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Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple
immune cells. Due to its complex pathogenesis, the effectiveness of traditional treatment
methods is limited. Many patients have developed resistance to conventional treatment
or are not sensitive to steroid and immunosuppressant therapy, and so emerging
therapeutic antibodies have become an alternative and have been shown to work well
in many patients with moderate and severe SLE. This review summarizes the biological
agents that are in the preclinical and clinical trial study of SLE. In addition to the various
monoclonal antibodies that have been studied for a long time, such as belimumab
and rituximab, we focused on another treatment for SLE, bispecific antibodies (BsAbs)
such as tibulizumab, which simultaneously targets multiple pathogenic cytokines or
pathways. Although the application of BsAbs in cancer has been intensively studied,
their application in autoimmune diseases is still in the infant stage. This unique combined
mechanism of action may provide a novel therapeutic strategy for SLE.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, and the pathogenesis
involves genetic factors, epigenetics, environmental factors, which resulting in immune
abnormalities. Immune abnormalities are mainly the loss of tolerance and sustained autoantibody
production (1). The main immunological manifestations are the abnormal activation of T cells and
B cells with abundant autoantibodies that form antigen-antibody complexes in tissues and organs,
which results in damage and inflammation (2).

With a deepening understanding of the pathogenesis, targeted therapy has become a more
promising treatment, especially for the patients who not respond to conventional treatments.
Conventional treatments, mainly including glucocorticoids and immunosuppressants, have poor
specificity and are prone to tolerance. SLE patients have an increase in multiple cytokines and
auto-antibodies, and there may be significant differences in cytokine levels in different patients,
such as I interferon (IFN) levels (3). This provides strong support for blocking specific cytokines or
pathways with specific antibodies. In this review, we will summarize the existing biological agents,
expound on their effects at different sites (Figure 1), and hope to shed light on future research to
develop more targeted therapy.
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FIGURE 1 | Targeted Therapy of SLE Centered on B Cells. This figure shows the sites of action of some therapeutic antibodies with a focus on B cells. The
antibodies shown here bind to the surface molecules of B cells and down-regulate the immune response. In addition, to block the upstream factors regulating B cells
(such as BAFF and APRIL) or downstream inflammatory factors such as IL6, so as to achieve the role of regulating immune response. The short red line indicates
that the antibody has a blocking effect on the corresponding cell receptor or cytokine. follicular DC, follicular dendritic cell; CXCL13, chemokine ligand 13; APRIL, a
proliferation-inducing ligand; BAFF, B cell activation factor; CD40L, CD40 ligand; and ICOSL, inducible T cell co-stimulator ligand.

TARGETING B CELLS

B cells are central to the pathogenesis of SLE. Dysregulation of
transcription factors and cytokines in B cells and interaction
between B-T cells can lead to abnormal maturation of B cells
and the production of autoantibodies (4, 5). Targeted blocking of
B-cell-related cytokines has an obvious effect on down-regulating
the overly strong immune response.

BAFF/APRIL Inhibition
B cell activation factor (BAFF, or BLyS), which regulates the
survival and maturation of B lymphocytes, is a member of
the TNF family and has both a membrane form and soluble
form (6). BAFF has been found to play an important role
in the survival and differentiation of B cells in recent years.
By binding to three different receptors, BAFF-R, TACI and
BCMA, BAFF promotes B cell differentiation, maturation and
class conversion, promoting the humoral immune response and
participating in T cell activation (7, 8). APRIL (a proliferation-
inducing ligand) is also a member of the TNF family, has
high homology with BAFF, and binds to the receptors TACI
and BCMA. Excessive expression of BAFF promotes the
malignant proliferation of B cells and leads to autoimmune
diseases (9).

Belimumab is a fully humanized IgG1 monoclonal antibody
(mAb) that only binds to soluble BAFF and blocks its binding
to the three receptors (10), directly reducing naive and transient
B cells and indirectly inhibiting the function of IgD-CD27++
memory B cells and plasma cells (11). This is the first biological
agent to be approved by the FDA for SLE. Early multicenter phase
III clinical trials have shown that longterm use of high doses
continuously improved serological indicators, reduced hormone
dosage and reduced the risk of severe recurrence in SLE (12, 13).
Real world study make us more comprehensive understanding
of this drug. A retrospective study of 466 patients with active
SLE found that the lower the baseline damage, the greater the
probability of achieving remission, indicating the benefits of early
medication for SLE (14). Currently Belimumab in childhood –
onset systemic lupus erythematosus (cSLE) II period in the
clinical trials have been successfully developed, and the efficacy
is consistent with adults (15) (Table 1).

