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Tumor immunity is a rapidly evolving area of research consisting of many possible

permutations of immune cell tumor interactions that are dependent upon cell type,

tumor type, and stage in tumor progression. At the same time, the majority of

cancer immunotherapies have been focused on modulating the T cell-mediated

antitumor immune response and have largely ignored the potential utility that B cells

possess with respect to tumor immunity. Therefore, this motivated an exploration into

the role that B cells and their accompanying chemokine, CXCL13, play in tumor

immunity across multiple tumor types. Both B cells and CXCL13 possess dualistic

impacts on tumor progression and tumor immunity which is furthered detail in this

review. Specifically, various B cells subtypes are able to suppress or enhance several

important immunological functions. Paradoxically, CXCL13 has been shown to drive

several pro-growth and invasive signaling pathways across multiple tumor types,

while also, correlating with improved survival and immune cell tumor localization in

other tumor types. Potential tools for better elucidating the mechanisms by which

B cells and CXCL13 impact the antitumor immune response are also discussed. In

addition, multiples strategies are proposed for modulating the B cell-CXCL13 axis for

cancer immunotherapies.
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INTRODUCTION

Recent advances in cancer immunotherapies have highlighted the potential of employing the
immune system to impede tumor progression. A major focus has been on employing the T cell-
mediated antitumor immune response (1). However, given the complexity of the immune system
and known interplay between T cells and B cells, the role of B cells with respect to antitumor
immunity should not be overlooked. For instance, B cells have been shown to modulate T cell
differentiation and mediate T cell response to tumor antigens (2, 3). Also, B cells possess a diverse
array of immunological functions ranging from antibody and cytokine production to phagocytosis
of which contribution to tumor immunity is largely unknown (4–8).

Recent studies have explored utilizing antigen presenting cells (APCs) such as dendritic cells
(DCs) for cancer immunotherapy (9). B cells also operate as APCs and can be expanded ex
vivo, so they may too serve as a viable option for cancer immunotherapy (10). Additionally, a
significant number of B cells are found in tumors and tumor-draining lymph nodes (TDLNs),
localized sites of high immunological activity near tumors (11). However, their exact role remains
unclear as contradictory studies have shown that they can be drivers of tumor progression through
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facilitating immunosuppressive microenvironments or
contributors to the antitumor immune response through antigen
presentation and T cell activation (10, 11). Therefore, more
studies are necessary to elucidate B cells’ role in tumor immunity.

Equally important, chemokines dictate proper immune cell
trafficking and are being pursued for cancer immunotherapies
(12). With respect to tumor immunity, they are becoming
increasingly highlighted for their ability to drive immune
cell tumor recruitment and impact the tumor-infiltrating
lymphocytes (TILs) population. For example, CXCL13 interacts
with the chemokine receptor CXCR5 which is present on B
cells and some tumor cells and has been implicated as key
modulators of both tumor progression and antitumor immunity
(13). Studies have shown that CXCL13 can drive tumor growth
and invasion through PI3K/AKT signaling or contribute to
an enhanced antitumor immune response via increased tumor
immune localization (14, 15). Therefore, further inquiry is
required to determine its role in tumor immunity. In this review
we will delve into the literature of B cells and CXCL13 and
attempt to provide the most updated analysis of their roles in
tumor immunity. Additionally, we will postulate on their ability
to be leveraged for innovative cancer immunotherapies.

B CELLS SUBTYPES AND FUNCTIONS

The contribution of B cells in tumor immunity remains
controversial. However, there is consensus on their importance
for generating antibodies which bind to specific antigen epitopes
and label them for degradation or targeting (16). B cells function
as APCs by utilizing their B cell receptor (BCR) to recognize
antigens and are important for presenting foreign and auto-
antigens to CD4+ T cells (17–19). B cells can regulate immune
system homeostasis through the production of cytokines which
modulate T cell differentiation, inflammation, and lymphoid
tissue architecture (20).

