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Neutrophilic inflammation correlates with mortality in fibrotic interstitial lung disease (ILD)

particularly in the most severe form, idiopathic pulmonary fibrosis (IPF), although the

underlying mechanisms remain unclear. Neutrophil function is modulated by numerous

factors, including integrin activation, inflammatory cytokines and hypoxia. Hypoxia has

an important role in inflammation and may also contribute to pulmonary disease. We

aimed to determine how neutrophil activation occurs in ILD and the relative importance

of hypoxia. Using lung biopsies and bronchoalveolar lavage (BAL) fluid from ILD patients

we investigated the extent of hypoxia and neutrophil activation in ILD lungs. Then we

used ex vivo neutrophils isolated from healthy volunteers and BAL from patients with ILD

and non-ILD controls to further investigate aberrant neutrophil activation in hypoxia and

ILD. We demonstrate for the first time using intracellular staining, HIF-1α stabilization

in neutrophils and endothelial cells in ILD lung biopsies. Hypoxia enhanced both

spontaneous (+1.31-fold, p< 0.05) and phorbol 12-myristate 13-acetate (PMA)-induced

(+1.65-fold, p < 0.001) neutrophil extracellular trap (NET) release, neutrophil adhesion

(+8.8-fold, <0.05), and trans-endothelial migration (+1.9-fold, p < 0.05). Hypoxia also

increased neutrophil expression of the αM (+3.1-fold, p < 0.001) and αX (+1.6-fold,

p < 0.01) integrin subunits. Interestingly, NET formation was induced by αMβ2 integrin

activation and prevented by cation chelation. Finally, we observed NET-like structures

in IPF lung sections and in the BAL from ILD patients, and quantification showed

increased cell-free DNA content (+5.5-fold, p < 0.01) and MPO-citrullinated histone

H3 complexes (+21.9-fold, p < 0.01) in BAL from ILD patients compared to non-ILD

controls. In conclusion, HIF-1α upregulation may augment neutrophil recruitment and

activation within the lung interstitium through activation of β2 integrins. Our results identify

a novel HIF-1α- αMβ2 integrin axis in NET formation for future exploration in therapeutic

approaches to fibrotic ILD.
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INTRODUCTION

The interstitial lung diseases (ILD) are a group of diffuse
parenchymal lung disorders that can result in pulmonary
fibrosis (PF) (1). Despite recent advances in diagnostics
and therapeutics, ILD is still associated with substantial
morbidity and mortality (2). Neutrophil activation may be
important in ILD, particularly the most severe fibrotic form,
idiopathic PF (IPF). The pathogenesis of IPF is unknown
but is thought to involve a “frustrated repair” response to
repetitive epithelial injury, with associations to genes and
proteins linked to epithelial function, integrity and repair.
Progressive epithelial damage, and abnormal wound repair
leads to extensive scar formation and correlates, clinically, with
worsening hypoxia. Increasing desaturation during exercise (3)
or sleep (4) is a significant predictor of mortality. Further
evidence from animal models suggests that hypoxia may
actually contribute to a vicious cycle of disease progression
(5). This evidence has led to the view that hypoxia itself may
contribute to worsening of PF but the mechanistic pathway
is unknown.

Hypoxia, a state in which oxygen supply is inadequate for
tissue demands, modulates gene expression via transcriptions
factors called hypoxia inducible factors (HIF). There are 3
members of the HIF family, HIF-1α, HIF-2α, and HIF-3α, which
bind conserved DNA sequences or Hypoxia Response Elements
(HRE). Although it seems plausible that the IPF lung is hypoxic
much of the evidence is indirect. Levels of lactic acid, a metabolite
generated in response to hypoxia, are high in IPF lung tissue
supporting the concept of a hypoxic microenvironment (6) and

HIF-1α and -2α have been shown, ex vivo, to be expressed in

lung biopsies from patients with IPF, in some but not all reports

(7, 8). Additional genomic studies in IPF patients show up-

regulation of hypoxia-related gene signatures, including TGF-
β (9), the key fibrotic cytokine in PF, and of the HIF-1α
pathways (8, 10).

The contribution of neutrophils to ILD has also been
relatively less studied compared to other inflammatory and
fibrotic diseases. Early studies began to explore the potential
role of neutrophils in IPF (11–14), however research focus has
since shifted to other cell types. The number of neutrophils
in the bronchoalveolar lavage (BAL) fluid has been shown to
predict both disease severity in IPF (15) and the development
of PF in patients with hypersensitivity pneumonitis (16). In
addition, neutrophil extracellular traps (NETs) have been shown
to indirectly drive PF by stimulation of collagen production
from fibroblasts in vitro (17), and NET release has been
associated with PF in older mice in vivo (18) with loss of
peptidyl arginine deiminase (PAD)-4, a key neutrophil enzyme
for NET formation, being protective (18). Neutrophils are
also associated with disease severity in acute lung injury and
acute respiratory distress syndrome (ARDS) (19, 20) however,
their precise contribution remains uncertain (21). Neutrophil
depletion can ameliorate disease features in mouse models of
ARDS (22) and a reduction in neutrophil infiltration (23), or
knock-down of neutrophil elastase (NE) attenuates fibrosis in
bleomycin-induced mouse models of PF (24). Taken together,

these studies implicate a contributory role of neutrophils to
fibrotic ILD.

Neutrophil survival is a tightly regulated process. Prolonged
survival can delay resolution of inflammation and can cause
damage to surrounding cells and tissues; however, if apoptosis
is premature, antimicrobial function can be compromised
(25). Hypoxia drives neutrophil survival via HIF-1α-dependent
NF-κB activation (26). In addition, HIF-2α has also been
shown to be important in regulating neutrophil function
(27). Few reports address the effects of hypoxia upon NET
formation. Inhibition of HIF-1α can reduce NET release
(28), whilst pharmacological stabilization of HIF-1α increases
phagocyte bactericidal activity (29) and NET release (30),
implicating a role for down-stream targets of HIF-1α in
leukocyte function.