Tabalumab is a humanized IgG4 single-chain antibody
that can bind to both membrane and soluble BAFF (16).
In randomized phase II trials of rheumatoid arthritis (RA),
treatment resulted in transient increases in the total number of
B cells, naive B cells, and memory B cells (17). Two phase III
studies evaluated the role of tabalumab in patients with moderate
to severe SLE. One showed that although tabalumab treatment
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TABLE 1 | Single-target biological agents in SLE.

Biologic Agent type Mechanism of action Stage in SLE to date References

Targeting B cells

Belimumab Anti-BAFF mAb Binding to soluble BAFF On the market (10–15)

Tabalumab Anti-BAFF mAb Binding both soluble and membrane BAFF Phase III (16–19)

Blisibimod Anti-BAFF fusion protein Binding both soluble and membrane BAFF Phase III (20–23)

Epratuzumab Anti-CD22 mAb Binding to CD22 Phase III (32–36)

Rituximab Anti-CD20 mAb Binding to CD20 On the market (37–40)

Veltuzumab Anti-CD20 mAb Binding to CD20 Case report (41, 42)

MAb5261 Anti-CXCL13 mAb Binding to CXCL13, interfere with the migration of B cells Preclinical (46, 47)

Targeting co-stimulators

Dapirolizumab Anti-CD40L mAb Binding to CD40L, inhibiting co-stimulation and B cell maturation Phase II (50–54)

Abatacept CTLA4-Fc fusion protein Interfering with T cell activation Phase IIb (56–58)

AMG557 Anti-ICOSL mAb Binding to ICOSL Phase II (59–61)

1D1 Anti-CD86 mAb Binding to CD86 Preclinical (64)

Targeting cytokine

Tocilizumab Anti-IL-6R mAb Blocks the binding of IL-6 and IL-6R Phase II (68–70)

Sirukumab Anti-IL-6 mAb Binding to IL-6 Phase II (71, 72)

Secukinumab Anti-IL-17A mAb Binding to IL-17A Case report (74, 75)

Sifalimumab Anti-IFNα mAb Binding to most subtypes of IFN Phase IIb (77–80)

Rontalizumab Anti-IFNα mAb Blocking inflammation induced by type I IFN Phase II (81, 82)

Anifrolumab Anti-IFNαR mAb Blocks the binding of IFNα and IFNαR Phase III (83–85)

Infliximab Anti-TNFα mAb Neutralizing TNF in peripheral blood Case report (87)

Ustekinumab Anti-p40 mAb Binding to the IL12/IL23 subunit p40 Phase II (90, 91)

Targeting complements

Eculizumab Anti-C5 mAb Binding to complement C5 Case report (93–96)

resulted in significant changes in the biological activity of anti-
dsDNA, complement, B cells and immunoglobulin, the primary
endpoint was not achieved (18). Another study showed that key
secondary endpoints were not met and that side effects were
depression and suicidality (19). In response to these results,
tabalumab development has been discontinued.

Blisibimod is an antagonistic peptide-FC fusion protein that
can specifically bind to both soluble and membrane BAFF (20).
Antagonist peptide has the advantages of simple synthesis and
little toxic. Compared to Bellimumab, blisibimod has a higher
affinity for BAFF (21). A phase I clinical trial confirmed the safety
in SLE patients with moderate disease activities and explained
that its pharmacological effect is by reducing naive B cells (22).
In a phase III trial involving 442 patients with systemic lupus
erythematosus disease activity index (SLEDAI) scores greater
than 10 (23), there was no significant difference in remission
between the blisibimod group and the placebo group. However,
blisibimod significantly reduced the urinary protein/creatinine
ratio and improved the serological index.

