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Intracellular ATP is the universal energy carrier that fuels many cellular processes.

However, immune cells can also release a portion of their ATP into the extracellular

space. There, ATP activates purinergic receptors that mediate autocrine and paracrine

signaling events needed for the initiation, modulation, and termination of cell functions.

Mitochondria contribute to these processes by producing ATP that is released. Here, we

summarize the synergistic interplay between mitochondria and purinergic signaling that

regulates T cell functions. Specifically, we discuss how mitochondria interact with P2X1,

P2X4, and P2Y11 receptors to regulate T cell metabolism, cell migration, and antigen

recognition. These mitochondrial and purinergic signaling mechanisms are indispensable

for host immune defense. However, they also represent an Achilles heel that can render

the host susceptible to infections and inflammatory disorders. Hypoxia and mitochondrial

dysfunction deflate the purinergic signaling mechanisms that regulate T cells, while

inflammation and tissue damage generate excessive systemic ATP levels that distort

autocrine purinergic signaling and impair T cell function. An improved understanding of

the metabolic and purinergic signaling mechanisms that regulate T cells may lead to novel

strategies for the diagnosis and treatment of infectious and inflammatory diseases.
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INTRODUCTION

ATP is themain energy carrier of living cells. Therefore, it came as a surprise tomanywhenGeoffrey
Burnstock first reported that neurons release a portion of their cellular ATP and that the released
ATP acts as a signaling molecule for cell-to-cell communication (1). Subsequently, similar ATP
signaling mechanisms were identified in many other tissues and organ systems (2, 3). Purinergic
signaling enables single cells in a multicellular system to calibrate their individual responses in
order to serve the collective interest of the entire organism. Purinergic signaling comprises three
basic elements: (i) mechanisms that produce and release ATP into the pericellular space; (ii)
purinergic receptors that recognize released ATP and its metabolites and elicit intracellular signals
that regulate cell functions; (iii) mechanisms that terminate purinergic signaling by enzymatic
breakdown of ATP, cellular re-uptake, or simple diffusion of ATP and its metabolites away
from cells.

Intact cells can release ATP via vesicular exocytosis or ATP-permeable membrane channels that
include connexin hemichannels, pannexin channels, calcium homeostasis modulator 1, maxi-anion
channels, and volume-regulated anion channels (4, 5). Of these mechanisms, pannexin 1 (panx1)
channels are particularly important in immune cells (6–10). Under basal conditions, resting cells
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release only a small portion of their cellular ATP. However,
mechanical stimuli or the ligation of cell surface receptors such as
the antigen and chemokine receptors of T cells rapidly increase
cellular ATP release (10–12). While regulated ATP release fine-
tunes cell responses, excessive ATP leakage from dying cells
or damaged tissues can act as a danger signal that exacerbates
inflammation, impairs T cell functions, and disrupts immune
responses (13–16).

ATP release and its breakdown products defines immune cell
functions by autocrine stimulation of three different families
of purinergic receptors, namely P1, P2X, and P2Y receptors.
Different combinations of these receptors are present on the
surfaces of virtually all mammalian cells, including the different
immune cell subtypes (17). P1 receptors, which recognize
adenosine, comprise four subtypes: A1, A2a, A2b, and A3
receptors. P2X receptors recognize ATP and consist of seven
members (P2X1-7). Human P2Y receptors comprise eight
members that recognize a wider range of ligands (18–21). P2Y2,
P2Y4, P2Y11, and P2Y13 receptors are activated by ATP; but
certain P2Y receptors also recognize other nucleotides including
ADP (P2Y1, P2Y12, P2Y13), UTP (P2Y2, P2Y4, P2Y6), UDP
(P2Y4, P2Y6), and UDP-glucose (P2Y14) (21, 22). P1 and P2Y
receptors belong to the G protein-coupled receptor (GPCR)
superfamily, while P2X receptors are ATP-gated cation channels
that facilitate the influx of extracellular Ca2+.