Given the importance of hypoxia and HIF signaling in
neutrophil function and the emerging role of neutrophils as key
drivers of ILD, we sought evidence for hypoxia and NETs in
the lungs of patients with ILD and the functional effects of low
oxygen levels upon ex vivo neutrophil function and activation.

MATERIALS AND METHODS

Bronchoalveolar Lavage
Fiber-optic bronchoscopy with BAL was performed in line with
the American Thoracic Society guidelines (31). BAL was frozen
for later analysis. None of the patients undergoing bronchoscopy
had any infections at the time of procedure.

Patient Demographics
BAL was obtained from 11 patients with fibrotic ILD and
seven non-ILD controls undergoing diagnostic bronchoscopies.
Demographics, clinical history and treatments at the time
of sample collection are listed in Table 1. Within the ILD
cohort: 4 (36%) had IPF, 3 (27%) had nonspecific interstitial
pneumonia, 3 (27%) had chronic hypersensitivity pneumonitis
(HP) and 1 (10%) had unclassifiable ILD. Our non-ILD
control group underwent diagnostic bronchoscopy due to: 5
(71%) investigation of haemoptysis, 1 (14.5%) right middle
lobe collapse and 1 (14.5%) previous tracheal schwannoma
patients undergoing yearly bronchial surveillance. Only the
ILD group had lung function tests, as part of standard
patient care. None of the patients recruited were taking
anti-fibrotic drugs at the time of bronchoscopy. Differential
cell counts obtained from BAL from patients are listed in
Supplementary Table 1.

Immunohistochemistry (IHC)
Lung biopsies were collected as part of routine clinical care.
Ethical approval was given by the UK National Research
Ethics Committee (13/LO/0900). IHC was performed using the
automated Bond-Max system (Leica Biosystems Ltd., Newcastle)
with 4µm FFPE sections. HIF-1α (clone EP1215Y, Abcam,
1:600 dilution), myeloperoxidase (MPO) (polyclonal, Dako,
1:300 dilution) or NE (clone NP57, Dako, 1:100 dilution) was
incubated in Epitope Retrieval Solution 2 for 20min and stained
using the 30, 20, 20 protocol. Test antibodies were controlled
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TABLE 1 | Patient clinical and demographic data.

ILD Non-ILD Control

Cohort size (n) 11 7

Age (years ±SD) 69 ± 5.9 51 ± 10.1

Sex (M:F) 8:3 4:3

Smoking Status

(current:ever:never)

2:6:3 1:2:4

Clinical Features

Diagnosis IPF (4), fibrotic NSIP

(3), chronic HP (3),

unclassifiable ILD (1)

Haemoptysis (5), RML

collapse (1), tracheal

schwannoma (1)

Forced Vital

Capacity (FVC)

(liters) (mean ±

SD) [% predicted]

2.7 ± 0.9 [80.4 ±

17.6%]

–

O2 saturation

(mean ± SD)

96.2 ± 1.7% –

TLCO

(mmol/min/kPa)

(mean ± SD)

50.8 ± 12.3 –

Current Medications

Corticosteroids Inhaled Budesonide/formoterol

fumarate dihydrate (1),

fluticasone

propionate/salmeterol

xinafoate (1)

Budesonide/formoterol

fumarate dihydrate (1)

Oral Methyl-prednisolone

(1), prednisolone (1)

Prednisolone (1)

Nonsteroidal

anti-inflammatory

drugs

Aspirin (4) Naproxen (1)

Clinical details were recorded for all subjects at the time of bronchoalveolar lavage. Our

ILD cohort had a mean age of 69 ± 5.9 years and consisted of four patients with IPF,

three patients with fibrotic NSIP, three patients with chronic HP and one patient with

unclassifiable ILD. Our non-ILD control group had a mean age of 51 ± 10.1 years and

consisted of five patients with haemoptysis, one patient with RML collapse and one patient

with tracheal schwannoma. Lung function was only obtained for the ILD cohort as part of

standard care. FVC, forced vital capacity; HP, hypersensitivity pneumonitis; ILD, interstitial

lung disease; IPF, idiopathic pulmonary fibrosis; NSIP, nonspecific interstitial pneumonia;

RML, right middle lobe; TLCO, transfer factor for carbon monoxide.

for using species- and isotype-matched control antibodies.
Slides were scanned on a Nanozoomer Digital Slide Scanner
and images analyzed using NDP viewer software (Hamamatsu
Corportation). A “blinded” reviewer analyzed five randomly
selected areas from each subject. Representative images were
chosen from those selected.

Neutrophil Isolation
Neutrophils were isolated as previously described (32). In brief,
neutrophils were isolated by Percoll PLUS density centrifugation
from sodium citrate anticoagulated blood obtained by informed
consent from healthy volunteers. Neutrophils were diluted to 2×
106 neutrophils/ml in phenol-free RPMI (Thermo Scientific, UK)
supplemented with 10% heat-inactivated FBS (Thermo Scientific,
UK) and 2mM L-gluatamine (Lonza, UK). To induce hypoxia,
neutrophils were cultured under 1% oxygen in a Coy oxygen

control glove box (Coy Laboratory Products Inc., USA) in a
temperature controlled and humidified incubator.

Endothelial Cell Culture
Human umbilical cord vein endothelial cells (HUVEC) (Lonza,
Switzerland) were cultured in endothelial growthmedia 2 (Lonza,
Switzerland) supplemented with 10% FBS (Thermo Scientific,
UK) and 2mM L-glutamine (Lonza, Switzerland) and used
at passage 5. For endothelial activation, HUVEC were treated
with 10 ng/ml TNF-α (R&D Systems, UK) for 24 h prior to
experimentation. To induce hypoxia, HUVEC were cultured
under 1% oxygen in a Coy oxygen control glove box (Coy
Laboratory Products Inc., USA) in a temperature controlled and
humidified incubator.