Atacicept is a humanized recombinant soluble fusion protein
that contains the extracellular ligand binding domain of TACI,
which is fused into the Fc portion of human IgG1, blocking
both APRIL, and BLys (24, 25). In a phase Ib clinical trial,
the safety, tolerability, and biological activity of atacicept were
demonstrated in patients with mild to moderate SLE (26).
A phase IIb study involving 306 SLE patients showed evidence
of efficacy, particularly in patients with high levels of disease
activity (27).

RC18, also called telitacicept, is a novel recombinant TACI-
Fc fusion protein that can binding to BAFF and APRIL. As a
dual-targeting drug, it can inhibit the two cytokines of BAFF and
APRIL at the same time, more effectively reduce the immune
response, and achieve the purpose of treating autoimmune
diseases. According to the published data by RemeGen, 249
SLE patients were enrolled to evaluate the efficacy and safety of
telitacicept in the treatment of moderate to severe SLE subjects.
The results showed that there was a statistically significant
difference in the clinical response rate (SLE responder index, SRI-
4) between the telitacicept group (79.2%) and the placebo group
(32%), which reached the primary endpoint of the clinical trial
(NCT02885610). It is expected to be on the market in China in
2020 and has been approved for a phase II clinical trial by the
FDA, with a phase III trial still in recruiting (NCT04082416).

CD22/CD20 Inhibition
CD22 is a receptor on the surface of the B cell membrane
and is initially expressed in naive B cells and also during the
development of B cells; mature B cells have the highest CD22
expression, while plasma cells lack this surface molecule (28).
CD22 can promote the proliferation and differentiation of B
cells by regulating the signal transduction of the B cell receptor
(BCR) (29). CD20 is a transmembrane calcium channel that is
involved in the activation, proliferation and differentiation of B
cells (30). CD20 exists in the late pre-B cells and goes through the
maturation stage of B cells (31). Specifically, blocking these two B

Frontiers in Immunology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 539797

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-539797 September 30, 2020 Time: 16:22 # 4

Yang et al. Biological Agents for Lupus

cell membrane surface receptors inhibits B cell proliferation and
reduces the inflammatory response.

Epratuzumab is a humanized IgG1 mAb that targets CD22,
which regulates B cell signals without a substantial reduction in
the number of B cells (32). To date, seven clinical trials have
examined the safety and efficacy of epratuzumab. Overall, these
trials have demonstrated that epratuzumab is a well-tolerated
drug with similar rates of adverse events, mainly infection and
headache, in the placebo and epratuzumab groups (33). All
tests showed an effect on B cells, and the number of B cells
in peripheral blood decreased by 30–50%. Complement levels
and autoantibody levels remained unchanged. Immunoglobulin
levels stabilized, but data showed a 20% decrease in plasma IGM
levels, which were not associated with infection (34–36).

Rituximab is a chimeric mAb with a human IgG1 domain and
a mouse CD20 variable region (37). Rituximab is a classical B cell
depletion therapy that has been approved for the treatment of RA.
Although it failed trails in lupus nephritis (38), in a prospective
observational study, 45/50 patients achieved complete remission
(CR), or partial remission (PR) by a median time of 37 weeks
(39). These results indicate that rituximab is still a promising
therapy for the treatment of LN. A recent phase 2a, single-arm
study involved 16 SLE patients with severe, refractory disease and
they were treated with rituximab and belimumab. The responses
are significant: 10/16 patients achieved low lupus disease activity,
11/16 reached renal responses. The combination therapy through
complementary mechanisms, provides new insights in reducing
the excessive autoreactive B lymphocytes (40). Another RCT
of the combination of rituximab and belimumab is also under
way (NCT03312907).

The complementary determinant region of veltuzumab is
similar to that of rituximab. The binding activity and the effect on
CDC were stronger than those of rituximab (41). Veltuzumab was
effective in a patient with severe, drug-resistant SLE who did not
respond to conventional treatment and was initially responsive to
rituximab but subsequently deteriorated with high levels of anti-
rituximab antibodies. After receiving veltuzumab treatment, the
patient responded well, with decreased B cells and significantly
improved clinical symptoms. Whether the application can be
expanded is debatable (42).

