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Whole genome/exome sequencing data for tumors are now abundant, and many tumor
antigens, especially mutant antigens (neoantigens), have been identified for cancer
immunotherapy. However, only a small fraction of the peptides from these antigens
induce cytotoxic T cell responses. Therefore, efficient methods to identify these antigenic
peptides are crucial. The current models of major histocompatibility complex (MHC)
binding and antigenic prediction are still inaccurate. In this study, 360 9-mer peptides with
verified immunological activity were selected to construct a prediction of tumor neoantigen
(POTN) model, an immunogenic prediction model specifically for the human leukocyte
antigen-A2 allele. Based on the physicochemical properties of amino acids, such as the
residue propensity, hydrophobicity, and organic solvent/water, we found that the
predictive capability of POTN is superior to that of the prediction programs SYPEITHI,
IEDB, and NetMHCpan 4.0. We used POTN to screen peptides for the cancer-testis
antigen located on the X chromosome, and we identified several peptides that may trigger
immunogenicity. We synthesized and measured the binding affinity and immunogenicity of
these peptides and found that the accuracy of POTN is higher than that of NetMHCpan
4.0. Identifying the properties related to the T cell response or immunogenicity paves the
way to understanding the MHC/peptide/T cell receptor complex. In conclusion, POTN is
an efficient prediction model for screening high-affinity immunogenic peptides from tumor
antigens, and thus provides useful information for developing cancer immunotherapy.

Keywords: neoantigen prediction, peptides, immunogenicity, prediction model, cancer immunotherapy
INTRODUCTION

Cancer immunotherapy has achieved great success in several cancer types (1–3), although durable
clinical responses only occur in some patients. Evidence from patients who responded to
immunotherapy suggests that tumor regression is achieved by activating tumor-antigen-specific
CD8+ cytotoxic T lymphocytes (CTLs) (4–7). Tumor antigens are generated by tumor-specific
org October 2020 | Volume 11 | Article 021931
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proteins (8) and presented by the formation of peptide/major
histocompatibility complex (MHC)-I complexes on cell surfaces
via antigen presentation (9).

Generally, tumor antigens can be classified as tumor-specific
antigens, including neoantigens, and as tumor-associated antigens.
Neoantigens are exclusively presented on tumor cell surfaces,
whereas tumor-associated antigens are highly expressed on tumor
cells but are also expressed on normal cells at a low level. Using
patients’ specific neoantigens as tumor vaccines is a safe, feasible
approach to eliciting a clinical T cell response (4). However, studies
on a large-scale peptide collection found that only about 1% of the
peptides can bind MHC-I molecules (10), and less than 0.3% of the
peptides should be validated experimentally for immunogenicity
(11). We still lack knowledge about the key features of
immunogenic peptides and efficient methods to screen tumor
antigen peptides from a large number of tumor mutations in
personalized immunotherapy.

Tumor antigens can be identified by several approaches.
Screening tumoral cDNA libraries with phage display is a
powerful but labor-intensive approach to identifying tumor-
associated antigens (12–14). Exome sequencing of tumor
biopsy and paired normal tissues have been widely applied to
screening the mutated fragments (15, 16). The fragments can be
synthesized experimentally and tested further for their antigen
presentation by measuring the MHC binding affinity, and for
their immunogenicity via ELISpot, intracellular cytokine staining
(ICS), and human leukocyte antigen (HLA) tetramers (15).
Another approach to identifying tumor antigens is based on
mass spectrometry, which identifies the sequence of peptides
presented on the tumor cell surface by MHC molecules (17–19).