It is important to define several B cell subtypes to better
understand how they may contribute to tumor immunity.
For instance, regulatory B cells (Bregs) are important for
ensuring proper immunological tolerance and may help
combat autoimmunity (21, 22). Bregs can express the
immunosuppressive cytokines, IL-10, TGF-β, and IL-35, to
impair the activity of DCs and T cells (23). Also, Breg-derived
IL-10 is important for promoting regulatory T cells (Tregs),
which further contribute to immune suppression (24). Bregs via
increased expression of TGF-β1 and IL-10 can induce anergy
of CD8+ T cells and apoptosis of CD4+ T cells, respectively
(25, 26). With this in mind, it is apparent that Bregs act to
dampen immune activity which may contribute to a less robust
antitumor immune response. However, because they lack an
identifying marker, it is challenging to specifically study their
intratumoral functions and interactions with other TILs (27).

Furthermore, conventional recirculating B cells (B2 B cells)
can be further stratified into follicular (FO) or marginal zone
(MZ) B cells (20). Naive FO B cells reside in lymph node
follicles where they present antigens to activated T cells (28).
After maturation, they circulate throughout the lymphatic and

circulatory system and are the main driver of high-affinity
antibody production (29). MZ B cells reside in the spleen MZ
where they monitor for blood pathogens utilizing their poly-
reactive BCRs (30, 31). They can respond to antigens without
assistance from T cells and are able to transport antigens to FO
B cells residing in spleen follicles (32).

In contrast, B1 B cells are primarily compartmentalized in
the pleural and peritoneal cavities and are hypothesized to be
part of innate immune memory (33). They are characterized
by their ability to self-renew and constitutively produce natural
antibodies (34). These natural antibodies are coded by the
germline VDJ sequences and recognize apoptotic cell membranes
(35, 36). B1 B cells are also able to phagocytose dying mammalian
cells (37). Dysregulation of apoptotic cell clearance can lead
to necrosis and inflammation, both of which are associated
with tumor progression (38, 39). Therefore, B1 B cells may
help mitigate potential inflammatory responses by recognizing
and clearing dying cells. Also, B1 B cells can stimulate T cell
expansion via CD80/CD86 and promote differentiation of CD4+
T cells (3). Similar to MZ B2 B cells, B1 B cells are capable of
eliciting a T cell-independent response (40). B1 B cells differ
from B2 B cells, in that they are larger, have resistance to
FAS-induced apoptosis, and possess greater ex vivo survivability
(41). Similar to Bregs, human B1 B cells lack a consensus on
their identifying surface markers so studying them in the tumor
microenvironment remains difficult (42).

EVIDENCE OF B CELLS PROMOTING
TUMOR PROGRESSION

Given the complex nature of B cells in promoting or suppressing
immune response, it is important to detail how they can
potentially hamper or promote antitumor immunity. For
instance, antibodies can lead to the generation of circulating
immune complexes (CIC) which have been associated with
poor prognosis in pancreatic ductal adenocarcinoma patients
(43). These CIC can suppress the immune response of myeloid
cells which then provides an additional barrier to a robust
antitumor immune response (44, 45). In prostate cancer, B cell-
secreted lymphotoxin (LT) was shown to drive STAT3 signaling
to promote tumor growth (46). In a mouse melanoma and
lung cancer model, B cells with activated STAT3 contributed to
increased tumor growth through the promotion of angiogenesis
(47). Additionally, a study showed that B cells can promote
bladder cancer metastasis by increasing ECM (extracellular
matrix) remodeling gene expression (48).

Furthermore, Bregs TGF-beta production can drive
conversion of CD4+ T cells to Tregs leading to inhibition
of CD8+ T cells and Natural Killer (NK) cells, both of which
are important for limiting tumor growth (49, 50). In a mouse
breast cancer model, tumor-evoked Bregs (tBregs) promoted
transition of resting CD4+ T cells to Treg cells which correlated
with greater metastasis (51). Additionally, tBregs have been
shown to elevate myeloid-derived suppressor cells ROS and NO
generation leading to CD4+ and CD8+ T cells suppression
(52). IL-10 can hamper the production of additional stimulatory
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cytokines leading to decreased responsiveness of CD8+ T
cells, Th1 cells, and NK cells (53, 54). B cells may drive tumor
progression through promoting expression of various genes that
drive tumorigenesis or by weakening the immune response.

