuppressive regimen without the need for additional therapy.

and heat shock proteins. This activates Kupffer cells via toll-
like receptors, stimulating release of pro-inflammatory cytokines
such as IL1, TNF, IFN and IL12. Release of CXCL-1, -2 and -
3 stimulates neutrophil recruitment to the graft (22). PRI also
promotes upregulation of lymphocyte recruitment molecules by
LSEC. The end result of PRI is therefore the establishment of a
pro-inflammatory microenvironment within the liver.

PRI may promote TCMR by providing the initial stimulus
for migration of donor-derived dendritic cells (DC) from the
transplanted liver to recipient regional lymph nodes. These
professional antigen presenting cells are resident in the liver
and upregulate expression of MHC class I and II molecules as
a consequence of the inflammatory signals generated by PRI.
The chemotactic PRI signals also act as a means of recruiting
activated T-cells of the adaptive immune system and to amplify
their rejection-mediating effects.

Alloantigen Presentation, T-Cell
Activation and Maturation
Alloantigen presentation by DC is a key step in rejection. In the
normal liver DC are present in portal tracts and around hepatic
veins, and thus significant numbers of donor-derived DC are
transferred to the recipient as passengers during transplantation.
In response to pro-inflammatory environments such as PRI
they become activated, upregulate expression of MHC molecules
displaying alloantigens and mobilize to lymphoid tissue (20).

Activated donor-derived DC arriving in the lymph node provide
a potent immunological stimulus for recipient-derived naïve
CD4 + T-cells, which recognize as foreign not only the presented
antigen but also the MHC molecule itself, known as the direct
pathway of antigen presentation (Figure 2). The interaction
between the DC and T-cell is dependent on: (1) activation of
the T-cell receptor (TCR) by its cognate peptide-MHC complex
on the DC, (2) interaction between T-cell integrin adhesion
molecules such as LFA-1 and VLA4 interacting with ICAM-1 and
VCAM-1 on DC, and (3) co-stimulatory molecule interactions
such as CD28 expressed on T-cells interacting with B7 molecules
on DC. Since dendritic cells express MHC class I and class II
molecules they are able to activate both CD4 + and CD8 + T-cells
(23). Successful priming of naïve T-cells leads to activation of the
cytoplasmic calcium-dependent phosphatase enzyme calcineurin
within T-cells, which in turn activates nuclear transcription factor
of activated T-cells (NFAT), upregulating expression of IL-2. This
cytokine provides the main stimulus for T-cell proliferation by
interacting with the cell surface IL-2 receptor.

The indirect and semi-indirect pathways are more typically
associated with later episodes of rejection. These pathways
are mediated by recipient (as opposed to donor) DC, which
accumulate within the graft over time. The indirect pathway is
characterized by alloantigens captured and processed by recipient
DC or other antigen presenting cells and then presented upon
self-MHC molecules to naïve T-cells (24). The semi-indirect
presentation refers to the expression of the intact donor
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FIGURE 2 | (A) Immunological basis of TCMR. Activated dendritic cells migrate to lymphoid tissue presenting alloantigen on MHC class I and II molecules.
Interaction with naïve alloreactive T-cells in the presence of appropriate co-stimulatory molecules and a pro-inflammatory cytokine milieu results in proliferation of
alloreactive CD4 + and CD8 + effector T-cells and subsequent B-cell proliferation. Migration to the liver is orchestrated by chemokines such as CXCL9 and CXCL10
interacting with the CXCR3 receptor on lymphocytes in addition to complex interactions with the unique immunomodulatory liver sinusoidal endothelial cells.
Lymphocyte subsets such as Th17 cells have specific recruitment mechanisms, providing potential therapeutic targets. Cells of the innate immune system including
macrophages, neutrophils and eosinophils are recruited to the liver and along with the effector T-cells mediate tissue damage, resulting in the clinical manifestations
of TCMR. (B) Three pathways for antigen presentation. The strongest alloimmune response is generated by the direct pathway which occurs in the early
post-transplant period. Upon activation, donor-derived dendritic cells migrate to the lymph node, displaying non-self donor antigens within non-self donor MHC
molecules. This provides potent stimulation for the mounting of a rejection response. The indirect and semi-direct pathways involve recipient-derived dendritic cells
displaying self and non-self MHC molecules respectively. Whilst not as potent as the direct pathway, they are still able to sustain ongoing rejection. (C) Antigen
presentation within the liver generally promotes tolerogenic responses. Antigen is also presented within the allograft by endothelial cells, macrophages, hepatic
stellate cells, hepatocytes and biliary epithelium, with increased presentation seen during episodes of inflammation. However, most interactions with naïve
lymphocytes within the liver result in tolerance rather than rejection, with apoptosis of effector cells and a skewing of T-cell differentiation toward the regulatory T-cell
phenotype through an immunosuppressive cytokine profile.

MHC on the surface of the recipient antigen presenting cells.
The semi-indirect pathway is considered to be of particular
importance in allograft rejection and is probably the consequence
of a cell to cell contact and the fusion of recipient and donor
exosomes (25–29). Whilst still capable of initiating a rejection
response, the indirect and semi-indirect pathways are less potent
than the direct pathway.