Hydrogen Peroxide Generation
H2O2 generation was measured as previously described (32). In
brief, neutrophils were cultured under normoxia or hypoxia for
1 h before addition of HRP (Sigma, UK) and Amplex R© UltraRed
(Invitrogen, UK). H2O2 generation in response to phorbol 12-
myristate 13-acetate (PMA) (Sigma, UK) was recorded using a
FLUOstar Omega microplate reader (BMG Labetech, Germany)
and rates (expressed in nM/sec) determined using Omega Mars
Analysis software (BMG Labtech, Germany).

NET Quantification
NETs were quantified using the Quanti-iTTM PicoGreen R©

dsDNA kit (Invitrogen, UK) and using a capture ELISA.
Streptavidin-coated plates (Fisher Scientific, UK) were coated
with an anti-MPO capture antibody (Abcam, UK) overnight
at 4◦ C and blocked with 0.5% bovine serum albumin for 1 h
at 37◦ C. Neutrophil supernatants were incubated for 2 h at
37◦ C. Further 1 h incubations were performed with an anti-
citrullinated histone H3 detection antibody (Abcam, UK) and
HRP-conjugated secondary antibody (Dako, UK). SureBlue TMB
Microwell Peroxidase Substrate (KPL, UK) was then added and
incubated in the dark at 37◦ C for 20min and then stopped by the
addition of TMB stop solution (KPL, UK). Absorbance was read
at 450 nm using a Tecan GENios Spectra FLUOR plate reader
(Tecan UK Ltd., UK).

NET Immunofluorescence
NETs were stained for immunofluorescence microscopy as
described (32) using methodology modified from (33). In brief,
5 × 105 neutrophils were added to fibrinogen-coated coverslips,
stimulated for 4 h with 40 nM PMA, 0.5mM MnCl2 or varying
concentrations of leukadherin-1 (LA-1; Sigma, UK), and fixed
with 4% PFA. Coverslips were blocked and sequentially incubated
with an anti-histone H3 antibody (Abcam, UK) and Alexa
Fluor R© 488-conjugated goat anti-rabbit IgG secondary antibody
(Life Technologies, UK). Coverslips were washed, mounted, and
sealed using with ProLongTM Gold antifade mountant with DAPI
(Invitrogen, UK). Slides were visualized using a Zeiss Axio
Imager.A1 inverted fluorescence microscope (Zeiss, Germany)
and images analyzed using Image J.
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Lung Tissue Confocal
Immunofluorescence
Lung sections were stained using a modified protocol based
on published reports (34, 35). Five micrometer sections from
paraffin-embedded lung biopsies from control or IPF patients
were dewaxed prior to heat-induced epitope retrieval with Tris-
EDTA buffer, pH 9.0. Sections were blocked with Fc block (BD
biosciences, UK) before incubation with a blocking buffer (5%
goat serum/2.5% BSA/PBS/0.1% Tween-20) for 1 h. Slides were
then washed and incubated with anti-citrullinated histone H3
(Abcam, UK) and anti-MPO (R&D systems, UK) antibodies
diluted in 0.5x blocking buffer overnight at 4◦ C. Anti-rabbit
Alexa Fluor R© 647-conjugated and anti-mouse Alexa Fluor R© 555-
conjugated secondary antibodies (Invitrogen, UK) and DAPI
(Sigma, UK) diluted in 0.5x blocking buffer were then added
for 30min. Stained sections were washed, mounted, sealed and
visualized using an Olympus inverted fluorescence confocal
microscope and analyzed using Fluoviewer software (Olympus).

BAL Confocal Immunofluorescence
BAL fluid was filtered using a 40µm cell sieve. BAL cells were
pelleted, counted and 1 × 105 viable cells were used to produce
cytospin slides (Thermo ShandonCytospin 3, Thermo Scientific).
Cytospin slides were fixed in 4% PFA, washed, and blocked
overnight in blocking solution (10% goat serum/1% BSA/2mM
EDTA/HBSS/0.1% Tween-20). Slides were then washed and
incubated with anti-histone H2A.X antibody (Abcam, UK) for
1 h before washing. Anti-rabbit Alexa Fluor R© 488-conjugated
secondary antibody (Invitrogen, UK) and DAPI (Sigma, UK)
were then diluted in blocking buffer for 1 h. Stained slides were
then washed, mounted, sealed and visualized using an Olympus
inverted fluorescence confocal microscope and analyzed using
Fluoviewer software (Olympus).

Neutrophil Integrin Expression
Cell surface expression of neutrophil integrins was evaluated
by flow cytometry. Following isolation and culture under either
normoxia or hypoxia, neutrophils were washed and resuspended
in a sodium HEPES buffer (20mM HEPES, 140mM NaCl, 2
mg/ml glucose, 0.3% BSA). Cells were then stained using integrin
subunit specific antibodies or appropriate isotype control for
30min at room temperature. Stained cells were then washed
twice, fixed in 2% PFA and assessed using a FACS Verse (BD
Biosciences, UK). Data was analyzed using FlowJo (TreeStar
Inc., UK).

Neutrophil Adhesion
HUVEC were cultured in 96-well black tissue culture
plates (Thermo Scientific, UK). Twenty-four hours prior
to experimentation, HUVEC were subjected to normoxia
or hypoxia in the absence or presence of 10 ng/ml TNF-α.
Neutrophil adhesion in response to 20 nM PMA or 100 ng/ml
lipopolysaccharide (LPS) were measured as previously described
(32). Briefly, neutrophils were cultured under normoxia or
hypoxia for 1 h, labeled with 2′,7′-bis-(2-carboxyethyl)-5-(and-
6)-carboxyfluoresceinacetoxymethyl ester (Life Technologies,
UK) and then added to wells under normoxia or hypoxia.

Fluorescence was measured using a Tecan GENios Spectra
FLUOR plate reader (Tecan UK Ltd., UK). Adhesion was
calculated by comparing the fluorescence of washed wells to
initial fluorescence.