Purinergic receptors differ greatly in their desensitization
kinetics and affinities for their individual ligands. The
extracellular concentrations of these ligands depend on
the activities of ectoenzymes expressed on the cell surface
(23). Several different groups of these enzymes have
been identified including ectonucleoside triphosphate
diphosphohydrolases (ENTPDases), ectonucleotide
pyrophosphatases/phosphodiesterases (ENPPs), ecto-5′-
nucleotidase (CD73), adenosine deaminase (ADA), as well
as alkaline phosphatases (23–25). These enzymes are widely
distributed among the different immune cell subpopulations
(24). CD39 (ENTPD1) that converts extracellular ATP and
ADP into AMP, and CD73 that degrades AMP to adenosine
are particularly important modulators of purinergic signaling
in immune cells (26, 27). Once released from cells, ATP and
its breakdown products can either diffuse away from cells or
be internalized by equilibrative and concentrative nucleotide
transporters that are embedded in the cell membrane and return
ATP and its breakdown products for recycling and reuse in
cell metabolism (28). The distribution patterns of ATP release
sites, ectonucleotidases, and nucleoside transporters along with
their relative proximity to P1 and P2 receptors are important
determinants of the purinergic signaling mechanisms that
regulate immune cell functions.

P2X1 RECEPTORS MAINTAIN
MITOCHONDRIAL METABOLISM OF
QUIESCENT T CELLS

Autocrine purinergic signaling is an important mechanism of
immune cell regulation (17, 29–33). Human T cells express

A2a, A2b, A3, P2X1, P2X4, P2X5, and P2X7, as well as all
eight P2Y receptor subtypes (34–36). P2X1, P2X4, P2Y11,
and P2X7 receptors have particularly important roles in the
regulation of CD4T cells (10–12, 36–40). Among these receptors,
P2X1 receptors are most sensitive with an EC50 value of 50-
1000 nM ATP (22, 41). Such ATP levels are well within the
concentration range found in the pericellular environment of
quiescent T cells (42). Constitutive ATP release from cells
overexpressing P2X receptors is sufficient to sustain the modest
Ca2+ uptake that preserves basal mitochondrial metabolism and
ATP synthesis of resting cells (43). P2X1 receptors maintain
mitochondrial metabolism in quiescent human CD4T cells by
facilitating cellular Ca2+ influx that sustains basal mitochondrial
Ca2+ levels (44). Inhibition of mitochondrial metabolism
and interruption of the electron transport chain impairs T
cell migration, indicating that mitochondrial ATP production
fuels the purinergic signaling mechanisms needed for immune
surveillance and T cell functions (12, 45). Indeed, mitochondrial
defects and T cell suppression are cardinal features of sepsis
that correlate with morbidity and clinical outcome (44, 46–
49). Taken together, these findings suggest that P2X1 receptor-
mediated Ca2+ influx, mitochondrial ATP production, basal
ATP release, and autocrine feedback through P2X1 receptors
represent a purinergic-metabolic signaling loop that maintains
cell metabolism of quiescent T cells and allows these cells to
mount the responses needed for effective host immune defense
following chemokine or antigen stimulation (Figure 1A).

P2X4 RECEPTORS AND MITOCHONDRIAL
METABOLISM PROMOTE T CELL
MIGRATION

Stimulation of CXCR4, CCR5, CCR7, and other chemokine
receptors leads to the recruitment of T cells to lymphoid organs
where cell migration enables them to engage and interact with
antigen-presenting cells (APCs) (50–52). Stimulation of CXCR4
by stromal cell-derived factor 1α (SDF-1α) causes rapid surges of
mitochondrial ATP synthesis and panx1-mediated ATP release
from CD4T cells (12, 53). The resulting pericellular ATP levels
trigger P2X4 receptors with an estimated EC50 value ranging
between 0.5 and 10µM (22, 41). Autocrine stimulation of P2X4
receptors promotes waves of Ca2+ influx that further upregulate
mitochondrial ATP synthesis to the levels needed for active T
cell migration (Figure 1B) (12). P2X4 receptors aggregate in raft-
like structures that associate with mitochondria primarily at the
front of migrating T cells where localized ATP synthesis fuels
pseudopod protrusion and forward movement of the cells. These
P2X4 receptor-driven mechanisms are particularly critical for
T cells that move slowly in order to probe their surroundings
for potential antigens (12). Faster moving lymphocytes, however,
gather their mitochondria primarily at the uropod where the
bulk of ATP may be required to fuel actomyosin motor functions
needed for rapid cell migration (45). Inhibition of mitochondrial
ATP synthesis, ATP release, or P2X4 receptor signaling impairs
the ability of T cells to polarize and to migrate in response to
CXCR4 stimulation (12, 45, 53).
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FIGURE 1 | P2 receptors and mitochondria regulate key T cell functions. Autocrine feedback through P2X1 receptors and low-level mitochondrial metabolism