Reliable predictions of antigenic peptides from high-throughput
sequencing data can lighten the experimental burden for identifying
epitopes. In silico prediction programs have been developed for this
purpose. For example, NetChop and ProteaSMM analyze the
proteasomal cleavage pattern and the antigen processing
mechanism (20–22), while NetMHCpan 4.0 and other programs
predict epitopes by calculating the binding affinity of peptide/MHC
allele complexes (23, 24). Other programs use a combined algorithm
that integrates proteasomal cleavage prediction, the transporter
associated with antigen processing (TAP) transport efficiency, and
MHC binding affinity (25). These programs focus on binding
capacity prediction, TAP transport prediction, and proteasomal
cleavage prediction. We have used these prediction programs to
identify epitopes and we found that for HLA-A2 epitopes, fewer
than 20% of the predicted epitopes could induce T cell responses
(26–28). Thus, the prediction accuracy of the available software
packages still needs to be improved.

There are two main reasons for the limited prediction accuracy
of current epitope identification programs. First, most of the
programs were developed based on a pan-specific method, which
does not differentiate between HLA alleles, and they are widely used
to make predictions for various HLA alleles. Therefore, when they
are used to identify the antigenic peptides for a particular MHC
allele, the accuracy is lower because of their inherent features (29).
Second, the datasets used to construct the prediction models in
many programs are impure. Non-immunogenic peptides in many
Frontiers in Immunology | www.frontiersin.org 2
datasets are randomly selected and are not experimentally validated,
resulting in high false-negative rates. To avoid such shortcomings,
we gathered experimental data and built a predictionmodel for only
the most common HLA allele (30). About 5200 HLA-A alleles have
been identified, among which HLA-A2 shows a high occurrence;
the proportion of people with the HLA-A2 allele is 54.0% in ethnic
Chinese people and 43.1% of the general population (30–32).

In this study, we selected 9-mer peptides (nonamers) with
verified immunological activity and used a support vector
machine (SVM) to construct the POTN prediction model for
the HLA-A2 allele based on the physicochemical properties of
amino acids. We validated the model by using external data. We
used the POTN model to predict immunogenic peptides from
the cancer-testis antigen located on the X chromosome (CT-X)
and measured the binding affinity and immunological activity by
ICS of the predicted peptides. We compared the prediction
accuracy of POTN with that of other widely used prediction
software. Our model may provide a new method to screen high-
affinity immunogenic peptides from amino acid sequences or
whole-exome sequencing data efficiently.
MATERIALS AND METHODS

Peptide Data Collection
The immunogenic peptides were retrieved from the databases
IEDB (33, 34), SYFPEITHI (35), and Peptide Database (36). To
ensure that the dataset was not biased, peptides matching our
selection criteria were randomly selected from the databases.
From the IEDB database, we obtained 41 HLA-A2 cancer-
associated immunogenic peptides using our initial screening
criteria for the MHC-I linear epitope. From the SYFPEITHI
database, 41 T cell epitopes were obtained by searching for HLA-
A2 cancer-associated peptides that did not overlap with the
peptides obtained from IEDB. The Peptide Database contains
human tumor antigen peptides categorized as mutation, tumor-
specific, differentiation, and overexpressed. We selected 64
unique peptides by excluding peptides that overlapped with the
peptides from the other two databases. The peptides used as a
negative dataset were screened from the IEDB database and the
literature, and 214 peptides that were experimentally validated as
non-immunogenic peptides were obtained (Table S1).

The final dataset consisted of a total of 360 HLA-A2 peptides,
including 146 immunogenic peptides and 214 non-
immunogenic peptides (Table 1). For the total dataset, 60% of
the immunogenic peptides and 60% of the non-immunogenic
peptides were selected as the training set, and the remaining 40%
of the peptides were used as the test set (Table S1), where
approximately 6% of the dataset were eluted peptides.

Selection and Calculation of Potential
Immunogenic Properties
To obtain the most useful properties, we searched the literature
to find features that may be relevant to immunogenicity. The
accessible surface area (ASA) has been used to understand
October 2020 | Volume 11 | Article 02193
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various biological problems, such as protein-protein interactions
(37, 38), structural epitopes (39), and active sites (40), and it was
used as a feature to build the model. The polarity and charge of
amino acids in a peptide are highly correlated with binding
affinity (41, 42), and thus these features were used in model
construction. In addition, physicochemical properties, including
isotropic surface area (ISA), electronic charge index (ECI),
hydrophobicity, entropy, molecular weight (Mw), aromatic
residues, organic solvent/water, and isoelectric point (PI), have
been studied (7, 43–50). The physicochemical properties of 20
amino acids were obtained from the amino acid index
database (51).