Neutrophil trans-Endothelial Migration
Trans-endothelial migration assays were performed as previously
described (32). In brief, HUVEC were grown on transwell inserts
(Millipore, UK). Twenty-four hours prior to experimentation,
HUVECwere cultured under normoxia or hypoxia in the absence
or presence of 10 ng/ml TNF-α. Neutrophils were cultured under
normoxia or hypoxia for 1 h and then labeled with CellTracker
(Invitrogen, UK). 1 × 106 neutrophils were added to the upper
chamber of transwells and allowed to migrate in the absence
or presence of 150 ng/ml IL-8 in the lower chamber for 90min.
Percent transmigration was calculated by comparing the number
of cells in the lower chamber and the number of neutrophils
added to the upper chamber.

Western Blotting
Cell lysates (10 µg protein) were resolved by electrophoresis
and transferred to a polyvinylidene fluoride membrane (GE
Healthcare, UK). Membranes were blocked for 1 h in 5%
skimmed milk/TBS/0.1% Tween-20 and incubated with primary
antibodies (1:1,000 dilution) overnight at 4◦C. Membranes
were then washed, incubated with HRP-conjugated secondary
antibodies, and visualized using the Luminata Western HRP
substrate system (Millipore, Ireland).

Statistical Analysis
Data were evaluated using GraphPad Prism. Data were tested
for normality using a Kolmogorov-Smirnov test. In experimental
data sets only comparing two groups, a Mann-Whitney test was
performed or a Wilcoxon matched pairs test. In data sets with
two variables, data were assessed by two-way ANOVA with a
Dunnet’s or Sidak’s multiple comparison test. Correlations were
determined by two-tailed Pearson correlation coefficients. A p
value below 0.05 was considered significant.

RESULTS

Neutrophils and Endothelial Cells Stain
Positive for HIF-1α in the ILD Lung
Given reports of localized hypoxia in pulmonary disease (36),
biopsies from four patients with fibrotic ILD, performed to
determine a clinical diagnosis of etiology, were examined for
evidence of hypoxia. In this representative patient, diagnosed
with IPF, HIF-1α staining demonstrated positive staining in
the endothelium and polymorphonuclear cells, with very little
staining in the fibrotic interstitium and overlying epithelium and
no staining in control sections (Figures 1A,B). As aberrant NET
formation has been implicated in several immunopathologies,
we also stained lung sections for MPO and NE (Figures 1C,D),
highlighting the presence of neutrophils within the pulmonary
vasculature. Taken together, this staining pattern suggests that
tissue-specific hypoxia and neutrophil recruitment may be a
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FIGURE 1 | Neutrophils and endothelial cells express HIF-1α within the ILD lung. Paraffin-embedded from four lung biopsies from patients with fibrotic ILD, taken to

determine clinical diagnosis of etiology, were cut and stained for immunohistochemical evidence of hypoxia and neutrophil infiltration. Images shown are representative

of the four patients, from a patient diagnosed with IPF. (A) Slides stained for HIF-1α displayed positive brown staining within microvascular endothelial cells and

polymorphonuclear cells, whilst (B) secondary antibody controls did not display positive staining. To verify whether neutrophils were present in the ILD lung, additional

stains were performed for (C) MPO and (D) NE, both of which displayed positive brown stains within blood vessels. HIF-1α, hypoxia-inducible factor 1α; MPO,

myeloperoxidase; NE, neutrophil elastase.

feature of the ILD lung. These findings led us to examine the
effects of hypoxia upon neutrophil function.

Hypoxic Exposure Does Not Affect
Hydrogen Peroxide Generation but
Promotes NET Release
Pharmacological HIF-1α stabilization has been reported to
enhance bacterial killing and NET release (28–30), however,
these studies were performed using atmospheric oxygen levels.
We therefore assessed for any alteration in function, described
below, of healthy neutrophils under normoxia (21% oxygen) and
hypoxia (1% oxygen). First, we verified hypoxia by examining
neutrophil cell lysates for the presence of HIF-1α and HIF-2α.
We observed rapid stabilization of HIF-1α under hypoxia, with
delayed HIF-2α stabilization (Figure 2A).

Having demonstrated induction of hypoxia, we assessed
neutrophil supernatants for MPO-citrullinated histone H3
complexes, which are specific for NETs. Hypoxic neutrophils
displayed greater levels of both spontaneous (+1.31-fold, p <

0.05) and PMA-induced (+1.65-fold, p < 0.001) NET release
(Figure 2B). As reactive oxygen species generation is thought
to drive NET formation (37, 38), we also examined hydrogen
peroxidase (H2O2) production. Rates of H2O2 generation
however, were comparable between oxygen states for both
unstimulated (1.4 ± 0.1 nM/s vs. 1.2 ± 0.2 nM/s) and PMA-
stimulated (191.7 ± 40.83 nM/s vs. 159.3 ± 35.51 nM/s)
neutrophils (Figure 2C).

Neutrophil Adhesion and trans-Endothelial
Migration Are Enhanced Under Hypoxia
Having found an effect on NET release, we next examined
integrin activation and neutrophil adhesion, which are also
implicated in NET induction (39–41). We measured neutrophil
adhesion to primary human endothelial cells in the absence
or presence of PMA (a general integrin activator) or LPS
(to mimic infectious stimuli), stimuli that induce NETs via
distinct pathways (42). Hypoxia increased both unstimulated
(23.6 ± 4.0% vs. 2.7 ± 1.6%, p < 0.05) and LPS-stimulated
(35.7 ± 4.8% vs. 11.3 ± 1.4%, p < 0.05) adhesion to
resting endothelium, whilst PMA-stimulated adhesion, which
was already high, was unaffected (Figures 3A–C). We then
looked at adhesion to endothelium pretreated with TNF-α, to
mimic an inflammatory event. Whilst unstimulated neutrophil
adhesion to TNF-α activated endothelial cells was not altered
by hypoxia, there was a 3.22- and 2.11-fold increase in PMA-
(21.2 ± 6.3% vs. 68.1 ± 8.4%. p < 0.05) and LPS-stimulated
(23.2 ± 2.8% vs. 49.0 ± 2.3%, p < 0.05) adhesion, respectively
(Figures 3D–F).