CXCR5/CXCL13 Inhibition
CXCR5, which is expressed in Tfh cells, mature B cells, and Treg
cells, is involved in B cell migration and the formation of germinal
cells (GCs) and guides disease-causing double negative (DN) T
cells into lymphoid organs and kidneys (43). In CXCR5-deficient
lupus murine model, the migration of DN T cell to lymph nodes
was reduced and the kidney was not infiltrated (44). CXCL13,
a ligand of CXCR5, is expressed in follicular dendritic cells and
macrophages in secondary lymphoid organs (45). Both molecules
play an important role in the maturation and migration of B cells.

Numerous studies demonstrate that circulating CXCL13 level
in patients with SLE increases and may act as a novel target in
the treatment of SLE (46). MAb5261 is a humanized IgG mAb
against CXCL13 in preclinical stage (47). After the treatment
of MAb5261, the number of germinal centers decreased and
it interfered with the transport of B cells to the spleen in

mice models of RA and multiple sclerosis. Its role in SLE
needs to be studied.

TARGETING COSTIMULATORS

Immune activation of B cells requires the interaction of
costimulatory signals with T cells, especially CD40/40L, CD28,
Inducible T cell co-stimulator ligand (ICOSL), and CD80/CD86.
Blocking this pathway indirectly inhibits the proliferation
and activation of B cells and down-regulates autoantibody
production, thus achieving a therapeutic effect (48, 49).

CD40 and CD40 ligand (CD40L) are a pair of costimulatory
molecules. CD40L is mainly expressed in activated CD4+ cells
and in monocytes, mast cells and basophils. After binding to
CD40, which is expressed on the surface of B cells, CD40L
regulates the interaction between CD4+ T cells and B cells,
which is crucial for the activation, differentiation and memory
generation of B cells (50–52). Dapirolizumab is an Fc peg-
glycolated anti-CD40L antibody fragment (53). A phase I clinical
trial that included 24 patients with SLE showed that the SRI-4 in
the dapirolizumab group was obviously improved compared with
that of the placebo group (5/12 vs 1/7) and the mechanism of gene
expression changes was observed in blood RNA samples (54).
A 24-week phase II trial is being recruited for (NCT02804763)
to further study its efficiency in SLE.

Cytotoxic T lymphocyte associated protein 4 (CTLA4) is a
receptor that is constitutively expressed in regulatory T cells and
down-regulates the immune response when it binds to CD80 or
CD86, which is expressed on the surface of antigen presenting
cells (55). Abatacept is a recombinant protein composed of
CTLA4 and immunoglobulin that binds to CD80/CD86 and
inhibits the response pathway (56). Abatacept has been approved
for arthritis and is currently being studied for SLE and lupus
(57). A multicenter exploratory phase II clinical trial involving
175 SLE patients demonstrated its efficacy in SLE. The primary
endpoint was the proportion of patients who deteriorated after
steroid reduction began. After 12 months of follow-up, the rate
of flares in the treatment group was 79.7%, and in the control
group, it was 82.5%, which failed to reach the primary endpoint
(58). However, given the pathogenesis of SLE, new clinical trials
on abatacept should be designed to further confirm its potential
use in SLE (57).

Inducible T cell co-stimulator ligand is highly expressed in
CD4 and CD8 T cells in patients with SLE, leading to abnormal
proliferation and activation of T cells and the generation of
pathogenic autoantibodies (59). AMG557 is a mAb that binds to
ICOSL. A phase Ib clinical trial showed its safety and potential
curative effect (60). The phase II clinical trial of 112 patients
showed that the KLH IgG reaction decreased significantly, but
the KLH IgM reaction or IgG level had no obvious change. There
were no significant changes in clinical features or other biological
indicators (61).

CD80/CD86, a ligand of CD28 and CTLA4, plays a
key role in autoimmune diseases and organ transplantation
(62). There is no anti-CD80/CD86 antibody applied to
clinical cases of SLE patients so far, but its application
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in follicular lymphoma has entered phase II clinical trials
(63). Anti-CD86 (1D1) (64), a mAb that recognizes both
human and mouse CD86, was used in the CGVHD-induced
experimental lupus nephritis model. The data showed that
blocking CD86 with 1D1 significantly alleviated proteinuria,
autoantibody production, immune complex deposition, and
renal parenchymal injury in mice.

TARGETING CYTOKINES

In the pathogenesis of SLE, many cytokines not only mediate
the immune response but also serve as markers of disease
progression, inhibiting the corresponding immune stimulation,
and reducing the immune response (65, 66).