The properties for binding, protein cleavage, and TAP
transport efficiency of each peptide were calculated by online
server NetCTL 1.2 with default parameters (52). The T cell
recognition score and the stability of the peptide/MHC
complexes were considered (48, 53).

Because some residues tend to be in specific positions in the
immunogenic peptides (54), we calculated the residue
propensity, which is defined as the probability of an amino
acid being at an individual position of a peptide, as

Residue propensity  RiPj
� �

=
Pj*100 −Nj*100

Pj*100 + Nj*100

where Pj is the frequency of residue i at position j for
immunogenic peptides and Nj is the frequency of residue i at
position j for non-immunogenic peptides.

To understand the discriminative power of predictors better, we
calculated the statistical significance (p-values) of each predictor for
immunogenic peptides versus non-immunogenic peptides in the
training set using Student’s t-test. Only predictors with significant
differences (p < 0.05) between immunogenic and non-immunogenic
peptides were included in the final model (Table 2).

Construction of the Immunogenic
Prediction Model
SVM is a supervised learning model based on the principles of
structure risk minimization and the kernel method (55), and it has
been widely used to predict T cell epitopes (56). Here, SVM with a
radial basis (Gaussian) kernel was used to construct the POTNmodel
based on the selected immunogenicity predictors. The regularization
parameter (C), which controls the trade-off between the margin and
the training error, was tested formodel construction and optimization.
In optimizing the model construction, several C values
(C ∈{0.25,0.50,1,2,4}) were used to construct the model, and the
values were validated by the leave-one-out approach in R (version 3.5.2).
Frontiers in Immunology | www.frontiersin.org 3
Peptide Prediction and Synthesis
Candidate peptides from CT-X were predicted using the POTN
model and 34 peptides with the highest scores were selected, of
which 22 peptides with satisfactory solubility were synthesized
by the standard solid-phase Fmoc strategy (57) and purified by
reverse phase high-performance liquid chromatography (58). All
synthesized peptides had a purity of >95%, as measured by
electrospray ionization mass spectrometry.
TABLE 1 | Data collection for the model construction and evaluation.

Resources T cell response Total (n = 360)

Yes (n = 146) No (n = 214)

IEDB 41 16 57
Peptide database 64 0 64
SYFPEITHI 41 0 41
Literatures 0 198 198
TABLE 2 | Selected features for model construction. The selected features were
highly correlated with immunogenicity (indicated by p-value).

Features References Position Description p-
value

ASA (39) P3 Accessible surface area 0.026
Charged value (42) P3 Net charge 0.039
ECI (44) P3 Electronic charge index 0.009
Entropy (46) P3 Entropy of formation 0.001
Hydrophobicity (45) P3 Modified Kyte-Doolittle

hydrophobicity scale, more
hydrophobic residues are
preferable to be at P4, P7,
and P8.

2.35E-
05

ISA (44) P3 Isotropic surface area 1.62E-
06

Mw (47) P3 Molecular weight 0.042
Organic
solvent/water

(50) P3 Transfer energy, organic
solvent/water

4.58E-
05

Organic
solvent/water

(50) P4 Transfer energy, organic
solvent/water

0.019

PI (49) P5 Isoelectric point 0.028
Polarity (42) P3 Polarity 0.002
Residue
propensity

(54) P1 Score based on frequency
assigned of each amino acid
(see Figure 1)