Once primed, CD8 + T-cells predominantly differentiate into
cytotoxic T-cells (Tc) able to exert direct cell damage on the
allograft. CD4 + T-cells have the potential to differentiate into a
number of activated subtypes, of which the helper T-cell (Th1,
Th2 and Th17) and regulatory T-cell (Treg) subsets are the best

characterized. The relative proportion of cells in each subtype
is determined by the local inflammatory microenvironment. In
acute rejection T-cell differentiation is primarily polarized toward
the Th1 response, driven by pro-inflammatory cytokines such as
IL-12, TNF-β and particularly IFN-γ. Th1 cells are characterized
by secretion of IL-2 and IFN-γ which provide a positive feedback
loop stimulating further proliferation of Th1 cells.

Whilst the Th2 response was initially characterized
as immunosuppressive, it is now recognized to mediate
acute rejection, at least under certain circumstances (30).
Differentiation toward the Th2 phenotype is promoted by IL-4;
Th2 cells themselves then produce IL-4 and IL-5 providing
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another example of a positive feedback loop (31). Th17 cells
also play a role in acute TCMR. However, the relationship
between Th1 and Th17 differentiation remains unclear as Th17
differentiation is inhibited by IFN-γ (32). Th17 differentiation
is however, provoked by pro-inflammatory mediators such as
Il-1, IL-6, IL-21 and IL-23 and TGF-β, prostaglandin E2 and
HMGB-1 (33).

Activated lymphocytes must migrate toward and gain access
to the liver in order to carry out their effector functions.
A pro-inflammatory microenvironment in the allograft promotes
endothelial secretion of IFN-γ inducible chemokines, namely
CXCL9 and CXCL10, which facilitate the attraction of circulating
leukocytes, including activated T-cells, expressing the chemokine
receptor CXCR3 (34). Leukocyte migration across target organ
endothelium typically follows a sequential process of (1)
tethering, (2) activation mediated by LFA-1/ICAM-1 and VLA-
4/VCAM-1 interactions and (3) crawling/transmigration through
the endothelium to gain access to the liver (35). However,
the main site of leukocyte recruitment in the liver is within
the sinusoids, mediated by LSEC, which possess a number of
unique immunomodulatory functions resulting in non-classical
mechanisms of lymphocyte recruitment (36). For example,
whereas CD8 + T-cell recruitment is largely mediated by ICAM-
1 (37, 38), Treg recruitment also involves molecules such as
stabilin-1 and VAP-1 (39). Neutrophil recruitment across LSEC
is independent of the selectin-mediated interactions known to
be important at other sites, instead relying on interactions
between LSEC-produced hyaluronan and neutrophilic CD44
(40). Furthermore, VAP-1 has been shown to mediate lymphocyte
migration across LSEC in an animal model of TCMR (41).
Manipulation of the immunological properties of LSEC therefore
provides a potential opportunity to shape the immune response
to the allograft.

Effector Responses
CD8+ Tc Cells
Primed CD8 + Tc cells are the main effector lymphocytes
responsible for mediating tissue damage. This process depends
on the binding of the TCR to the non-self donor-derived MHC
class I molecules widely expressed on biliary epithelial cells
(BEC), endothelium (portal, sinusoidal and centrilobular) and
hepatocytes. Activation of cytolytic activity is dependent on
interactions of cell adhesion molecules such as LFA1-ICAM1
and CD2-LFA3 as well as the TCR-MHC-peptide complex. The
cytolytic activity of Tc cells is mediated through two main
pathways: (1) the granzyme/perforin pathway in which the pore-
like perforin molecule is released from the T-cell, punctures the
cell membrane of the target cells facilitating entry of granzymes
to the target cell cytoplasm which initiates apoptosis and (2) the
Fas-FasL pathway in which activation of the Fas molecule on
the surface of target cells by its ligand FasL on Tc cells leads to
activation of the death domain in the cytoplasmic tail of Fas and
caspase-dependent apoptosis.

Hepatocytes are relatively resistant to Fas-FasL mediated
damage. Instead, other molecules of the TNF superfamily
receptors such as CD40, TRAIL and TNFR1-2 which fulfill a

similar role appear to be more important. Their expression
is upregulated on the surface of BEC and hepatocytes during
inflammation, facilitating Tc-mediated cell death (42–44).
Interestingly, there is emerging evidence that initial Tc-target cell
interactions may occur via cytoplasmic protrusions extending
from intra-sinusoidal T-cells (45).

CD4 + Th Cells
The pro-inflammatory Th1 response is considered to be the
main driver of acute TCMR. Continued production of IL-2 and
IFN-γ by Th1 cells is important for macrophage activation and
ongoing stimulation of CD8 + Tc cell subsets, which produces
further IFN-γ, acting as a positive feedback loop (33). Th1 subsets
also cause allograft damage directly through Fas-FasL mediated
cytotoxicity in the same manner as Tc cells (46).

Th1 and Th2 responses have an antagonistic relationship such
that production of the Th2 cytokines IL-4 and IL-10 inhibits
Th1 differentiation. Indeed, there is some evidence that under
certain circumstances a Th2 polarized response is tolerogenic
in the liver allograft (47). However, there is also considerable
evidence implicating Th2 cells as direct mediators of rejection
(30, 48, 49). Mechanisms include interaction between Th2 cells
and activated B-cells leading to the production of donor specific
antibodies, with proliferation of activated B-cells stimulated by
IL-2 production by Th1 cells, illustrating the cross-over between
cell- and antibody-mediated rejection. Th2 responses are also
important for the recruitment of eosinophils, which are present
in abundance in early TCMR.