IL-6 Inhibition
IL-6 is an important inflammatory factor that not only increases
rapidly in the acute inflammatory response but also significantly
up-regulates the immune response in immune diseases (67, 68).
The increase in serum IL-6 levels is positively correlated with the
disease activity of SLE (69). There is also a positive correlation
with IL-17, which is why there have been studies on the bispecific
antibody (BsAbs) of both factors.

Tocilizumab is a humanized anti-IL-6 receptor (IL-6R) mAb
that blocks receptor binding to IL-6 (68). A phase I clinical
trial involving 16 mild-to-moderate SLE patients studied the
safety and efficacy of tocilizumab. The results showed that the
level of resistant double-stranded DNA decreased by 47% and
the disease activity significantly improved. However, tocilizumab
resulted in a decrease in the absolute number of neutrophils, and
the decrease was related to the dose of the drug, with 11 out
of 16 patients becoming infected (70). The FDA has approved
tocilizumab for the treatment of RA, but its use in SLE has
not been well developed, given that it inhibits inflammatory
responses and increases the risk of infection at the same time.

Sirukumab is a humanized mAb against IL-6 that neutralizes
IL-6 in the blood and reduces inflammation (71). In a phase II
clinical trial of lupus nephritis (72), the experimental group did
not reach the expected endpoint, but urine protein decreased
by 50% in 5/21 patients. More research need to be studied in
lupus nephritis.

IL-17 Inhibition
IL-17A, a member of the IL-17 family, is secreted mainly by
Th17 cells. In SLE, IL-17A collectively recruits and activates
neutrophils with other cytokines to amplify the inflammatory
response, exacerbate inflammation and injury in targeted organs,
and enhance the immune response (73).

Secukinumab, an anti-IL-17A mAb, has shown some promise
in Phase II trials for multiple autoimmune diseases, particularly
psoriasis (74). In a case report, a woman with psoriasis vulgaris
that was complicated with refractory lupus nephritis was treated
with secukinumab for elevated Th17 cells in her peripheral
blood and substantial IL-17 infiltration in her renal interstitium,
despite resistance to conventional treatment (75). After starting

secukinumab treatment, the condition of this patient was
improved. Further research needs to be performed in SLE.

IFNα Inhibition
I interferon is a potent immune-stimulating factor produced by
plasmacytoid DCs whose signaling pathway is mediated by type
I interferon receptor (IFN R). In the pathogenesis of SLE, the
activation of IFN system can be seen in most patients, manifesting
an overexpression of type I IFN-regulated genes or an IFN
signature (76). Blocking IFN suppresses the immune response
and corrects the immune imbalance in SLE.

Sifalimumab is a humanized IgG1k mAb against IFN that
is neutralized by binding to most subtypes of IFN (77).
A phase IIb clinical trial that included 431 participants showed
that only a group of patients with high levels of IFN SRI-
4 significantly improved. Skin lupus erythematosus lesion
area and severity index ——cutaneous lupus erythematosus
disease area and severity index (CLASI) and joint count were
significantly improved. No efficacy was found in reducing anti-
dsDNA antibodies or improving C3/C4 levels, and subsequent
exploratory analysis showed improvement in patients with low
IFN expression (78). As with a recent multicenter phase II open-
label study in Japan, the main adverse event was herpes zoster
(78, 79). Although sifalimumab performed well in Phase II trial,
its development was discontinued in favor of anifrolumab which
had better results in phase II studies (80).

Rontalizumab is also a humanized IgG1 mAb against IFN,
and clinical studies of rontalizumab have progressed to phase
II. After observing 238 SLE patients for 24 weeks, it was
found that although the primary and secondary endpoints were
not reached, rontalizumab performed well in patients with
low IFN signal measurements (ISMs), which was unexpected
in terms of improving disease activity, reducing flares, and
steroid reduction (81, 82). This is probably because of the
difference in the mean trough concentrations of rontalizumab
between the ISM-Low patients [56.5 (mu)g/mL] and ISM-High
patients [39.4 (mu)g/mL], which may have contributed to the
differential outcomes.