0.000

Residue
propensity

(54) P2 0.003

Residue
propensity

(54) P3 2.11E-
14

Residue
propensity

(54) P4 4.73E-
06

Residue
propensity

(54) P5 4.10E-
07

Residue
propensity

(54) P6 8.73E-
05

Residue
propensity

(54) P7 2.57E-
06

Residue
propensity

(54) P8 1.41E-
06

Residue
propensity

(54) P9 0.000

Residue
propensity

(54) sum 2.84E-
41

Aff (7, 52) binding affinity 7.64E-
08

Aff_rescale (52) Rescale binding affinity 7.63E-
08

Cle (7) C terminal cleavage affinity 0.003
Combined
score

(7) Combined prediction score 3.04E-
08

Pred (53) pMHC stability score 2.42E-
08

Thalf (53) pMHC stability score 0.001
NB (53) pMHC stability score 1.46E-

09
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Binding Affinity Measurement
The T2 binding assay was used to determine the binding affinity
of the candidate peptides and HLA-A2 molecule by using a
previously described protocol (27). The T2 cell line (HLA-A2)
was supplied by Professor Yuzhang Wu (Third Military Medical
University, Chongqing, China). In brief, T2 cells (500 mL, 1 × 106

cells/mL) were incubated with the peptide (25 mg, 50 mg/mL;
dissolved in DMSO at a concentration of 10 mg/mL) in serum-
free IMDM medium, supplemented with human b2-
microglobulin (3 μg/mL, Merck, USA) at 37°C for 18 h. The
T2 cells were washed twice and incubated with the anti-human
HLA-A2-PE-cy7 antibody (BB7.2, eBioscience, USA) at 4°C for
30 min. The mean fluorescence intensity (FI) of each group was
analyzed by flow cytometry (FACSCalibur, Becton-Dickinson,
USA). Based on the FI, the binding affinity of the candidate
peptides toward HLA-A2 molecule was calculated by

FI  =
a − b
b

where a is the mean PE-cy7 FI with the peptide and b is the mean
PE-cy7 FI without the peptide.

ICS Assay for Immunogenicity
We determined whether the high-binding affinity peptides elicited
a T cell response in peripheral blood samples from five HLA-A2+

healthy donors. The blood samples were obtained from Henan
Red Cross Blood Center (Zhengzhou, China) with the approval of
the Institutional Ethics Review Board. All research was performed
under the approval of the Ethics Committee of Zhengzhou
University. An ICS assay was used to quantify IFN-g production
of CD3+CD8+ T cells. Peripheral blood mononuclear cells
(PBMCs) were stimulated by each peptide (10 mg/mL) once-
weekly for 3 weeks according to our previous work (59). On day
21, the induced T cells from the PBMCs were used as effector cells,
and T2 cells were incubated with the synthesized peptides (50 mg/
mL) for 4 h as the stimulator cells. The effector cells (1 × 106) and
stimulator cells (1 × 106) were co-incubated for 3 h, and brefeldin
A (2 mg/mL, Sigma-Aldrich, USA) was added to block the release
of produced cytokines for another 5 h at 37°C and 5% CO2. The
cells were washed and stained with eFlour 710 labeled anti-human
CD3 antibody and APC-labeled anti-human CD8 antibody
(eBioscience) for 30 min at 4°C before fixation and
permeabilization. Permeabilized cells were intracellularly stained
with the PE-labeled anti-human IFN-g antibody (BioLegend, Inc.,
USA) for 30 min on ice in the dark. Cells were resuspended in
buffer for acquisition and analysis using a flow cytometer
(FACSCalibur, Becton Dickinson).
RESULTS

Identification of Features and Key
Residues for Immunogenic Peptides
Feature selection is a crucial step in model construction. To avoid
overlaid features and decrease the less-valuable features in the
model, we selected properties that have been linked to
Frontiers in Immunology | www.frontiersin.org 4
immunogenicity. We found that 28 features were significantly
different between the immunogenic and non-immunogenic
groups of peptides (Table 2). Aromatic amino acids were not
significantly different at either a single position or a sum of
points, and TAP also made no significant difference in
our dataset.