Th17 cells exert tissue damaging functions by virtue of IL-
17 production which acts as a powerful signal for neutrophil
recruitment. Th17 cells are able to promote liver allograft
rejection in a rat model (50) and high levels of peripheral blood
Th17 levels have been associated with impaired tolerance in
clinical studies (51). The CXCR3 receptor has been shown to be
critical for Th17 cell migration into the inflamed liver; the cells
then home to portal tracts with particular tropism toward BEC
expressing the CCR6 ligand CCL20 (52). Subsequent work has
shown the active role of BEC in maintaining Th17 dominant
differentiation via release of IL-6 and IL-1β, and the stimulation
of BEC proliferation by Th17 cytokines (53). There appears to
be a degree of plasticity between Th17 and Treg differentiation
such that the two exist in a state of dynamic equilibrium; this
has generated interest in the importance of these divergent
populations in skewing the immune response toward rejection or
tolerance (see below).

Memory T-Cells
Following initial presentation of a novel antigen, a small number
of T-cells differentiate into long-lived memory T-cells rather than
effector cells. Memory cells reside in peripheral tissues and are
able to respond more rapidly and potently than naïve T-cells on
repeat exposure to the antigen. One of the main mechanisms for
this enhanced response is the reduced requirement for CD28-B7
co-stimulatory signals.

Counterintuitively, memory T-cells have been shown to play
a key role in the initial acute allograft rejection response as well
as in later episodes of TCMR despite the fact that the allograft
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is “new” to the recipient (54). Potentially alloreactive memory
T-cells can be demonstrated in the serum of healthy volunteers
(55) and higher numbers of alloreactive pre-transplant memory
T-cells correlate with an increased risk of post-transplant
rejection episodes (56). Potential mechanisms for the generation
of immunological memory in the pre-transplant population
include:

• Historical direct exposure to alloantigen via pregnancy or
blood transfusion.

• Heterologous immunity in which there is cross-reactivity
between a previously encountered pathogen-related
antigen and allogenic peptides.

• Homeostatic proliferation following lymphodepletion by
pharmacological immunosuppression. During this process
surviving T-cell to undergo homeostatic proliferation and
differentiation into “pseudo memory T-cells” despite never
having been presented with antigen (57).

Memory T-cells of the CD4 + helper class have the potential
to induce antibody mediated rejection via enhanced production
of donor specific antibodies by B-cells whereas CD8 + memory
T-cells are able to exert direct cytotoxic effects. Memory
T-cells are less sensitive to immunosuppressive treatments
compared with naïve T-cells and could be one reason why
some patients do not fully respond to standard treatments for
acute TCMR. As such memory T-cells are a potential barrier
to establishing tolerance and their impact on rejection requires
further study (58).

B-Cells
B-cells are not generally discussed in the context of TCMR.
However, B-cell deficiency in mice and humans has been
associated with delayed acute rejection (59). Potential
mechanisms include the activation of T-cells by B-cells
via costimulatory pathways and cytokine release and
promoting T-cell differentiation into memory T-cells (60).
B-cell presentation of donor antigen is enhanced during
liver allograft rejection and may provide a novel target for
immunosuppression (61). The main role of B-cells is however,
the production of antibody which is of key importance for
antibody mediated rejection.

Macrophages
The macrophage response is often conceptualized as being either
pro-inflammatory, stimulated by IFN-γ and lipopolysaccharide
(the so-called M1 phenotype) or immunosuppressive, stimulated
by IL-4 and IL-13 (the M2 phenotype). In acute rejection
many macrophages show features of polarization toward an M1
phenotype producing pro-inflammatory cytokines such as IL-1,
IL-12, IL-18, IL-6, IL-23, TNF-α and IFN-γ and reactive oxygen
and nitrogen species which cause direct cell damage and co-
ordinate a pro-inflammatory immune response (62). Recognition
of damaged allograft tissue is through the pattern recognition
receptors such as the toll-like receptors and macrophages have
a major phagocytic role in the clearing of damaged cells
(63). As antigen presenting cells intrahepatic macrophages are
able to present alloantigens in MHC class II molecules, thus

promoting the adaptive immune response. Unsurprisingly an
M1 macrophage response has been associated with allograft
rejection (64) whereas an immunosuppressive M2 response is
associated with tolerance (65). Early M1 macrophages have been
shown to differentiate into M2 macrophages following loss of co-
stimulatory signals (66). Macrophage polarization is mediated by
a number of cytokines and growth factors (67).

The M1/M2 framework for understanding macrophage
responses is however, an over-simplification. Whilst different
macrophage populations certainly possess divergent functions,
understanding macrophage biology is complicated by the
replacement of donor derived macrophages in the early
post-transplant by recipient derived cells differentiating from
circulating monocytes in the later period (68). Furthermore, the
phenotypic diversity of macrophage subsets within the liver does
not readily permit a binary classification (20). However, attempts
at further delineating the pathways involved in producing a more
immunosuppressive macrophage response are likely to feed into
therapeutic efforts to identify novel anti-rejection therapies.

Neutrophils
Neutrophils are often numerous in acute TCMR and may
be recruited to the allograft following PRI and as an early
effector response to adaptive alloimmunity, particularly in
response to Th17 activation. Neutrophils mediate cell damage
via ROS generation, numerous tissue-digesting enzymes such as
metalloproteinase-9 and neutrophil elastase (69), and possibly
through a unique form of programmed cell death (70).
As classical mediators of the acute inflammatory response,
neutrophils may also play a role in tipping the immunological
balance toward rejection following an episode of infection (71).
Intriguingly, neutrophils may also have a role to play in tolerance
mechanisms, having been shown to have the capability to inhibit
T-cell responses (72) and polarize macrophages toward a M2
phenotype in an animal model (73).