Next, we evaluated neutrophil trans-endothelial migration in
the absence and presence of IL-8, which has been shown to induce
neutrophil migration. Basal transmigration (in the absence of
IL-8) across both resting and TNF-α activated endothelium
was unaffected by hypoxia. In contrast, in the presence of
IL-8, hypoxia enhanced neutrophil trans-endothelial migration
across both resting and TNF-α activated endothelium (p < 0.05)
(Figures 3G,H).
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FIGURE 2 | Hypoxia enhances NET release but not hydrogen peroxide production. The effects of hypoxia upon neutrophil activation was first assessed. (A) The

induction of hypoxia was verified by Western blot, probing for HIF-1α and HIF-2α. (B) NET formation was then evaluated by capture ELISA, which detects

MPO-citrullinated histone H3 complexes. Data are presented as the mean ±SEM from three different donors and analyzed by two-way ANOVA with a Dunnett’s

multiple comparison test. (C) Hydrogen peroxide generation was examined using Amplex® UltraRed in absence and presence of 50 nM PMA. Data are presented as

the mean ± SEM from neutrophils isolated from seven different donors and analyzed by two-way ANOVA with a Dunnett’s multiple comparison test. * = p < 0.05,

*** = p < 0.001. HIF, hypoxia-inducible factor; PMA, phorbol 12-myristate 13-acetate.

Hypoxia Increases Expression of
Neutrophil β2 Integrins, but Not β1 Integrins
Given the role of integrins in leukocyte extravasation and
reports documenting reduced NETs following integrin
blockade (39), we assessed surface integrin expression. Whilst
αL expression was unaffected (Figure 4A), significantly
higher levels of αM (+3.1-fold, p < 0.001) and αX
(+1.6-fold, p < 0.01) were observed under hypoxia
(Figures 4B,C). There were no significant differences
in β2 expression (Figure 4D). Hypoxia did not have an
effect upon α1, α4, α5, or β1 integrin subunit expression
(Figures 4E–H).

NET Formation Is Induced by αMβ2 Integrin
Activation
Given reports of reduced NET formation following integrin
inhibition and our data showing increased αMβ2 and, to a

lesser extent, αXβ2 integrin expression, we tested whether
integrin engagement induced the release of NETs, using an
established model in which neutrophils adhere to fibrinogen.
Although there is some base-line adhesion (5.5%), stimulation
with PMA increases binding to 83.3% that can be blocked
with specific αMβ2 inhibition (Supplementary Figure 1). As
expected, no NETs were observed in unstimulated neutrophils,
whilst PMA stimulation induced the externalization of histone
H3 to form NET-like structures (Figures 5A,B). Cation
chelation through the use of EDTA, which abolishes integrin-
mediated adhesion, suppressed PMA-induced NET formation
(Figure 5C). Finally, global integrin activation by means of
manganese chloride treatment, induced some histone H3
externalization that could also be suppressed with EDTA
treatment (Figures 5D,E). To confirm the role of αMβ2,
neutrophils were stimulated with LA-1, a compound that
specifically activates the αMβ2 integrin (43). LA-1 stimulation
showed a dose dependent effect upon neutrophil adhesion
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FIGURE 3 | Hypoxia enhances neutrophil adhesion and trans-endothelial migration. BCECF-AM labeled neutrophil adhesion to endothelial monolayers over 30min

was assessed under normoxia (21% oxygen) and hypoxia (1% oxygen). We first examined neutrophil adhesion to resting HUVEC using (A) unstimulated neutrophils,

(B) neutrophils stimulated with 20 nM PMA and (C) cells stimulated with 100 ng/ml LPS. Next, we examined the effects of hypoxia upon neutrophil adhesion to

activated HUVEC, which had been stimulated with 10 ng/ml TNF-α for 24 h prior to experimentation. We evaluated (D) unstimulated neutrophil adhesion, (E) neutrophil

adhesion in response to 20 nM PMA and (F) neutrophil adhesion in response to 100 ng/ml LPS. Finally, the effects of hypoxia upon trans-endothelial migration of

CellTrackerTM Green labeled neutrophils over 90min was evaluated. Data are presented as the mean ± SEM from four independent experiments and analyzed by a

Wilcoxon matched pairs test. (G) Neutrophil transmigration across resting endothelial monolayers was measured under both normoxia and hypoxia in the absence or

presence of 150 ng/ml IL-8. (H) HUVEC were stimulated with 10 ng/ml TNF-α for 24 h. Neutrophil trans-endothelial migration was subsequently measured in the

absence or presence of 150 ng/ml IL-8 under normoxic or hypoxic conditions. Data are presented as the mean ± SEM from three independent experiments and

analyzed by two-way ANOVA with a Dunnett’s multiple comparison test. * = p < 0.05. HIF, hypoxia-inducible factor; PMA, phorbol 12-myristate 13-acetate.

(Figure 6A). Whilst low concentrations of LA-1 failed to induce

the formation of NET-like structures (Figures 6B,C), high

levels of LA-1 produced DNA-histone structures similar

to PMA-stimulated cells (Figures 6D–F). These results

confirmed that αMβ2 integrin activation can induce NETs in

human neutrophils.

Lung Tissue and BAL From Patients With
ILD Have More NETs Than Non-ILD
Controls
Having found evidence of hypoxia within the ILD lung
and shown that hypoxia augments neutrophil activation,
we evaluated lung tissue sections for evidence of NETs.