maintain a state of vigilance that quiescent T cells need for immune surveillance (A). Chemokine receptors such as CXCR4 trigger mitochondrial metabolism that

stimulates P2X4 and P2Y11 receptor-mediated excitatory and inhibitory Ca2+ and cAMP signaling pathways that direct cell movement at the front and back of

migrating T cells (B). P2X4 receptor accumulation at the immune synapse enhances T cell receptor (TCR) signaling and promotes antigen recognition and the

engagement of T cells with antigen-presenting cells (C). P2Y11 receptor recruitment to the uropod of polarized cells induces cAMP/PKA signaling that helps direct the

trafficking of mitochondria to the immune synapse (D).

Similar mitochondrial/purinergic feedback loops also
orchestrate the migration of other immune cell subtypes (54–
58). Like T cells, neutrophils depend on excitatory purinergic
receptors, panx1 channels, and mitochondria to coordinate
different aspects of their migration in chemotactic gradient fields
(6, 55). However, neutrophils differ from T cells in that P2Y2
receptors rather than P2X4 receptors amplify the chemotactic
signals that direct cell migration at their leading edge (6, 54).
Microglia, macrophages, and dendritic cells also depend
on autocrine feedback mechanisms and specific purinergic
receptors to regulate cell migration (56–58). Recent studies have
shown that inhibition of the mitochondrial electron transport
chain impairs the motility of neutrophils in zebrafish (59). Thus,
mitochondrial metabolism and purinergic signaling seem to
be preserved features that regulate immune cell migration in
humans and other vertebrates.

P2Y11 RECEPTORS CONTRIBUTE TO T
CELL MIGRATION BY RESTRAINING
MITOCHONDRIAL METABOLISM

According to the local excitation—global inhibition (LEGI)
model of chemotaxis, excitatory mechanisms at the front elicit
cell protrusion, while inhibitorymechanisms at the back promote
the retraction of the cell body during cell migration (60–62).
In neutrophils, P2Y2 receptors provide the excitatory signal at
the front, while A2a adenosine receptors generate the inhibitory
cAMP/PKA signal that causes cell retraction at the back of cells
(63). In T cells, P2X4 and P2Y11 receptors fulfill similar roles in
the regulation of cell migration (12, 64). Like the A2a receptors
of neutrophils, the P2Y11 receptors of T cells can couple to Gαs
proteins that trigger cAMP/PKA signaling pathways (65). P2Y11

receptors bind their natural ligand, ATP, with a reported EC50

value of 2.5 to 63µM, which is similar to the affinity of P2X4
receptors (41). Therefore, the pericellular ATP that surrounds
stimulated T cells can trigger both P2X4 receptor-mediated
Ca2+ influx and P2Y11 receptor-mediated cAMP/PKA signaling
that restrains excitatory signaling and transduction pathways
downstream of Gαi/o-coupled GPCRs like CXCR4 (66, 67). We
found that P2Y11 receptors redistribute to the back of polarized
T cells where they induce cAMP/PKA signaling events that
stabilize cell polarization by locally restricting cell stimulation by
CXCR4 chemokine receptors at the back (Figure 1B) (64). Thus,
P2X4 and P2Y11 receptors synergize to regulate mitochondrial
metabolism and provide T cells with the local excitation and
global inhibition cues that organize pseudopod protrusion and
uropod retraction during T cell migration in a LEGI-type fashion.