B CELLS’ ANTITUMOR FUNCTIONS AND
PROGNOSTIC VALUE

In contrast, there is evidence that B cells can be beneficial for
enhancing antitumor immunity either directly by interacting
with tumor cells or indirectly by assisting additional immune
functions. For example, stimulated human B cells in vitro
have demonstrated the ability to induce lysis of melanoma
cells through expression of TRAIL/Apo-2L (55). TIL B cells
isolated from breast cancer tissues have been reported to express
granzyme B and exhibited in vitro cytotoxic activity toward breast
cancer cells (56). An additional study has shown that TDLN B
cells utilize FasL to directly interact with mammary cancer cells
and induce lysis (57). This suggest that B cells may contribute to
antitumor immunity by directly killing cancer cells.

In addition, B cells are capable of generating tumor-specific
antibodies and have shown to provide protective benefits against
breast cancer (16, 58). Additionally, tumor-binding antibodies
have been shown to be able to promote tumor cell uptake
by DCs (59). Furthermore, in a mouse glioblastoma model, B
cell antigen presentation was shown to be essential for T cell-
mediated antitumor response (60). The depletion of B cells with
anti-CD20 monoclonal antibodies in a melanoma mouse model
resulted in hampered CD4+ and CD8+ T cell response (61).
Also, activated B cells from cervical cancer patients have been
shown to stimulate T cell-mediated antitumor responses (62).

The presence of TIL B cells in multiple cancer types has shown
to be a positive prognostic marker for survival. For example,
analysis of colorectal cancer tissue samples demonstrated that
high B cell infiltration was a good indicator for positive
clinical outcome (15). A separate study on human colorectal
cancer, determined that TIL B cells were associated with
improved patient outcome (63). Likewise, in multiple studies
analyzing non-small-cell lung carcinoma (NSCLC) samples, high
B cell tumor infiltration generally correlated with better clinical
outcomes (64–66). Also, analysis of ovarian tumors showed a
positive association between B cell tumor infiltration and patient
survival (67).

CXCL13 FUNCTION

CXCL13 is a 10 kilodalton CXC chemokine that is important
for mobilizing B cells. Similar to B cells, CXCL13 has been
identified as possessing a dualistic impact on tumor progression.
For instance, CXCL13 has been associated with metastasis,
while at the same time is associated with greater patient
survival (15, 68). It is expressed by follicular DCs (FDCs) and
helper T cells and is essential for naive B cell homing and
organization within lymphoid follicles, sites critical for B cell-
antigen interaction and B cell differentiation (69, 70). Also,
CXCL13 drives B cell LT expression which in turn promotes

increased CXCL13 levels to generate a positive feedback loop
(71). CXCL13 through CXCR5 signaling enhances BCR-triggered
B-cell activation by altering cell dynamics to enhance antigen
gathering at the B cell immune synapse (72). With respect to
differences among B cell subtypes, B1 B cells express greater
CXCR5 than B2 B cells which may important for ensuring that
B1 B cells are recruited and provide localized immunity to the
peritoneal cavity (70). This is evidenced in CXCL13-deficient
mice which have reduced B1 B cell natural antibody production
and response to bacterial antigens in the peritoneum (68). These
findings highlight the importance of CXCL13 for regulating
B cells.

CXCL13’S ROLE IN DRIVING TUMOR
PROGRESSION

CXCL13 has been found to act on cancer cells and potentially
drive tumor progression. The addition of CXCL13 to
breast cancer cells in vitro increased expression of matrix
metalloproteinase-9 (MMP-9) and genes reasonable for driving
the epithelial to mesenchymal transition (EMT) (73). MMP-9
is important for ECM remodeling and invasion of tumor cells
through the basement membrane. Additionally, the EMT is a
common step in tumor progression for epithelial cell cancers
(74). CXCL13 administration to oral squamous cell carcinomas
(OSCC) resulted in heightened CXCR5 and MMP-9 expression
(75). Similarly, in prostate cancer cell lines, the addition of
CXCL13 increased expression of ECM remodeling genes (76).
Also, CXCL13 through CXCR5 was shown to promote growth
and invasion via the PI3K/AKT pathway in clear cell renal
carcinoma (14). In liver cancer, CXCL13 has been shown to
activate the pro-growth Wnt/B-catenin signaling pathway (77).
Furthermore, CXCL13 may have a specific role in promoting
bone metastasis. CXCL13 knockdown resulted in reduced
prostate cancer and OSCC bone invasion in mouse models
(75, 76).