Frontiers in Immunology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 2190

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Khawaja et al. Hypoxia Enhances Neutrophil Function

FIGURE 4 | Hypoxia increased neutrophil αM and αX integrin subunit expression. Neutrophil integrin expression was examined following culture under normoxia (21%

oxygen) or hypoxia (1% oxygen). Flow cytometry was used to assess expression of the integrin subunits: (A) αL, (B) αM, (C) αX, (D) β2, (E) α1, (F) α4, (G) α5, and (H)

β1. Data are presented as the mean ± SEM of neutrophils isolated from seven different donors and analyzed by Wilcoxon matched pairs test. ** = p < 0.01, *** = p <

0.001. HIF, hypoxia-inducible factor.

In non-ILD control lung sections, we observed normal
lung architecture with the absence of cellular infiltrates and
lung tissue remodeling at both low and high magnification
(Figures 7A,B). In contrast, we noted cellular infiltration in
IPF lungs accompanied with the presence of MPO and histone
citrullination (Figures 7C,D). Co-localization of extracellular
DNA, MPO and citrullinated histones is suggestive of NET
formation within the ILD lung.

Finally, we examined BAL for evidence of neutrophil
activation. We generated slides with BAL and stained with
DAPI and citrullinated histone H2A to identify the presence
of neutrophils initiating the production of NETs. Control

BAL neutrophils displayed punctate DAPI staining with the
absence of citrullinated histones (Figures 8A,B). In contrast,
we observed the presence of citrullinated histones and more
diffuse DNA staining in BAL polymorphonuclear cells obtained
from patients with ILD, indicative of neutrophils forming
NET-like structures (Figures 8C,D). We then obtained BAL
from 11 ILD patients (ILD-BAL) and seven non-ILD controls
(control BAL) and quantified levels of cell-free DNA. We
found ILD-BAL had 5.5-fold greater cell-free DNA content
compared to control BAL (p < 0.01) (Figure 8E). Cell-free
DNA content positively correlated with neutrophil counts (%
of total cells) isolated from ILD-BAL (p = 0.0075) (Figure 8F),
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FIGURE 5 | NET formation can be induced by neutrophil integrin activation. The effects of cation-dependent integrin activation upon NET release was examined

visually by immunofluorescence staining of both nuclear DNA (DAPI, blue staining) and histone H3 (green staining). (A) Untreated neutrophils displayed punctate

nuclear staining. (B) 40 nM PMA stimulation induced DNA and histone externalization. (C) PMA-induced NET release could be mitigated by the addition of 5mM EDTA

(cation chelator). We subsequently examined whether cation-dependent integrin activation could induce NETs. (D) Stimulation with 0.5mM MnCl2 induced some DNA

externalization. (E) DNA externalization was suppressed following cation chelation with EDTA. Representative images are shown from three independent experiments.

but not in control BAL (Figure 8G). To verify that these
were NETs, we also examined BAL for the presence of MPO-
citrullinated histone H3 complexes. Similar to total cell-free

DNA, we observed significantly greater values in ILD-BAL
(+21.9-fold, p < 0.01), indicating greater levels of NETs
(Figure 8H).
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FIGURE 6 | Specific αMβ2 activation induces NET-like structure release. The effects of specific αMβ2 activation upon on neutrophil function by culturing cells with

varying concentrations of leukadherin-1 (LA-1). (A) Lower concentrations (0–15µM) of LA-1 did not increased neutrophil adhesion compared to vehicle. From 20 to

50µM LA-1, we observed a dose dependent increase in neutrophil adhesion. Data are presented as the mean ± SEM from three independent experiments and

analyzed by two-way ANOVA with a Sidak’s multiple comparison test. The release of NET-like structures was visualized by staining nuclear DNA (DAPI, blue staining)

and histone H3 (green staining) in neutrophils. (B) Untreated neutrophils and (C) neutrophils stimulated with 10µM LA-1 displayed punctate nuclear staining. (D)

25µM LA-1 stimulation induced greater neutrophil adhesion, however nuclear staining was still punctate. (E) Greater numbers of neutrophils were seen following

stimulation with 100µM LA-1 with the addition of externalized DNA and histone staining, forming NET-like structures. (F) 200µM LA-1 stimulation also induced NET

releasing neutrophils. Representative images are shown from two independent experiments. *** = p = 0.0003, **** = p < 0.0001.

DISCUSSION

Neutrophil dysfunction and aberrant activation have been

implicated in the pathology of numerous diseases including
autoimmune rheumatic diseases (44–48) and cancer (49–52).

More recently the release of NETs, essential for robust immune
defense against pathogens, has also been linked to increased
immunopathology in patients with COVID-19, a disease
characterized by neutrophilic inflammation and endothelial
activation (53, 54). The precise mechanism in which neutrophils
contribute to ILD pathogenesis is unknown. Early work from
the 1980s began to explore whether neutrophils might contribute
to IPF pathology (11–14), however this avenue of research
lost momentum. Since then, reports have associated increased
neutrophil migration and activation with severe pulmonary
disease both in animal models (22, 55) and man (16, 19, 20).
We report, for the first time, that neutrophils and endothelial
cells in ILD lung biopsies display HIF-1α expression and provide
evidence of the extracellular release of nuclear DNA, citrullinated

histones and MPO, indicative of NET formation in the ILD
lung. Given the profound effects hypoxia exerts upon neutrophil
survival and function (26, 27), these findings led us to investigate
whether hypoxia affects neutrophil extravasation and activation,
thus contributing to ILD pathology.