Anifrolumab is a humanized anti-IFNαR mAb that is effective
in targeting IFNα (83). The first phase III trial of anifrolumab,
TULIP-1, did not show significant influence at the primary
endpoint according to SRI (84). But in TULIP -2, anifrolumab
showed significant influence at the primary endpoint according
to the BILAG-based combined lupus assessment (BICLA). The
BICLA response rate of anifrolumab (48 weeks, 300 mg per
4 weeks) was 16.3 percentage points higher than placebo (47.8%
and 31.5%, respectively) (85). This inconsistency in drug efficacy
under different evaluation systems presents a challenge for the
development of new drugs.

TNFα Inhibition
TNF is an important inflammatory factor that mediates the
autoimmune response. The level of TNF reflects the disease
activity (DA) level of SLE and is positively correlated with the
activity of lupus nephritis (86).

Infliximab is a humanized mAb against TNF that neutralizes
TNF in peripheral blood. Patients with refractory lupus nephritis
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(87) have improved DA and proteinuria in response to infliximab.
However, its safety and efficacy in treating SLE need further study.

IL21/IL23 Inhibition
IL-21, a cytokine that is secreted by Th17 and Tfh cells, is
highly expressed in the peripheral blood of SLE patients, induces
the generation and differentiation of B cells and enhances the
production of immunoglobulin (88). Up-regulation of IL-23 and
its receptor has also been observed in lupus patients (89).

Ustekinumab is a mAb that acts on the IL12/IL23 subunit
p40 is currently approved for use in psoriasis (90), with clinical
trials in SLE underway. A phase II clinical trial involving 102
autoantibody-positive SLE patients who were receiving standard
treatment showed (91) SRI-4 responses at 24 weeks in 37 (62%) of
60 ustekinumab patients and 14 (33%) of 42 placebo patients. The
incidence of adverse events was higher in the ustekinumab group
(78%) than in the placebo group (67%), with infection being the
most common event.

TARGETING COMPLEMENT

Complement mediates the deposition of immune complexes,
which further lead to the involvement and damage of the
deposition site, and blocking the complement-mediated pathway
and reducing the immune response is a way to alleviate the
involvement of SLE organs (92).

Eculizumab is a humanized anti-C5 mAb (93). It specifically
binds to human terminal complement protein C5 and blocks
the release of inflammatory factor C5a and the formation of
C5b-9 by inhibiting the cleavage of human complement C5 to
C5a and C5b. In several case reports (94–96), all lupus nephritis
patients with eculizumab showed improved renal function and
normal complement.

BISPECIFIC ANTIBODIES IN SLE

At present, there are around 100 BsAb drug candidates in clinical
development (97), whereas only a dozen are associated with
autoimmune disease (98). In SLE, in addition to two fusion
proteins, atacicept and RC18, which are dual-target drugs, 5
BsAbs are in study (Table 2).

B cell activation factor is a critical target for these pending
BsAbs, with more than half of the drugs designed to be
targeted at it. This is due not only to its important role in the
pathogenesis of SLE, but also to the confidence generated by
Belimumab’s successful development (99). In addition, how to
design cytokines into the network of dual targets is also a problem
with research value.

Tibulizumab is a novel BsAb that is composed of two
divalent antibodies that act independently and targets both BAFF
and IL-17A (100) (Figure 2J). BAFF is not only involved in
the activation of B cells but also promotes the proliferation
of Th17 cells, thereby mediating the downstream immune
response. IL-17, which is secreted by Th17 cells, in turn
promotes inflammation (101). Blocking both IL-17 and BAFF has

advantages that anti-17 mAbs and anti-BAFF mAbs alone cannot
achieve (102). Tibulizumab effectively antagonizes BAFF and IL-
17 in both cellular and live mouse models. In the Cynomolgus
monkey model, the development and survival of B cells were
inhibited, the circulatory function was complete, and the half-
life was prolonged (100). A phase I clinical trial is currently
ongoing to study the safety, tolerability, pharmacokinetics and
pharmacodynamics of tibulizumab in Sjogren’s syndrome.

AMG570 is a BsAb that targets ICOSL and BAFF for the
treatment of autoimmune diseases such as SLE (103) (Figure 2J).
The current research on AMG570 is still in the preclinical stage.
Treatment with ICOSL/BAFF BsAb or combination therapy was
more efficacious than that of a single ICOSL or BAFF inhibitor in
a mouse lupus model. Dual ICOSL and BAFF inhibition was also
effective in the mouse collagen-induced arthritis (CIA) model.
In cynomolgus monkeys, B cells were reduced significantly after
treatment with AMG570.