Eosinophils
In contrast to macrophages and neutrophils, which respond
primarily to a classical pro-inflammatory Th1 response,
eosinophil maturation and migration is orchestrated by Th2
cytokines such as IL-4 and IL-5. Eosinophils have long been
recognized as a key feature of TCMR in the liver (74) and
peripheral eosinophilia has been associated with rejection (75).
Cell damage is mediated by secretion of cytotoxic granules
including major basic protein which increases permeability
of cell membranes and eosinophil peroxidase. Of interest,
eosinophils also have receptors for Th1-associated cytokines
such as TNFα (76) and recruitment may therefore not be entirely
dependent on Th2 pathways.

NK Cells
Natural kill (NK) cells are lymphocytes that lack expression of
CD3, CD20 and other typical T- and B-cell markers, instead
expressing CD16 and CD56. NK cells can be stimulated by
both activating signals and the loss of inhibitory signals. In
the allograft potential activating signals come from molecules
such as MIC-A and MIC-B expressed by allograft tissue as a
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stress response to a pro-inflammatory environment (77). These
molecules are recognized by activating receptors on NK cells
such as NKG2D. Inhibitory signals come from self MHC class I
molecules which normally interact with the inhibitory receptors
on NK cells such as killer immunoglobulin-like receptors (KIRs).
In rejection it is postulated that the non-self MHC class I
molecules present on the cells of the allograft are unable to
maintain the inhibitory KIR signal (78). As such solid organ
allografts provide multiple mechanisms for activation of recipient
NK cells that have migrated to the graft.

NK cells are able to mediate cytotoxicity through production
of perforin and granzyme in a similar manner to Tc cells.
Activated NK cells and also produce INF-γ and TNF-α
promoting early adaptive immune responses and further tissue
damage, an effect demonstrated to be of importance in a rat
model of liver transplantation (79). NK cells also have the ability
to recognize antibody on target cells using Fc receptors, linking
the NK response to antibody mediated mechanisms.

However, many of the pathways linking recipient NK cells
with rejection remain unclear. A clinical study matching KIR and
MHC class I types did not impact upon allograft rejection or
clinical outcome (80). Whilst they are most likely of importance,
the precise mechanisms of NK-cell mediated rejection requires
further clarification.

Further populations of unconventional T-cells such as NK
T-cells and gamma delta T-cells may also play a role in rejection
and tolerance mechanisms, although at present an understanding
of their importance in the allograft is limited (81, 82).

THE IMMUNOLOGICAL BASIS OF
ANTIBODY MEDIATED REJECTION

The most severe form of antibody mediated rejection (AMR) is
hyperacute rejection which occurs in ABO-incompatible grafts
and is vanishingly rare in the liver. It results in acute liver
failure within hours to days (83). In contrast to other solid
organ transplants, the clinical significance of other forms of
AMR in the liver was initially unclear, but it is now generally
accepted that antibodies can mediate clinically significant
rejection episodes (84). Isolated acute AMR in the liver is
rare, has a clinical presentation that overlaps with TCMR and
may often quickly evolve into TCMR (85). Furthermore, biopsy
findings are not specific and a diagnosis of AMR requires
correlation with clinical, serological and immunohistochemical
data. The immunological basis of AMR is however, reasonably
well characterized, largely based on data from other solid organ
transplants, particularly the kidney.

Antibody Production
Donor specific antibodies (DSA) capable of causing AMR may
be either pre-formed or arise de novo post-transplant. The
presence of preformed alloantibodies can be explained by similar
mechanisms as those for pre-existing memory T-cells discussed
above. De novo antibody production occurs when naïve B-cells
interact with alloantigens (mainly MHC molecules) via the B-cell
receptor following classical adaptive immunological pathways.

In the presence of inflammatory signals such as IL-1 this
leads to B-cell activation, internalization and degradation of the
antigen by the B-cell and re-presentation of antigen fragments
by MHC class II molecules. These molecules are able to directly
interact with primed Th2 cells in an indirect manner of antigen
presentation (86). When co-stimulatory and cell adhesion signals
such as CD28-B7, CD40L-CD40, LFA-1-ICAM and CD2-LFA-
3 are also activated then B-cell division and differentiation
can occur. This process is facilitated by IL-2 production from
Th1 cells, in addition to Th2 cytokines such as IL-4 and IL-
5. Some activated B-cells differentiate into plasma cells and
begin production of DSA. Other cells migrate to lymph nodes
forming germinal centers and undergo a process of somatic
hypermutation and affinity maturation, refining and amplifying
the antibody response. Mature plasma cells are able to produce
antibodies indefinitely without T-cell help (87). Memory B-cells
are also produced facilitating ongoing episodes of rejection.