Integrins are adhesive molecules that enable leukocytes to
interact with their external environment. Similar to a previous
report (56), we found increased β2 integrin expression in
neutrophils under hypoxia, but specifically found increased
αM and, to a lesser extent, αX integrin subunit expression.
Interestingly, the αMβ2 and αXβ2 integrins also function as
complement receptors, which may be relevant to ILD pathology
given that increased levels of complement C3a and C5a and
roles for their receptors have been reported in IPF (57, 58).
Moreover, studies using the bleomycin-induced mouse model of
IPF highlight roles for both C3 and C5 in pulmonary fibrosis
(59, 60). Upregulation of β1 integrins has been described under
hypoxia (61), however, there are no reports assessing expression
in neutrophils. A lack of effect may be explained by the relatively
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FIGURE 7 | Lung tissue sections from IPF patients contained areas of NET-like structures. Lung tissue from IPF patients and non-ILD control donors was examined

for NETs as defined by nuclear DNA (DAPI, blue staining), citrullinated histones (citrullinated histone H3, green staining) and neutrophil-derived proteins (MPO, red

staining) by confocal microscopy. (A) Low and (B) high magnification of non-ILD lung displayed normal lung architecture (seen with DAPI staining) and the absence of

cellular infiltrates, histone citrullination and MPO staining. In contrast, (C) low and (D) high magnification of IPF lung sections showed areas of extracellular DNA

release localized with citrullinated histones and MPO, indicating the presence of NET-like structures in fibrotic lung (white arrowheads). Representative images from

two non-ILD control or IPF lungs are shown and the size is denoted by the scale bar. ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis.

low β1 integrin expression in human neutrophils. Taken together,
the evidence indicates that neutrophils predominately engage via
β2 integrins, a mechanism which is enhanced under hypoxia.

Early studies demonstrated that hypoxia enhances neutrophil
adhesion to endothelial cells (62), epithelial cells (63), and
trans-epithelial migration (64). In support of these findings,
our results show altered function of healthy neutrophils with

increased neutrophil adhesion and trans-endothelial migration
under hypoxia. In addition, we report that hypoxia enhances
NET formation. Given that the gold standard markers or
methods for the induction and detection of NETs have not been
established (65), we used several different techniques to confirm
the release of NETs by cultured neutrophils: the co-localization
of nuclear DNA and histone H3 complexes by immunostaining;
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FIGURE 8 | BAL isolated from ILD patients contain more NETs and NET-releasing neutrophils. BAL from ILD patients and non-ILD controls was examined for evidence

of neutrophil activation. We first performed confocal microscopy to identify NETs as defined by nuclear DNA (DAPI, blue staining) and citrullinated histone expression

(citrullinated histone H2A, green staining). (A,B) Non-ILD control BAL cells displayed punctate nuclear staining and lack of citrullinated histones, whilst (C,D) BAL cells

obtained from patients with ILD showed degrees of DNA externalization from polymorphonuclear cells, along with the presence of citrullinated histones indicative of

neutrophils undergoing NET release (white arrowheads). Representative images from two non-ILD or ILD donors are shown and the size is denoted by the scale bar.

(E) BAL fluid was then assessed for the presence of NETs by Quant-iTTM PicoGreen® dsDNA assay (Thermo Fisher, UK), which found that BAL fluid from ILD patients

(n = 11) has significantly more cell free DNA compared to non-ILD controls (n = 8). From differential cell counts, we found that (F) cell free DNA positively correlated

with the proportion of BAL neutrophils in patients with ILD, (G) but not in non-ILD controls. (H) Finally, we also tested BAL fluid using an optimized capture ELISA

detecting MPO-citrullianted histone H3 complexes, demonstrating that BAL fluid from ILD patients (n = 11) has significantly more NETs compared to non-ILD controls

(n = 8). Data were analyzed by either a Mann-Whitney test or two-tailed Pearson correlation coefficients. ** = p < 0.01. BAL, bronchoalveolar lavage; ILD, interstitial

lung disease.

confocal imaging of DNA, citrullinated histones and MPO;
quantification of cell-free DNA; and the detection of neutrophil-
derived proteins (MPO) and citrullinated histone H3 complexes.
Our observations complement studies in the literature showing
that pharmacological HIF-1α stabilization enhances NET release
and inhibition of HIF-1α reduces NETs and bactericidal activity
(28, 29).

Whilst HIF-1α stabilization has been shown to promote
NET production (28), the opposing effect of hypoxia upon

NET formation has also been described. In contrast to our
findings, Branitzki-Heinemann et al. found hypoxia reduced
levels of both spontaneous and PMA-induced NET release (66).
Whilst the definitions of hypoxia and normoxia were identical
(1% oxygen vs. 21% oxygen), key methodological differences
may explain the contrasting conclusions. Branitzki-Heinemann
et al. isolated neutrophils using gradient centrifugation with
PolymorphPrep, whilst this study used Percoll PLUS. Whilst a
minor difference, comparative analysis of isolation procedures
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found reduced CD15 and CD66b expression in neutrophils
isolated with PolymorphPrep (67), which may have further
implications on ex vivo function. Both reports used PMA to
initiate NET formation, however at different concentrations.
In this study, neutrophils were stimulated with 40 nM PMA
for 4 h, whilst the earlier Branitzki-Heinemann study treated
cells with 25 nM PMA for 3 h. It is possible that stimulating
neutrophils with a higher concentration of a potent PKC
activator may account for the differing response to hypoxia.
Finally, when quantifying NETs, Branitzki-Heinemann et al.
seeded neutrophils on coverslips coated with poly-L-lysine whilst
neutrophils in this study were exposed to either nunclon-
treated or fibrinogen-coated surfaces. This difference may
result in varying degrees of αMβ2 engagement and alter
neutrophil responses.