P2Y11 AND P2X4 RECEPTORS
ORCHESTRATE THE ACCUMULATION
AND ACTIVATION OF MITOCHONDRIA AT
THE IMMUNE SYNAPSE OF T CELLS

T cells must interact with APCs in order to mount immune
responses. These interactions occur via organized structures
referred to as immune synapses (IS) that consist of microclusters
containing T cell receptors (TCR), CD3, CD28 co-receptors, LAT,
SLP76, LFA-1, microtubules, and other cytoskeletal components
(68). The formation of a stable IS between a T cell and
an APC enables sustained TCR signaling that culminates in
cytokine production and T cell proliferation (69). Efficient T
cell activation also depends on sustained Ca2+ influx from the
extracellular space (70). Just minutes after TCR stimulation,
P2X4 receptors, panx1 channels, andmitochondria accumulate at
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the IS where mitochondria generate the ATP that panx1 channels
release into the synaptic cleft to stimulate P2X4 receptor-
mediated Ca2+ influx (36, 71, 72). P2X4 receptors deliver the
Ca2+ that mitochondria need to synthesize ATP via oxidative
phosphorylation (73). However, mitochondria also act as Ca2+

sinks that fine-tune cytosolic Ca2+ levels for efficient T cell
activation (74). Thus, mitochondria, panx1, and P2X4 receptors
represent a powerful feedforward signaling system that triggers
downstream pathways that involve mitogen-activated protein
kinases (MAPKs) and nuclear factors of activated T cells (NFAT)
and induce IL-2 transcription and T cell proliferation (10, 11, 36).

Successful T cell activation depends on the accumulation of
mitochondria at the IS (71, 72, 75). However, the mechanisms
that orchestrate mitochondrial trafficking to the IS are not
clear (76). In neurons, kinesin and dynein motors accomplish
anterograde and retrograde trafficking of mitochondria along
microtubules (77). In T cells, dynein facilitates mitochondrial
transport to contact sites that T cells form with endothelial
cells during their transmigration across blood vessel walls (78).
Dynamin-related protein 1 (DRP1) is a mitochondrial fission
factor that helps direct mitochondria to the uropod of migrating
T cells and to the IS during APC engagement (45, 75). In neurons,
cAMP promotes directional movement of mitochondria along
the microtubule network (79–82), while local cytosolic Ca2+

hotspots act as mitochondrial stop signals (83). Our recent
work has shown that P2Y11 receptors promote trafficking of
mitochondria to the IS of T cells (84). Thus, P2Y11 and
P2X4 receptors jointly recruit and activate mitochondria at
the IS in order to sustain T cell activation. However, further
studies are needed to reveal the detailed mechanisms by which
these purinergic receptors, motor proteins, and the microtubule
network regulate the complex process that energizes the IS in T
cells (Figures 1C,D).

Several lines of evidence indicate that purinergic signaling
has important physiological implications for in vivo T cell
functions. Consistent with the critical roles of P2X receptors
in T cells, genetic variants of P2X4 and P2X7 receptors were
found to contribute to multiple sclerosis, a T cell-mediated
inflammatory autoimmune disease (85). Furthermore, CD4T cell
infiltration into the spinal cord of mice subjected to experimental
autoimmune encephalomyelitis is attenuated in Panx1 knockout
mice (53). The significance of P2Y11 receptors as regulators of
human immune responses is supported by recent findings that
single nucleotide polymorphisms (SNPs) in the P2Y11 receptor
gene are associated with inflammatory disorders that increase the
risk of acute myocardial infarction and predispose patients to
narcolepsy and reduced T cell viability (86, 87).

SYSTEMIC ATP ACCUMULATION IMPAIRS
IMMUNE CELL FUNCTIONS BY
INTERFERING WITH THEIR AUTOCRINE
PURINERGIC SIGNALING MECHANISMS

T cells travel to lymphoid organs and other host tissues
where they interact with APCs in order to elicit effector
functions needed for host defense. As outlined above, T cell

FIGURE 2 | Systemic ATP accumulation impairs the autocrine purinergic

signaling mechanisms that regulate immune functions. Trauma, burns,

inflammation, cancer, and aging are associated with systemic ATP

accumulation that promotes immune cell dysfunction (16, 88–90). This results

in infections, sepsis, and additional cell damage that exacerbates systemic

ATP levels and propagates immune dysfunction.

functions depend on intricate autocrine signaling mechanisms
to execute their roles in host defense. However, these autocrine
signaling mechanisms are susceptible to paracrine interference
by exogenous ATP that accumulates in response to cell
damage, tissue injury, or inflammation. Systemic ATP levels
also increase in sepsis and in the tumor microenvironment,
which impairs T cell migration, cytokine production, and
T cell proliferation (Figure 2) (16, 88, 91–93). Global and
disproportionate stimulation of P2X1, P2X4, and P2Y11
receptors across the cell surface disrupts the spatiotemporal
sequence of the autocrine purinergic signaling events that
regulate T cells and host immune functions (64, 94).