22∗-(20)-(20) is a bispecific hexadecavalent antibody
(bsHexAb) that targets CD20 and CD22 (104). It is composed
of the Fc of epratuzumab and four Fabs of veltuzumab, and
a CD20-targeting immunocytokine, using the Dock-and-
Lock (DNL) method (Figure 2L). This method combines
recombinant engineering with site-specific conjugation, allowing
the construction of various complex, yet defined, biostructures
with multivalency and multispecificity (105). In vitro experiment,
the 22∗-(20)-(20) mediates a broad and potent trogocytosis of
multiple B-cell surface proteins with only moderate B-cell
depletion compared to veltuzumab (104).

Obexelimab (XmAb5871) is a humanized Fc-engineered
antibody that binds to CD19 on the B cell surface and has a better
affinity for Fcγ receptor IIb (FcγRIIb) to inhibit the function and
activation of B cells (106–108) (Figure 2H). CD19 is expressed
in almost all stages of B cells, because of its wide expression,
the use of therapeutic antibodies against CD19 in SLE is limited
(109). In a phase II clinical trial involving 104 SLE patients,
obexelimab showed some inhibition of disease activity. SLEDAI
scores increased by no more than 4 points in 42% of patients in
the treatment group compared with 23% in the placebo group.

MT-6194 is a bispecific antibody that targets both IL-17A and
IL-6R using a gene fusion technique that combines the anti-IL-
17A Fynomer 11L9C09 with anti-IL-6R tocilizumab light chain
C-terminus (Figure 2K). Fynomer is a small protein, but it
does not act as a drug on its own. Instead, it forms a fusion
protein with an intact antibody molecule, allowing the complex
to bind to two different targets simultaneously (110). Currently
in preclinical studies, MT-6194 inhibits inflammation better than
each cytokine alone in a mouse model of delayed hypersensitivity
inflammation (111).

BISPECIFIC ANTIBODIES AND THEIR
APPLICATION IN OTHER DISEASES

Bispecific antibodies have been in development for some time.
In 2014, blinatumomab (CD19 and CD3) became the first FDA-
approved BsAb for the treatment of lymphoblastic leukemia
(112). Emicizumab (Factor IX and Factor X), for the treatment
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TABLE 2 | Dual-target biological agents in SLE.

BsAb Format Targets Biological Biological function Stage in SLE to date References

Atacicept Fc fragment fusion APRIL + BAFF Inhibiting B cell maturation and survival Phase IIb (24–27)

RC18 Fc fragment fusion APRIL + BAFF Inhibiting B cell maturation and survival Phase III NCT04082416

Tibulizumab IgG-scFv BAFF + IL-17A Inhibition of B cell maturation and
inflammatory cytokines

Phase I (100–102)

AMG570 IgG-scFv ICOSL + BAFF Inhibition of B cell maturation and T cell
proliferation

Preclinical (103)

22*-(20)-(20) DNL-Fab CD20 + CD22 Reducing B cells Preclinical (104, 105)

Obexelimab Fc mutated IgG CD19 + FcγRIIb Suppressing innate and adaptive B cell
activation

Phase II (106–109)

MT-6194 IgG-Fynomer IL-17A + IL-6R Inhibiting inflammation Preclinical (110, 111)

FIGURE 2 | Schematic Diagram of Bispecific Antibodies (118). Natural antibodies are tetramers of two light chains (L) and two heavy chains (H) and contain two
identical Fab domains with binding antigen sites and one Fc domain. Bispecific antibodies can be divided into two categories according to the presence or absence
of Fc segments: non-IgG-like BsAbs and IgG-like BsAbs. Non-IgG-like BsAbs have low molecular weights and robust tissue penetration and exert effects through
specific structural domains bound to antigens. However, due to their small molecular weights and lack of receptor-binding Fc structure, the antibodies cannot
mediate antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) (118, 119). Because of random assembly of the
different chains, the design of IgG-like BsAbs mainly focuses on how to solve the mismatch between two different heavy chains and the mismatch between heavy
chains and light chains. IgG-like BsAbs have improved stability but strong immunogenicity. The development of genetic engineering technology has promoted the
preparation of IgG-like BsAbs (120). (A, B) represent two different monoclonal antibodies. (C–L) are variants of (A, B), representing some common structures of
bispecific antibodies. The origin of the light and heavy chains can be determined by their colors. The corresponding format name is marked above the antibody,
different formats have their own characteristics in manufacturing and effect functions (30). DNL: In Dock-and-lock (DNL) method, antibody fragments are fused to
heterodimerizing proteins.