Antibody Effector Functions
The main targets of DSA are the non-self class I and II MHC
molecules expressed by endothelial cells within the liver
allograft, the latter being significantly upregulated by pro-
inflammatory signals. Anti-MHC class I antibodies tend to
appear earlier, while anti-MHC class II antibodies (particularly
anti-HLA-DQ antibodies) develop in the later post-transplant
period (88). Interaction between DSA and their target antigen
causes activation of the classical pathway of the complement
system via the binding of C1q to the Fc regions of bound
DSA (Figure 3A). This initiates an enzyme cascade producing
biologically active complement effector functions. Although the
role of these mediators in AMR has not been fully elucidated
in the liver, chemotactic signals such as C3a and C5a are
potent inflammatory mediators (anaphylatoxins) likely to
be important for activating mast cells and basophils and
recruiting macrophages and granulocytes including eosinophils,
macrophage activation and increasing vascular permeability (89).
Production of C3d opsonizes target cells by covalent bonding
promoting phagocytosis. C5b forms the membrane attack
complex C5b-9 with the potential to cause direct endothelial
damage via puncture of the cell membrane with the pore,
although expression of CD59 (also known as protectin) may
provide endothelial cells with some resistance to this form of
injury (90). The non-lytic binding of the C5b-9 complex to
the endothelial surface also induces the expression of several
pro-inflammatory proteins including IL-6, E-Selectin, and
VCAM-1, and upregulates expression of IFN-γ and MHC
molecules endothelial cells further amplifying the antibody
response (91). Complement also interacts with the adaptive
immune system, augmenting T-cell mediated rejection (92).
Immunohistochemical demonstration of C4d deposition on
allograft vasculature is used as a marker of complement system
activation and AMR. C4d is a product of C4b degradation and
is a more sensitive marker of antibody binding than direct
measurement of immunoglobulin deposition because C4d shows
covalent bonding to the endothelial surface and amplifies the
immunoglobulin signal.
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FIGURE 3 | (A) Complement-dependent mechanisms of antibody mediated rejection. Binding of donor specific antibody (DSA) to MHC molecules on the liver
allograft causes activation of the classical pathway of complement via binding of the C1 complex. Complement has the potential to damage the graft through three
main mechanisms: (1) Opsonization. C4d and C3d covalently bind to target cells marking them for destruction and clearing by cells of the innate immune system. (2)
Anaphylatoxin production. C3a and C5a act as potent chemotactic signals recruiting inflammatory cells which cause localized tissue damage. (3) Membrane attack
complex (MAC). The C5b-9 MAC has the potential to damage cells by puncturing holes in the membrane, although this action is normally inhibited by endothelial
expression of CD59 (protectin). Non-lytic binding of the MAC induces endothelial upregulation of pro-inflammatory, lymphocyte recruitment, and MHC molecules,
thus potentiating the rejection response. (B) Complement-independent mechanisms of antibody mediated rejection. DSA binding to MHC molecules promotes the
recruitment of cells of the innate immune system such as neutrophils, macrophages and NK cells via interactions with the FC receptor. These inflammatory cells are
stimulated to cause graft injury via their various effector mechanisms (see text for details). DSA binding also stimulates intracellular signaling pathways.

Although complement appears to be the main mechanism
of tissue damage in AMR, it is increasingly recognized
that complement-independent pathways are also important
(Figure 3B). One mechanism involves the binding of Fc
receptors on neutrophils, macrophages and NK cells to bound

DSAs. The resulting activation of these cells of the innate
immune system triggers a cascade of pro-inflammatory pathways
leading to endothelial cell damage (90). Another complement-
independent mechanism involves the direct activation of
intracellular signaling pathways within endothelial cells by the
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binding of DSA to MHC molecules, resulting in structural
changes to cytoskeletal proteins, increased cellular proliferation,
increased production of von Willebrand factor and P-selectin and
the enhanced expression of CD59 conferring resistance to C5b-9
mediated attack (88, 93).

Thus the end result of DSA binding to allograft endothelium
is endothelial damage and swelling, formation of microthrombi,
platelet aggregates and inflammation. In acute AMR of the
liver these changes generally manifest as portal edema and
hemorrhage, bile ductular reaction, and dilatation of portal
microvessels (94). Portal eosinophilia, eosinophilic central
venulitis and portal microvessel endothelial hypertrophy and
“hobnailing” have been identified as more specific features (95).

TOLERANCE MECHANISMS IN THE
LIVER ALLOGRAFT

Allograft tolerance is mediated by immunological dampening
and inhibition of the rejection response (Figure 4). The
liver is considered relatively tolerogenic compared with other
solid organ transplants, allowing routine transplantation of
non-HLA matched organs. “True tolerance” occurs when
there is no demonstrable immunological response to the
allograft and is a rare event (96). Nonetheless, 20% of adults
and up to 65% of pediatric liver allograft recipients can
exhibit preserved graft function for at least 1 year after
weaning immunosuppression, despite many showing persistent
subclinical immunological markers of rejection (97, 98); this is
referred to as “operational tolerance.”

The explanation for the relative tolerogenicity of the
liver is multifactorial: (1) The large size of the organ
results in a far greater endothelial surface area over which
antibodies are diluted, thus attenuating their effects, (2) The
liver has an inherent regenerative capacity such that tissue
destruction by episodes of rejection is potentially reversible,
(3) Expression of MHC class II molecules on liver cells
is variable compared with the constitutive expression seen
in kidneys and hearts, (4) cell-specific mechanisms operate
to attenuate the rejection response, as discussed below.
Enhanced tolerance in the liver has an evolutionary basis
since 75% of hepatic blood flow is from the portal vein
which collects blood from the gastrointestinal tract enriched
with microbial antigens. Thus, the hepatic immune system has
evolved to tightly regulate immune reactions to harmless gut-
derived micro-organisms in order to avoid inappropriate pro-
inflammatory responses. These mechanisms are of importance
for allograft tolerance.