With respect to hematological cancers, specifically, B cell
chronic lymphocytic leukemia (B-CLL) and acute lymphocytic
leukemia (B-ALL), there is significant evidence that CXCL13
drives pro-growth and survival signaling (78, 79). Additionally,
increased serum CXCL13 levels were found to be associated with
greater risk of B cell non-Hodgkin’s lymphoma (NHL) in HIV-
infected individuals (80). Given CXCL13’s impact on B cells, it is
somewhat intuitive that it would exacerbate B cell malignancies.
In summary, tumor cells may utilize CXCL13 to promote growth,
invasion, and metastasis.

CXCL13’S ROLE IN ENHANCING
ANTITUMOR IMMUNITY

In contrast, CXCL13 may contribute to a greater antitumor
immune response through improving immune cell tumor
infiltration. For instance, in human breast cancer tumor tissues
greater CXCL13 expression was linked with increased T cell and
B cell tumor recruitment (81). Furthermore, among colorectal
cancer patients, increased intratumoral CXCL13 correlated with
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greater T cell and B cell tumor infiltration and prolonged
patient survival (15). CXCL13 administration into the colonic
submucosa of mice with colorectal cancer resulted in decreased
tumor growth (15). Additionally, in patients with HER2+
breast cancer increased CXCL13 correlated with better survival
(82). High expression of CXCL13 among triple negative breast
cancer (TNBC) patients corresponded with better outcomes
(83). Likewise, analysis of genome-wide cDNA expression of
tumor samples from ovarian cancer patients revealed that high
CXCL13 correlated with better prognosis (84). CXCL13 may
hinder tumor progression by increasing the number of immune
cells at the tumor site which is evidenced by its correlation with
greater prognosis and survival in multiple tumor types. The
complex impact of CXCL13 on tumor immunity is summarized
in Table 1.

TABLE 1 | CXCL13 impact across different types of cancer.

Cancer

type

Pro-tumor Antitumor

Breast

cancer

In vitro addition to

MDA-MB-231 cells

increases MMP expression

Model: Mouse cancer

cells (68)

Correlated with greater

survival and immune tumor

infiltration

Model: ex vivo analysis of

human breast cancer tissue

(81)

HER2+/TNBC: Correlated

with better prognosis

Model: Human clinical data

(82, 83)

Genitourinary

cancers

Clear cell renal carcinoma:

Promotes PI3K/AKT

signaling (CXCR5+)

Model: human tissue

analysis (14) Prostate

cancer: Enhances ECM

remodeling and bone

metastasis (CXCR5+)

Model: human engineered

cell lines and xenograft

mouse model (76)

Ovarian cancer: Correlated

with better prognosis

Model: Human healthy and

cancerous tissue cDNA

expression data (84)

Colorectal

cancer

N/A Correlated with improved

survival

Model: Human clinical data

(15)

OSCC Increases MMP expression

and bone

invasion (CXCR5+)

Model: Human-derived

OSCCs cells and xenograft

mouse model (75)

N/A

Liver

cancer

Liver Cancer: Drives Wnt

signaling (CXCR5+)

Model: in vitro analysis of

human samples (77)

N/A

Leukemia B-CLL and B-ALL:

Promotes

apoptosis resistance

Model: in vitro analysis of

human samples (78, 79)