By statistically analyzing the differences in the residual properties
for each position, we found that many physicochemical properties
are significantly different at position 3 (P3) between the
immunogenic peptides and the non-immunogenic peptides, which
has not been reported before (Table 2) (60). Thus, we hypothesized
that the residues at P3 should be small and flexible, which may
contribute to the binding of P4–P7 to the MHC/peptide/T cell
receptor complex (61). To test our hypothesis, we screened for pairs
of peptides with only one amino acid different at P3, where one
peptide was immunogenic and the other was non-immunogenic.We
found the peptides QLCDVMFYL (immunogenic)/QLRDVMFYL
(non-immunogenic), EVKEKHEFL (immunogenic)/EVREKHEFL
(non-immunogenic), and GLCTLVAML (immunogenic)/
GLLTLVAML (non-immunogenic) in the literature (62–66).
Compared with non-immunogenic peptides, the third amino acid
of the immunogenic peptide is smaller than that in non-
immunogenic peptides. The evidence of the peptide pairs appeared
to support our hypothesis, and we proposed that the physiochemical
properties at P3 could also determine the immunogenicity of
a peptide.

To investigate the amino acid preferences of the individual
position between immunogenic and non-immunogenic peptides
further, we compared the frequency of the amino acid at each
position (Figure 1). Both immunogenic and non-immunogenic
peptides had conserved residues, with leucine conserved at P2
and leucine and valine conserved at P9. P3, P4, and P6 had slight
differences between immunogenic and non-immunogenic
peptides. Based on this finding, the residue propensity value
for each amino acid at a specific position was calculated and used
as a feature for model construction.

POTN Construction and Immunogenicity
Prediction
The overall workflow for model construction is shown in Figure 2.
cDNA, RNA, and amino acids can be processed by POTN, which
can split the sequences into nonamers. The model analyzes the
properties and calculates the predicted scores, which are used to
predict the immunogenicity of peptides. The R implementation of
POTN is available in supplementary materials.

In order to construct a high-quality model, the cost parameter
C (C value) was continually adjusted until the optimal output
was reached by leave-one-out cross-validation experiment, where
the C value was set to 1 and the optimal model was called POTN.
POTN showed a high prediction power in both the training set
and the test set. For the training set, the area under the curve
(AUC) was 0.773 and the accuracy (ACC) was 0.653 (Figure 3A).
For the test set, the AUC was 0.748 and ACC was 0.701.

To illustrate the predictive power of the POTN model further,
we compared the predictive power with the prediction programs
SYFPEITHI, IEDB, and NetMHCpan 4.0 (Figure 3B). The
performance of POTN was better than that of the other models
October 2020 | Volume 11 | Article 02193
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with the test set (Figures 3B, C). Receiver operating characteristic
curves (ROC) based on the four models were plotted. The AUC in
the whole test set were 0.748, 0.635, 0.689, and 0.720 for POTN,
SYFPEITHI, IEDB, and NetMHCpan 4.0, respectively. The ACC in
Frontiers in Immunology | www.frontiersin.org 5
the whole test set were 0.701 and 0.653 for POTN and NetMHCpan
4.0, respectively. The AUC were also analyzed at different false-
positive rates (FPR) (Figure 3D). The AUC was 0.01 at an FPR of
0.05 for POTN, which showed the best performance of the
A

B

FIGURE 1 | Residue propensity between (A) immunogenic and (B) non-immunogenic peptides from the training set. The height of amino acid letters within a
column indicates the relative frequency of each amino acid at the given position. The overall height of the column indicates the residual conservation at the position.
(A) and (B) were generated by using WebLogo (67).
FIGURE 2 | Overall working flowchart for the POTN model construction.
October 2020 | Volume 11 | Article 02193
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prediction models. In addition, we also compared the precision
indicator, which was calculated by the ratio of the true positive to
the predicted positive peptides. In the test set, the precision indicator
of NetMHCpan 4.0 was 54.55%, while the precision indicator of
POTN was 67.44%, with 23.63% improvement [the method for
improvement rate calculation was referred to (68)].