Mesenchymal Stromal Cells
Mesenchymal stromal cells (MSCs) are localized in the liver
and although they are yet to be fully characterized, their
ability to modulate the immune response is well recognized
(99). These cells can be found in the perivascular space of
virtually all organs (100). It is interesting to compare two
highly tolerogenic organs, both extremely vascularized, such
liver and placenta. Intriguingly in both the organs MSCs seem

to play a decisive role in maintaining tolerance. In a similar
manner to the tolerance required in the liver for gut-derived
micro-organisms, the placenta needs to maintain a tolerogenic
environment to allow the fetus to develop. During pregnancy
several immunoregulatory mechanisms ensure the protections
of the fetus which expresses paternal antigens, recognized as
non-self by maternal immune system. MSCs can interact with
APCs to re-program them toward a tolerant phenotype as evident
from increased IL-10 secretion. Moreover, they can modulate
the co-stimulatory signal on DCs inducing pro-stimulatory
functions (99). MSCs can reduce the activity of T-cells using
different mechanisms, for example by secretion of indoleamine
2,3-dioxygenase (IDO), an enzyme capable of metabolizing the
amino acid tryptophan to kynurenine. T-cells rely on this amino
acid to become activated, and the depletion of tryptophan induces
apoptosis or inhibiting their proliferation and differentiation by
cell to cell contact, a process mediated by PD-L1 (101, 102).

Tolerogenic Antigen Presentation
Successful T-cell activation and differentiation depends upon the
presence of co-stimulatory molecules such as CD28-B7 and a pro-
inflammatory microenvironment mediated by cytokines such as
IL-12. In the absence of these factors alloantigen presentation
leads to anergy, a state in which the T-cell is unable to mount
an effector response, and cell death.

Whilst DC antigen presentation is a major driver of
rejection, a range of tolerogenic DC phenotypes have also
been identified in the liver (103, 104). These cells are
characterized by low levels of MHC class II and co-stimulatory
molecule expression, low levels of IL-12 production, and
high levels of IL-10 production; the latter stimulating Treg
differentiation and inhibiting production of pro-inflammatory
cytokines by macrophages (105, 106). Furthermore, some DC
subtypes express PD-L1, which binds to PD-1 on T-cells
inhibiting the CD28-B7 co-stimulatory signal and arresting T-cell
maturation (107–109). Macrophage colony-stimulating factor
(110) and hepatocyte growth factor (111) favor differentiation
toward tolerogenic DC whereas FLT3L is associated with an
activated alloreactive phenotype (112). Tolerogenic DC have
been demonstrated in secondary lymphoid tissue following liver
allograft (113) and upregulation of MHC class II and B7 in
these cells leads to rejection (114). The possibility of harnessing
this mechanism with pre-transplantation infusion of donor-
derived tolerogenic DC is now being explored in the clinical
setting (115).

Kupffer cells, LSEC, hepatocytes and hepatic stellate cells also
have the ability to express MHC class I and II, particularly in
pro-inflammatory states, and thus have the potential to activate
alloreactive T-cells (103, 116, 117). However, in common with
tolerogenic DC, non-professional antigen presentation in the
liver tends to lack sufficient co-stimulatory B7 expression, to
over-express PD-L1 and PD-L2 and to produce IL-10 and TGF-
β, thus favoring tolerogenesis (118, 119). In support of these
observations, T-cell activation in lymphoid tissue is generally
much more potent than in the liver (120). However, under
conditions of high antigen load local hepatic antigen presentation
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FIGURE 4 | Cellular mechanisms of liver allograft tolerance. A number of cells are able to promote tolerance in the liver allograft. Under normal non-inflamed
conditions dendritic cells express low level of co-stimulatory molecules which along with the high expression of PDL1 induces T-cell anergy or deletion of the
alloreactive T-cell clone. DCs also promote tolerance by secreting IL-10 and TGF-β which induces the differentiation of Tregs. CTLA4 on Tregs surface binds B7 on
DC with a higher affinity than CD28, impairing DC-T-cell interactions. Tregs also contribute to the tolerogenic microenvironment also secreting TGF-β, IL-10 and
IL-35, binding IL-2 on CD25 with higher affinity then T effector cells and by direct cytotoxicity through granzyme, perforin and Fas-FasL pathway. In contrast to
recipient derived NK cells which tend to mediate rejection, donor derived NK cells transplanted as passenger cells within the liver allograft are able to directly lyse
alloreactive recipient immune cells via NKG2D-MIC-A and TRAIL-TRAILR interactions leading to caspase-induced cell death. Mesenchymal stromal cells (MSCs)
suppress T-cell proliferation and differentiation through the IDO pathway and cell-cell contact mediated by PDL1. Kupffer cells may be polarized to the M2 phenotype
producing IL-10 and TGF-β and thus promoting tolerance. They can also release NO if stimulated by IFN-γ to inhibit T-cell proliferation. LSEC acts as
non-professional antigen presenting cells with generally low levels of MHC class II expression; under many conditions induces antigen-specific tolerance. LSEC
along with hepatic stellate cells induce T-cell apoptosis through PDL1/PD1 pathway interactions.

is able to overcome tolerogenic barriers and successfully stimulate
CD8 + Tc activation (121).