Our data suggest that αMβ2 engagement may induce NET
formation, which is supported by recent work demonstrating
αMβ2 triggering NET release (68). Moreover, several studies have
shown that αMβ2 blockade reduced NET release (39, 40, 69, 70),
which indirectly supports our work. Our findings that αMβ2
interaction with ligand may regulate NET formation builds on
earlier findings, which showed that PMA stimulation led to high
levels (>80%) of chromatin decondensation (a prelude to NET
formation) and was not affected by substrate (41). In contrast,
LPS stimulation led to lower basal levels of decondensation
(∼20%) and levels increased with matrix stiffening and increased
cell spreading on β2 and β1 integrin ligands. This effect
was inhibited by PI3K inhibition suggesting a dependence on
integrin outside-in signaling. The impact of matrix stiffness is
highly relevant in fibrotic ILD as lung fibrosis changes tissue
elasticity. There are some methodological differences between
this work and that of Erpenbeck and colleagues. In particular,
our neutrophils were rested in hypoxia or normoxia overnight
before PMA stimulation. Our background NET levels were lower
in response to PMA rather than the dramatic increase from <5
to >80% previously reported. It is possible that when the level
of NETs is lower, integrin activation related to matrix stiffness
plays more of a role regardless of the stimulus. This finding
further emphasizes the importance of a complete description of
the experimental system (65). This finding may have particular
relevance not only to ILD but also to other fibrotic lung diseases.
The finding that hypoxia drive NET formation may also be of
relevance to non-fibrotic pathologies including COVID-19, a
disease characterized by severe hypoxia, NET release and hyper-
inflammation (53, 71).

Further work could build on the level of hypoxia required
to produce these effects. In our study we used 1% oxygen,
however, normal oxygen levels can range from 5.0 to 13.2%
in the circulation and 0.5 to 2.7% in tissues (72, 73). Further
experiments could determine whether lesser degrees of hypoxia,
seen in clinical practice, also enhance neutrophil adhesion,
trans-endothelial migration and NET formation. These studies
could determine the relative importance of HIF transcription
factors to NET formation and release, through the use of
previously identified small molecule inhibitors (74–76), and
better understand the relationship between neutrophil activation
and hypoxia.

We observed tissue-specific HIF-1α expression in ILD
lung tissue, mainly restricted to pulmonary endothelial cells
and neutrophils, with only minimal upregulation in areas of
epithelium and fibrosis, which may hold pathological relevance.
Previously, markers of hypoxia have been variably reported
in the epithelium of patients with IPF. Several authors have
found HIF-2α and CA-IX within the IPF fibrotic reticulum
and HIF-1α in the overlying epithelium with IHC (7), [albeit
sometimes in a single patient (8)]. HIF-1α is more readily
found in the mouse bleomycin model of PF raising the
question of differences between the two species and insults (77).
Whilst epithelium-specific HIF-1α deletion has no effect upon
radiation-induced enteritis, mice with endothelium-specific HIF-
1α deletions present with reduced intestinal damage (78). HIF-
1α is known to contribute to the pathology of pulmonary
hypertension (79, 80), with some work specifically interrogating
endothelial HIF signaling (81). Neutrophilic inflammation has
also been associated with pulmonary hypertension (82), and
believed to drive angiogenesis via NET release (83). Therefore,
the pulmonary pathology in ILD patients may in part be
attributed to endothelial and neutrophil HIF-1α expression
enhancing neutrophil recruitment andNET formation within the
lung. In this paradigm, enhanced NETs would initiate angiogenic
signals and drive lung pathology. Interestingly, the model
of neo-angiogenesis underlying ILD pathology has attracted
interest, and the powerful angiogenic inhibitor, nintedanib,
shown to have therapeutic benefits in a range of fibrotic ILDs
(84) and endothelial reactivity with angiogenesis is also noted
in COVID-19.

Our findings of hypoxia driving NET formation complements
the increasing evidence that NETs may play a role in many acute
and chronic lung diseases (85), including ILD by stimulation
of fibroblasts (17). In PF, we propose that elevated NET
release may cause epithelial cell damage, dysfunction and
death, drive innate and adaptive immune cells activation, and
promote a pro-fibrotic environment that ultimately facilitates
the progression of pulmonary fibrosis. For our experiments,
we used neutrophils isolated from peripheral blood donated
from healthy volunteers. Further work could examine cells
isolated from patients with ILD, isolated from either peripheral
blood or BAL, to determine whether hypoxia has similar
or an enhanced effect within this patient population. In
addition, it would also be interesting to examine neutrophil
function using autologous human serum from patients with
ILD to provide further insight under more physiological
conditions in vitro.

Hypoxia is also thought to have differential integrin-
independent effects upon NET formation (66). Further
experiments exploring the effects of hypoxia upon neutrophil
activation by examining neutrophil responses to a wider range
of stimuli, such as bacterial/fungal antigens, ionomycin or
monosodium urate crystals, which also activate β2 integrins
(86), may therefore provide further insight into the relationship
between neutrophil function, integrin activation and hypoxia.
Interestingly, the recent consensus article written by opinion
leaders to present prevailing concepts and state of the science
in NET-related research and elaborate on open questions and
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areas of dispute does not specify which stimulus should be
used to induce NET formation (65). Instead, this consensus
article suggests that researchers should specify in detail
culture conditions, including base medium, use of serum,
absence of platelets and surface constitution of the cell
culture plate, as well as stimulus and source/preparation
of inducer used. Our analysis of NET formation ultimately
focuses on the end stages culminating in NET release into
cell supernatants. Further work could explore the effects of
hypoxia upon the preceding stages such as cell spreading
and chromatin decondensation/nuclear swelling (41, 87),
to better understand how hypoxia affects the entire NET
formation process.

In conclusion, we report that the ILD lung contains
molecular features of hypoxia, mainly localized to neutrophil
and endothelial cells, which may contribute to disease pathology.
Hypoxia enhanced neutrophil β2 integrin expression, which
translated to augmented adhesion and migration across
endothelial cells, and NET release. Our findings are further
supported by demonstration of NETs within the human fibrotic
lung seen through imaging of IPF lung sections and BAL cells, as
well as detecting cell-free DNA and MPO/citrullinated histone
complexes in BAL obtained from patients with ILD. Taken
together, our work begins to elucidate a potential role of hypoxia
in driving neutrophil recruitment and activation within the
airspace to promote a pro-fibrotic environment. These findings
offer a rationale for future translational medicine exploration of a
novel neutrophil HIF-1α-integrin axis as a potential therapeutic
target in fibrotic ILD.
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