Application to CT-X Antigen Dataset
We applied the POTN model to a dataset of CT-X antigens,
which are tumor antigens overexpressed in the testis and other
malignancies, as an antigen resource to screen epitope
candidates. The amino acid sequences of these antigens were
cleaved into nonamers, and POTN obtained a total of 17,310
nonamers from more than 50 antigens after excluding duplicates
(Table S2) (Figure 4). The immunogenic value of each peptide
was predicted by POTN, and the top 0.2%, consisting of 34
peptides, was selected based on the predicted values. The
solubilities of these 34 peptides were predicted using the MOE
package, and 22 of 34 peptides were selected as being sufficiently
soluble (Table 3).

The 22 peptides were synthesized to test the activity. The
binding affinity of the synthesized peptides to HLA-A2 was
measured via a binding assay (FI) with the T2 cell line (27).
Based on the FI, the peptides were clustered into three groups:
weak binding affinity (FI < 0.5), moderate binding affinity (FI ≥
0.5 to < 1.5), and high binding affinity (FI ≥ 1.5) (Figure 5A).
Frontiers in Immunology | www.frontiersin.org 6
Most of the synthesized peptides (59.09%+36.36%) had a
moderate or high FI value (FI ≥ 0.5), of which a large
proportion (61.9%) had a high binding affinity and a smaller
proportion (38.1%) had moderate binding affinity. Of the 22
synthesized peptides (Table 3), eight peptides had moderate
binding affinity (FI ≥ 0.5 to < 1.5) and 13 peptides had a high
binding affinity (FI ≥ 1.5), which showed that the POTN model
had an accuracy rate of 95.45% (21 of 22 synthesized peptides) in
predicting the HLA-A2 binding peptides.

Next, we examined the T cell responses of the 13 synthesized
peptides with high binding affinity by detecting the percentages of
IFN-g+ CD8+ T cells from five HLA-A2+ healthy donors. A higher
percentage of IFN-g+ CD8+ T cells in the total CD8+ T cell
population than that of the negative control indicated an
immunogenic peptide. In donor 1, 12 were immunogenic (Figure
5B); in donor 2, eight peptides were immunogenic (Figure 5C); in
donor 3, 10 peptides were immunogenic (Figure 5D); in donor 4,
six peptides were immunogenic (Figure 5E); and in donor 5, 12
peptides were immunogenic (Figure 5F). These results showed that
more than half of the peptides elicited immune responses in at least
three donors, whereas peptide KLSSIIPSA only elicited a response in
donor 5 (Figures 5F, G). In other words, any of the 13 high-affinity
peptides could stimulate a T lymphocyte response in at least one
donor (Figures 5G, H).

In addition, we compared the virtual screening performance
of the POTN model with that of NetMHCpan 4.0. The
A B

DC

FIGURE 3 | Comparison of the performance of POTN with other programs. (A) ROC curves generated by the POTN model with the training set (n = 216) and test
set (n = 144). The black solid line shows the ROC curve for the training set. The short-dashed line shows the ROC curve for the test set. (B) ROC curves generated
by the POTN (black solid line), SYFPEITHI (short-dashed line), IEDB (dotted line), and NetMHCpan 4.0 (dashed-dotted lines) models with the test set. (C) AUC
generated by the four models with the test set. (D) AUC at different FPR.
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enrichment curves of the two models showed that both programs
efficiently distinguished the immunogenic peptides from the
database (Figure 5I). All immunogenic peptides were
Frontiers in Immunology | www.frontiersin.org 7
identified in the top 1% of the database by using POTN, and
they were identified in the top 2% of the database by using
NetMHCpan 4.0. The results indicated that the screening
performance of POTN was two-fold better than that of
NetMHCpan 4.0.
DISCUSSION