of hemophilia, was marketed in 2017, becoming the first BsAb
for a noncancer disease (113). Although BsAbs have been
studied in various fields, such as infectious diseases, diabetes, and
autoimmune diseases, their development is still in the early stage.

For autoimmune diseases, the pathogenesis involves
complex immune abnormalities, involving multiple cytokines.
Theoretically, this should be the ideal application of BsAbs, but in
practice, it presents great challenges, mainly due to the following
limitations. First, autoimmune diseases have very strong

heterogeneity. The specific cytokines and cell levels in different
patients vary greatly, which limits the clinical application of the
corresponding antibody. Although these problems also exist
with mAbs (Figures 2A,B), because monoclonal antibodies
involve only one site and BsAbs involve two, BsAbs are more
restricted in their application to the immune network. Second,
immunogenicity limits the use of BsAbs. BsAbs are mostly
fragment-based and nonnative formats, which may have
stronger immunogenicity than simple IgG (114). Patients with
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autoimmune diseases have an overly strong immune response,
which may produce anti-antibodies and crossreact with the use
of biological products. At the same time, the immune complex
formed by the double-targeting effect of BsAbs may be too large,
and additional damage may be caused if deposition occurs. Third,
there are many kinds of structures of BsAbs (Figures 2C–L),
therefore, how to choose the most suitable form according to the
needs of the target is a problem that needs to be studied.

Although there are some myths about the use and
development of BsAbs, they also have obvious advantages. The
first is the increase in the number of mechanisms of action (115),
which can simultaneously target multiple activation pathways
and more robustly inhibit immune responses. The second is that
BsAbs are a special antibody mixture, and the ratio of the two
antibodies is been determined at the very beginning. Therefore, it
is possible to determine the safe dose, maximum dose and other
issues during preliminary clinical trials. It is not necessary to
consider the dose and effect of the two when using monoclonal
antibodies in combination. The future of BsAbs is precision
medicine. Once the production cost is greatly reduced and the
research and development technology is fully mature, BsAbs and
multiple antibodies can be customized according to the specific
situation of each subtype or even each patient to achieve the relief
of patients’ symptoms.

CONCLUSION

Biological therapies for SLE are diverse, covering all B cell-
associated processes, from proliferation and differentiation to
activation. There are some agents that work well, such as
belimumab, rituximab and atacicept, on the market. RC18 is
expected to be the world’s first dual-target biological drug for SLE.
However, most of the biological agents are still in the phase II
and III clinical stages or even in the preclinical stage, and have
poor efficacy, side effects and other issues. In addition, many
agents that have been widely used in other diseases are gradually

broadening their indications and are being tested in SLE, but their
efficacy needs further verification.

At present, biological agents are mainly used for patients with
moderate and severe SLE. In the case that immunosuppressive
agents and hormone therapy are ineffective, biological agents
are used to control the disease (116). Therefore, there is still
a question of whether the combination of drugs is reasonable.
Rotalizumab is a good example for us to pay attention
to the subgroup patients and give personalized treatment,
according to the corresponding biological response. BsAbs
are also currently being studied in SLE. The advantage of
BsAbs is that blocking multiple activation pathways not only
reduces the immune response but also changes the existing
market (117, 118). Certainly, BsAbs against SLE are still in
a relatively preliminary stage, and the specific dose problems
need further clinical trials to be determined. Both mAbs and
BsAbs have the problem of producing anti-antibodies, which
leads to tolerance. Therefore, the use of therapeutic antibodies for
in vitro immunosorbent therapy is also a promising application.
Ustekinumab is also an insightful idea. Combined with the
subunit of IL21/IL23, ustekinumab can affect the two up-
regulated pathways. Finding more specific key targets is critical
in the development of antibodies.
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