Besides P2X1 and P2X4 receptors, T cells also express
the P2X7 receptor subtype. P2X7 receptors are comparatively
insensitive to ATP with an EC50 value of ∼780µM (41).
Interestingly, P2X7 receptors remain uniformly distributed
across the cell surface of T cells even during IS formation
with APCs (36). This suggests that P2X7 receptors may act
primarily as mediators of paracrine rather than autocrine
ATP signaling. P2X7 receptor stimulation by external ATP
can alter the composition of T cell subpopulations by
promoting the Th1/Th17 differentiation of CD4T cells, the
conversion of immunosuppressive regulatory T cells (Tregs) into
proinflammatory Th17 cells, and the formation of long-lived
CD8 memory T cell subsets (37, 95). However, P2X7 receptors
may also contribute to the onset of autoimmune diseases such
as type 1 diabetes, namely by enhancing the activation of
autoreactive CD8 effector T cells (96). P2X7 receptors differ from
other purinergic receptors in that they form large and unselective
macropores in response tomillimolar ATP concentrations, which
ultimately results in cell death (33). Physiologically, this enables
P2X7 receptors to control T follicular helper (Tfh) cell numbers
in Peyer’s patches of the small intestine and to modulate the
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production of IgA that shapes the gut microbiota composition
(97). P2X7 receptor stimulation also limits the expansion
of autoreactivity-promoting Tfh cells, whereas Tfh cells that
respond to cognate antigens are protected from P2X7 receptor-
mediated cell death (97–99). On the other hand, P2X7 receptor-
mediated cell death may also contribute to the suppression of T
cell immunity in the presence of pathologically elevated systemic
ATP levels.

Excessive ATP in the systemic environment of neutrophils
has similarly disruptive implications on cell functions.
Overstimulation of excitatory P2Y2 receptors disrupts
neutrophil chemotaxis and bacterial clearance. At the same
time, excessive P2Y2 receptor stimulation by systemic
ATP aggravates inflammatory neutrophil responses such
as oxidative burst and degranulation, which culminate
a in neutrophil-mediated collateral host tissue damage
(Figure 2) (100–102). Systemic ATP may have a similar
impact on other immune cells including macrophages that
depend on P2X4 and P2X7 receptors for bacterial clearance
in polymicrobial sepsis (103, 104). Targeting extracellular
ATP could be a promising approach to overcome systemic
inflammation and immunosuppression in critical care and
cancer patients. The therapeutic potential of this approach is
supported by observations that treatment with apyrase and
other enzymes that hydrolyze extracellular ATP can indeed
improve outcome in mouse models of inflammation and sepsis
(89, 102, 105).

CONCLUDING REMARKS

Breakdown of increased systemic ATP levels can elevate
extracellular adenosine concentrations. Adenosine exerts mostly

anti-inflammatory effects through A2a and A2b receptors.
While adenosine can protect tissues from inflammatory damage,
excessive adenosine signaling contributes to immunosuppression
in cancer and sepsis (106). The suppressive effect of A2a receptor
stimulation on various T cell functions has been studied in
great detail in mice (107). CD39 and CD73 are dominant
enzymes responsible for the conversion of ATP to adenosine.
Both ectonucleotidases are highly expressed by murine Tregs

that suppress T cell functions by generating adenosine and
stimulating A2a receptors (27, 32). In contrast to mice, CD39
expression on human CD4T cells is largely restricted to memory
Tregs (108), and T cell inhibition by adenosine receptor-
dependent pathways seems to be less important in humans than
in mice (109). Interestingly, mice and other rodents do not
possess P2Y11 receptors (110). Thus, mouse models cannot fully
reflect human disease processes. It seems likely that A2 adenosine
receptors inmice fulfill the roles of human P2Y11 receptors in the
regulation of T cell functions. These species-specific differences
must be considered during the development of treatments for
inflammatory, infectious, and other T cell-centered diseases such
as cancer.
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