Regulatory T-Cells
Regulatory T-cells (Treg) are a population of T-cells that suppress
immune responses and maintain immune homeostasis and self-
tolerance. They differentiate either in the thymus or in the
periphery and multiple subtypes have been described, of which
the CD4 + /CD25 + /FOXP3 + is the prototypical example
(122). There is a close reciprocal relationship between Treg and
Th17 differentiation: TGF-β in the absence of pro-inflammatory
cytokines induces FOXP3 expression and Treg differentiation,
whereas if pro-inflammatory cytokines are also present then
TGF-β induces Th17 differentiation (123). Treg control effector
T-cells via several distinct mechanisms: (1) production of

immunosuppressive cytokines such as IL-10, TFG-β and IL-
35, (2) consumption of IL-2 via the Treg CD25 receptor, thus
depriving activated T-cells of the main driver of proliferation,
(3) direct cytotoxicity via granzyme/perforin and Fas-FasL-
dependent pathways and (4) constitutive Treg expression of
CTLA-4 which acts as an alternative inhibitory ligand for B7 on
DC with a higher affinity than the co-stimulatory molecule CD28,
thus impairing DC-T-cell interactions (124).

The importance of Treg in liver transplantation has been
demonstrated through a liver allograft model in which tolerant
mice treated with Treg depleting anti-CD25 antibodies
experienced rejection with a reduced Treg/T-effector cell
ratio (125). Moreover, animal models have demonstrated Treg
stimulated in vitro with alloantigens capable of inducing long-
term tolerance (126). In clinical studies increased numbers of
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circulating Treg are associated with tolerance of the allograft
liver (127). Treg are also enriched in operationally tolerant liver
allograft recipients (128).

Activation-Induced Deletion of Recipient
Effector Lymphocytes
The liver retains tolerogenic potential even when tissue
destructive alloreactive T-cells have gained access to the
parenchyma and begun to mediate tissue damage. Several
groups have demonstrated that such alloreactive T-cells undergo
cell death either via apoptosis (129, 130) or lysosome-
mediated degradation by hepatocytes (131). This process is
at least partially dependent on Treg (125) and provides
a mechanism for modulating the rejection response into
one of tolerance.

NK Cells
NK cells are a major component of the resident lymphoid
cell population in the normal liver (132). As such, the
transplanted liver contains a significant population of donor-
derived NK cells, which have been shown to persist for up
to 2 years post-transplant (133). In contrast to recipient-
derived cells, donor-derived NK cells do not lose the inhibitory
KIR-MHC class I signal upon interaction with donor cells,
instead being potentially activated by infiltrating recipient-
derived leukocytes. In line with this hypothesis, expanded
NK cell populations have been identified in liver transplant
patients successfully weaned from immunosuppression (134).
Donor-derived NK cells cause direct lysis of alloreactive
recipient immune cells via NKG2D-MIC-A and TRAIL-TRAILR
interactions leading to caspase-induced cell death (135). Hence,
recipient-derived NK cells are likely to mediate rejection whereas
donor-derived NK cells are likely to be tolerogenic (135).
However, the situation may be complicated by the emergence
of tolerogenic recipient-derived NK cell populations, arising
through mechanisms such as dysregulation of the IL-12/STAT4
pathway (136).

Chimerism
Chimerism is defined as the presence of donor-derived
cells within non-transplanted host organs and has been
well documented following liver transplantation (137). This
phenomenon has the ability to facilitate tolerance through
deletion of alloreactive T-cells within the thymus and through
peripheral effects by interactions between recipient- and donor-
derived leukocytes. Whilst there are occasional case reports
of complete hematopoietic chimerism occurring post-liver
transplant (138), persistence of T-cell chimerism beyond the
initial few weeks following liver transplantation is considered
unusual (139). Furthermore, even patients with high degrees of
chimerism continue to exhibit in vitro alloimmune responses
up to 1 year post-transplant (140) and may still suffer
clinically significant rejection episodes (141, 142). Despite these
conflicting data, therapeutic options for inducing chimerism
such as combined hematopoietic stem cells and solid organ
transplant, thymus transplantation and intra-thymic injection of

donor alloantigens, remain an exciting avenue for promoting
tolerance (143).

FUTURE THERAPEUTIC STRATEGIES TO
INDUCE LONG TERM TOLERANCE

The currently recommended immunosuppression regimens have
significantly reduced the occurrence of acute rejection and
improved outcomes for transplant recipients. However, this
comes at the price of increased risk of infections and neoplasia
compared with the background population. Currently, patients
are treated with a calcineurin inhibitor, either tacrolimus or
cyclosporine, along with an antiproliferative drug such as
mycophenolate mofetil (Figure 5). These drugs target all T-cell
populations and prevent the normal activation and function of
both effector and regulatory T-cells. Biological drugs targeting
specific pathways continue to be tested in an attempt to reduce
the side effects. Some biological agents already in clinical
use include the monoclonal antibodies alemtuzumab (anti-
CD52) and anti-thymocyte globulin. These drugs broadly target
most lymphocyte populations, including regulatory subtypes.
Interestingly, Treg and regulatory B-cells are among the first
to re-populate the peripheral blood in patients treated with
these agents, helping to pushing the balance in favor of the
tolerance (144, 145).