Cancer immunotherapy has achieved great clinical success, and
many studies have shown that the clinical effect depends on the
presence of tumor-specific T lymphocytes in patients (69). The
tumor-specific T lymphocytes kill tumor cells by secreting
cytokines, releasing granzymes, and producing perforin when
the MHC-bound peptide is recognized by CTLs. With the
development of next-generation sequencing technologies,
tumor antigens from cancer patients can be identified easily by
sequencing the cancer biopsy. These proteins can be fragmented
into numerous peptide sequences, some of which can be
presented by the MHC molecule and trigger a specific T cell
response targeting the peptide-expressing tumor cells. However,
efficiently identifying the MHC binding and immunogenic
peptides from the huge amount of sequencing data remains
a challenge.

Current programs used for either MHC binding or antigenic
prediction are still inaccurate. Possible reasons include the lack of
experimental data for many HLA alleles, the non-immunogenic
peptides selected for model building include false negatives, and
the use of pan-specific methods. To overcome these problems,
FIGURE 4 | Prediction of immunogenic peptides from CT-X data by using the POTN model and in vitro verification.
TABLE 3 | Overview of the immunogenicity and HLA-A2 binding affinity of
candidate peptides predicted by the POTN model.

Peptide Prediction score Binding Immunogenicity*

KLSSIIPSA 1.1299 ++ 1/5
FLAKLNNTV 1.1257 + \
FLSKLSSII 1.1157 - \
VLSAVTPEL 1.1020 + \
VLSNVLSGL 1.1010 + \
SIDDLSFYV 1.0988 ++ 4/5
ILDRANQSV 1.0906 ++ 3/5
YLATADMPA 1.0898 ++ 3/5
ALDEKVAEL 1.0847 ++ 4/5
ALSTVLPGL 1.0832 ++ 2/5
TLDEKVAEL 1.0777 ++ 5/5
TLDQVLDEV 1.0680 ++ 5/5
AMASASPSV 1.0663 ++ 3/5
VLSTAPPQL 1.0654 ++ 4/5
KVADLIHFL 1.0653 + \
KVAELVHFL 1.0627 + \
LMDVQIPTA 1.0546 ++ 5/5
ALSVMGVYV 1.0541 + \
FLAMLKNTV 1.0498 + \
KVAKLVHFL 1.0493 + \
KMAGELIKI 1.0386 ++ 4/5
FIDKLVESV 1.0359 ++ 5/5
Prediction scores were ranked and retained with four decimal digitals. -, FI < 0.5; +, FI ≥
0.5 to < 1.5; ++, FI ≥ 1.5; \ , no experimental data. *The response ratio of each peptide in
five donors detected by the percentages of IFN-g+-secreting CD8+ T cells.
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we designed the POTN model to predict T cell response of
peptides to HLA-A2, a common allele of MHC-I.

For current programs, the negative data sets selected for many
predictive models are random peptides, which allow some
potentially immunogenic peptides to be classified as non-
immunogenic. To construct a model with a better predictive
effect, 360 nonamers verified by in vitro immunological activity
experiments were used to construct the POTN model. We
selected non-immunogenic peptides with experimental data as
our negative data set. These peptides have binding affinity but are
not immunogenic, and they have properties that are more similar
to the immunogenic peptides. Thus, we chose these peptides as
our dataset to identify properties that are directly related to
immunogenicity and build a better model.

We collected 216 peptides as the training set and 144 peptides
as the test set for the model. To effectively distinguish the MHC
binding nonamers from the sequence database, we used all of the
peptide features to construct a predictive model. Statistically
significant features were selected for model construction.
Because the peptides had nine amino acids, these features were
further decomposed into 28 descriptors for each peptide (Table
2). The relationships between the peptide features and
immunogenicity indicated that many features were statistically
different at P3, and that P3 may be an important position for
distinguishing immunogenicity (Figure S1). This result was
Frontiers in Immunology | www.frontiersin.org 8
unsurprising, because the amino acids that came into contact
with the MHC/peptide/T cell receptor complex in the nonamers
were typically at P4–P7. The features of the amino acid at P3,
which is adjacent to sites P4–P7, may indeed be a factor
affecting immunogenicity.