N/A

POTENTIAL OF B CELLS AND CXCL13 IN
CANCER IMMUNOTHERAPY

B cells as well as CXCL13 play multifunctional roles in tumor
immunity. Careful modulation of each may prove to be effective
for bolstering existing cancer immunotherapies or for designing
novel stand-alone treatments. For example, B cells have multiple
characteristics such as ability to be readily expanded ex vivo,
produce antibodies and present antigens to T cells which make
them a viable option for adoptive cell transfer therapy (10).
B cells isolated from TDLNs of mice inoculated with breast
cancer cells were activated ex vivo and administered to mice
with breast cancer (85). The activated B cells were able to induce
tumor-specific T cell immunity and prevent lung metastases.
Also, the activated B cells in combination with activated T
cells resulted in tumor regression demonstrating the therapeutic
potential of using B cells. An additional study showed that
stimulated B cells could be employed for cross-presenting tumor-
specific antigens to T cells (86). In this study, activated B cells
loaded with tumor antigen were capable of impeding tumor
growth, demonstrating that B cells can potentially be a stand-
alone treatment option. Alternatively, inhibiting Breg cell activity
may be beneficial for targeting tumors with immunosuppressive
microenvironments. This would be most useful in tumors with
high Breg infiltration.

Additionally, CXCL13 may be utilized to improve the
antitumor immune response by increasing B cell localization to
tumor site. In humans, CXCL13 has been shown to increase
B cell tumor infiltration and correlate with prolonged survival
in multiple tumor types (82–84). In mouse colorectal cancer
studies, direct CXCL13 administration was effective for impeding
tumor growth (15). Also, CXCL13 can initiate a positive feedback
loop for B cell activation so it may useful to deliver CXCL13
into the tumor to enhance TIL B cell antitumor functions (71).
Additionally, CXCL13 can be utilized to selectively target B cells.
CpG-oligodeoxynucleotides (ODNs) conjugated to CXCL13 for
B cell-specific delivery resulted in enhanced B cells activation
of CD8+ T cells and reduced lung metastasis (87). CXCL13
can be similarly employed to deliver inhibitory agents to Bregs
to combat intratumoral immune suppression. Also, CXCL13
can potentially be used in conjunction with B cell-based
immunotherapies to improve B cell tumor localization and
result in greater efficacy. In contrast, for CXCR5+ tumors,
antibody blockade of CXCL13 may be a useful strategy for
preventing CXCL13-driven tumor growth and invasion. For
instance, administration of anti-CXCL13 to MDA-MB-231 cells
in vitro resulted in apoptosis (88).

DISCUSSION

Although B cells’ role in tumor immunity is quite complex,
it is apparent that they are important modulators as they are
capable of both hindering or promoting antitumor immunity.
Specifically, Breg activity may drive an immunosuppressive
tumor microenvironment by suppressing T cell and DC activity
(21, 23). In contrast, B1 B cells may contribute to a more
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effective antitumor immune response by enhancing T cell-
mediated immune response (3). However, for both B cell subtypes
there is a lack a consensus on their human surface markers and,
therefore, they are difficult to study within the context of cancer
(21, 42).

Additional tools are needed to accurately analyze B cell
subtypes within tumor microenvironments. In addition to
surface markers, functional ex vivo assays on isolated TIL-B cell
subtypesmay help further define roles. For instance, isolated TIL-
B cells could be co-cultured with CD4+ and CD8+ T cells and
monitored using the modulation of T cells as a readout. If specific
TIL-B cells are identified as stimulating T cell activity, then they
can be furthered genotyped to identify gene expression patterns
that reflect the change in cell status and functions during the
immune response. Similarly, CXCL13’s role in tumor immunity
is contradictory (82, 88). Analyzing the amount of intratumoral
CXCL13 after tumors have been excised does not clearly decipher

if CXCL13 is a driver or responder to tumor progression. Instead,
new tools that enable real-time tracking of CXCL13 expression
during tumor progression are necessary to more accurately
address this inquiry. Ultimately, B cells and CXCL13 have great
therapeutic potential for cancer treatments. However, researchers
must be cautious as both must be considered with respect
to tumor type and CXCR5 tumor expression. It is pertinent
that information on the B cell tumor population and tumor-
immune microenvironment is known before pursuing this type
of immunotherapy.
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