Treg-based cell therapy is a promising alternative approach
to promote allograft acceptance, potentially minimizing reliance
on traditional immunosuppression (146–150). An early approach
involved infusing donor antigen-specific Treg and allowed seven
out of ten patients to successfully wean from immunosuppression
by 18 months post-transplantation (151). Recently data from the
ONE study have been published, demonstrating that Treg cell
therapy in donor kidney transplant recipients is safe, although
missing the efficacy endpoint (152). Other transplant centers
have ongoing clinical trials mainly focusing on manufacturing
alloantigen-specific Treg (Table 1). This is based on the evidence
that alloantigen specific Treg exhibit a better suppressive function
toward the alloreactive T effector cells than polyclonal Treg (153,
154). The in vitro expansion of the antigen-specific Treg using
antigen presenting cells is inefficient due to the small number of
cells in the original polyclonal population. A different solution is
to engineer human T-cells with genes encoding for the chimeric
antigen receptor (CAR). CAR T-cells were approved for clinical
usage in 2017 and have since been proved to be effective in
cancer treatment and in preventing allograft rejection (155, 156).
The in vivo expansion of Treg represents another interesting
therapeutic strategy. Treg express a higher affinity for IL-2 thus
the usage of a very low dose of this molecule can expand the Treg
pool in vivo up to eight times without significantly increasing the
number of T effector cells (157).

In order to suppress T cell proliferation and activation,
MSC-therapy based offers an opportunity to promote the
tolerance and reduce the immunosuppressive dose in solid organ
transplantation. Although the variation in cell product and the
heterogeneity of tissue origin makes interpretation of previous
clinical studies challenging, MSC therapy is certainly promising.
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FIGURE 5 | Treatment targets of immunosuppression. The main targets of the immunosuppressive drugs.

TABLE 1 | Registered clinical trials involving regulatory T-cell therapy in liver transplantation.

Trial Institution Phase of the
study

Primary outcome Infused Treg
clonality

Number of
patients enrolled

Status

Todo/Okomura Hokkaido, Japan Phase I/IIA – Safety
– IS weaning
– Number of Operationally Tolerant

participants

Donor specific 10 Data published
(148)

ARTEMIS
(NCT02474199)

UCSF,
United States

Phase I/II – Safety
– Incidence of AR, CR, re-transplantation,

and death
– Patients Who Are Able to Reduce CNI

Dosing and Discontinue a Second IS Drug
with stable LFTs

Donor specific 14 Completed

dELTA
(NCT02188719)

UCSF,
United States

Phase I – Safety Donor specific 15 Terminated

LITTMUS-UCSF
(NCT03654040)

UCSF,
United States

Phase I/II – Safety
– Number of Operationally Tolerant

participants

Donor specific N.A. Withdrawn

LITTMUS-MGH
(NCT03577431)

MGH,
United States

Phase I/II – Safety
– Number of Operationally Tolerant

participants

Donor specific 9* Recruiting

ThRIL
(NCT02166177)

King’s college
Hospital,
United Kingdom

Phase I/II – Rate of dose limiting toxicities
– Graft Loss

Polyclonal 9 Completed

NCT01624077
(First Trial)

Nanjing, China Phase I – Patient and graft survival Polyclonal 1* Unknown

NCT01624077
(Second Trial)

Nanjing, China Phase I – Patient and graft survival Donor specific 1* Unknown

From Clinicalgrials.gov, last accessed 19/05/2020. Abbreviations: IS, immunosuppression; AR, acute rejection; CR, chronic rejection; LFT, liver function tests. *Estimated.
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Currently the ongoing mYSTEP1 trial is testing safety and efficacy
of donor derived bone marrow MSC pediatric living-donor liver
transplantation (158).

Another cell therapy-based strategy has been proposed as
immunomodulatory treatment using tolerogenic DC with low
expression of MHC I and II and costimulatory B7 molecules and
increased expression of PD-L1. These cells are readily derived
from fresh or cryopreserved bone marrow derived progenitors
(159). The infusion of ex vivo donor derived DCreg before
transplant was shown to be effective in inducing liver transplant
tolerance in murine models, inducing T-cell hyporeactivity
thus extending liver allograft survival (160). Mesenchymal
stromal cells are also being explored as a potential cell based
therapy. These are multipotent cells isolated from tissues such as
bone marrow, subcutaneous fat, umbilical cord and tooth pulp,
with the ability to suppress immune responses via multiple cell to
cell interactions and cytokine release (161). Infusion of these cells
has been shown to prevent rejection in liver transplant animal
models (162, 163).

Novel therapeutic strategies like ex vivo perfusion are already
augmenting the pool of transplantable organs (164). Organ
reconditioning strategies have already been applied in animal
models to reduce the ischemia reperfusion injury by the infusion
of MSCs or other anti-inflammatory agents (165) or to reduce
steatosis using defatting agents before transplantation (166).
Organ machine perfusion opens the door to a different approach
to try to induce the tolerance by the infusion of tolerogenic
molecules or treating the graft by immunomodulatory cells prior
to implantation in the donor.

CONCLUSION

Despite major improvements in clinical outcomes following
liver transplantation, the majority of patients remain
dependent on long term immunosuppressive regimens. This
highlights the persistence of alloreactive immunological
processes and their tendency to overcome the specific
tolerogenic mechanisms of the liver and cause rejection.
Further elucidation of the underlying immunology will
add to our understanding of this complex phenomenon.
Meanwhile, several translational studies, including cell-
based therapy approaches, offer the potential of enhancing
tolerogenicity whilst avoiding the side effects of current
therapeutic strategies.
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