The performance of the POTN model was superior to that of
the other widely used prediction programs, IEDB, SYFPEITHI,
and NetMHCpan 4.0 (Figure 3B). The high true positive
rate and low false negative rate of the POTN model indicated
that it could accurately predict epitopes from a peptide sequence
database, which may facilitate the development of personalized
cancer immunotherapy based on exome sequencing.
The performance of the POTN model proved that the
properties of peptides, such as polarity, charges, and entropy,
give useful information about how likely it is that a
peptide is an epitope, which indicates a new direction for
software development.

Antigen presentation is crucial to the function of the
adaptive immune response, where the HLA molecule presents
the antigenic peptides (epitopes) to T cells and stimulates their
proliferation and activation. HLA-A2 is a common allele in
humans. Therefore, a prediction model that can specifically
identify HLA-A2 epitopes is useful for cancer vaccine
development. Our model is designed for this purpose and
only predicts epitopes for HLA-A2 (30, 70). Therefore, the
A B

D E F

G IH

C

FIGURE 5 | Binding affinity and ICS assay for the peptides identified using the POTN model. (A) Identified peptides categorized based on binding affinity to HLA-A2.
ICS assay for each peptide in (B) donor 1, (C) donor 2, (D) donor 3, (E) donor 4, and (F) donor 5, (G) Number of immunogenic peptides in each group (e.g., “1/5”
indicates that in the group, one peptide elicited T cell response in one donor [1/5]; “2/5” indicates that in the group, one peptide elicited T cell response in two
donors [2/5]). (H) Number of the donors in which an immune response was elicited by the identified peptides. (I) Enrichment curves.
October 2020 | Volume 11 | Article 02193

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meng et al. POTN: Prediction Model for Neoepitopes
current version of the POTN model is restricted to predicting
HLA-A2–bound peptides. However, other MHC allele-specific
prediction models could be built with the same approach if the
experimental binding data for the allele are provided. In
addition, only nonamers were evaluated using the model, so
the prediction power of the model for peptides with other
lengths is not clear. In addition, we wonder about the
performance of the POTN system for the peptides from
thymic selection. The mechanism of central immune
tolerance allows immature T cells of the central immune
organ to develop immune tolerance when exposed to self-
antigens, and therefore the tolerated self-peptide after thymic
selection should not have the characteristics as that from
immunogenic peptides, and they can theoretically be
excluded by the POTN system. To test the performance of
the POTN system for self-peptides, we deliberately selected two
self-proteins for study, and the prediction results showed that
POTN predicted several self-peptides as immunogenic
peptides, although the false positive rates were extremely low
(0.36% and 1.7%, separately). The results indicated that the
POTN system cannot absolutely exclude self-peptides from
immunogenic peptides and the input data for POTN system
is suggested to the mutated sequencing data.

Finally, we selected peripheral blood samples from five
healthy donors to test the high-affinity HLA-A2 binding
peptides, and at least half of the peptides elicited a T cell
response in three or more donors. The results showed that
anti-tumor immunity could be activated by these peptides in
cancer patients, which should be investigated further in an in
vivo study of tumor treatment with the identified peptides.
CONCLUSION

The easy acquisition of personalized exome sequencing data
from cancer patients requires a tool for identifying epitopes with
high prediction power. In this study, we developed the POTN
model to predict the immunogenicity of HLA-A2 peptides, and
our model showed superior performance compared with the
most commonly used programs, SYPEITHI, IEDB, and
NetMHCpan 4.0. POTN may help to identify tumor
neoepitopes efficiently from sequencing data, and the approach
behind the model may provide a method for constructing
prediction models for other MHC alleles. We used the POTN
model to identify several epitopes from the CT-X database and
four of the peptides elicited a T cell response in all five healthy
donors. These peptides could serve as starting points for
developing new cancer treatments.
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