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Cardiovascular disease is the leading global health concern and responsible for

more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic

inflammatory disease in the arterial wall, which underpins several types of cardiovascular

disease. It has emerged that a strong relationship exists between alterations in amino

acid (AA) metabolism and the development of atherosclerosis. Recent studies have

reported positive correlations between levels of branched-chain amino acids (BCAAs)

such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic

disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk.

Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic

strategy for specific individuals at risk of coronary events. The metabolism of AAs, such

as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator

of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can

improve atherosclerosis by endothelium remodeling. Available data also suggest that the

regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and

2 are mediated through various immunological signals and that immunosuppressive AA

metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further

clinical studies and basic studies that make use of animal models are required. Here

we review recent data examining links between AA metabolism and the development

of atherosclerosis.

Keywords: amino acid, tryptophan, arginine, branched-chain amino acids, metabolism, atherosclerosis,

amino acids

INTRODUCTION

With the identification of numerous new therapeutic agents and improved medical technology,
the last decade has seen a notable advancement toward the prevention and treatment of
atherosclerosis. However, despite such signs of progress associated with the treatment and
management of atherosclerosis and cardiovascular diseases (CVDs), the mortality and prevalence
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of such conditions are increasing worldwide, mainly due to
population growth and poor lifestyle choices (1, 2). CVDs are the
leading cause of mortality globally and a serious public health
problem, primarily due to heart failure (HF) and myocardial
infarction (MI) (3). The presence of atherosclerosis is the
most common cause of both HF and MI (i.e., disruption of
atherosclerotic plaques within an artery supplying the heart
muscle can cause blockages that can lead to tissue death and HF).
Besides acute or chronic coronary syndromes, atherosclerosis
also participates in the development of cerebral ischemia or
aneurysm (4). This knowledge together with the World Health
Organization (WHO) reporting 31% of global deaths are CVD-
related, of which 85% of deaths are due to heart attack and stroke
(5), suggests atherosclerosis significantly impacts global mortality
rates, but the full extent to which it contributes is not clear.

ATHEROSCLEROSIS AND ASSOCIATED
RISK FACTORS

Atherosclerosis is a chronic inflammatory disease that occurs in
large and medium-sized arteries (6). The layers of the coronary
artery wall include the tunica adventitia, tunica media, and tunica
intima. Among the various types of cells that constitute these
layers, endothelial cells (ECs) in the intima layer and vascular
smooth muscle cells (VSMCs) in the tunica media participate
most in plaque formation, as well as macrophages (in particular
M1 (pro-inflammatory) and M2 (anti-inflammatory) types),
which also contribute (7, 8). Endothelial dysfunction, a critical
point in atherogenesis, is characterized by a disturbed nitric
oxide (NO) metabolism and reduced bioactivity of NO (9). Such
dysfunction includes impaired NO synthesis and availability and
imbalances in endothelium-synthesized relaxing and contracting
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DNA (cytosine-5)-methyltransferase 1 enzyme; ECs, Endothelial cells; eNOS,

Endothelial nitric oxide synthase; EPCs, Endothelial progenitor cells; ET-1,
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Ile, Isoleucine; iNOS, Inducible nitric oxide synthase; IR, Insulin resistance; KA,

Kynurenic acid; KP, Kynurenine synthesis pathway; KYN, Kynurenine; L-Arg,

L-Arginine; LDL, Low-density lipoprotein; Leu, Leucine; Met, Methionine; Mg,

Magnesium; MI, Myocardial infarction; NO, Nitric oxide; NOS, Nitric oxide

synthase; nNOS, Neuronal nitric oxide synthase; OxLDL, Oxidized low-density

lipoprotein; pDCs, Plasmocytoid dendritic cells; PUTR, Putrescine; ROS, Reactive

oxygen species; SAM, S-adenosyl methionine; SLC25A44, Carrier Family 25

Member 44 gene; SOD, Superoxide dismutase; Tau, Taurine; TDO2, Tryptophan

2,3 dioxygenase; TLRs, Toll-like receptors; TNF-α, Tumor necrosis factor alfa;
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Vascular smooth cells; WHO, World Health Organization; Zn, Zinc; 3-HIB,

3-Hydroxyisobutyric acid; 5-HT, Serotonin.

factors such as angiotensin (Ang) and endothelin-1 (ET-1) (10).
Recently a new relationship was established between hydrogen
peroxide and Ang, which demonstrates the existence of a quality
control process as part of the redox homeostatic mechanisms that
occur within the vascular endothelium (11).

Atherosclerosis can occur when high blood pressure, high
blood cholesterol, diabetes mellitus, cigarette smoking, or
other factors damage the lining of the artery wall (12).
These mechanical stimuli compromise the integrity of the
endothelial barrier by activating signaling pathways that reduce
the levels of NO (thereby inhibiting the migration and survival
of endothelial cells) (13), and superoxide dismutase (SOD)
(thereby increasing cellular oxidative stress) (14), which leads
to the accumulation of apolipoprotein B (apoB)-containing
lipoproteins [i.e., low-density lipoproteins (LDL)] (15), and
ECs activation. The activation of ECs increases the production
of reactive oxygen species (ROS) (16), which can oxidatively
modify apoB and other lipoproteins (17, 18). The presence
of such oxidized LDL (OxLDL) induces a pro-inflammatory
environment and the deposition of lipids in the arterial wall
(19). The deposition of lipoproteins in the arterial layers is
often regarded as the first step in atherosclerosis development
(20). Cholesterol filled lipoproteins influence both vascular and
innate immune cells (ICs), and this interplay influences plaque
formation and its properties (12, 21), whereby activated ECs
induce a monocyte recruitment cascade that includes trans-
endothelial migration (22). The monocytes then convert to pro-
inflammatory macrophages (23), which internalize and degrade
the lipoproteins in lysosomes before guiding the cholesterol
component to the endoplasmic reticulum and its cholesteryl
ester form into cytoplasmic lipid droplets to form foam cells
(24, 25). Some amino acids (AAs) exert their proatherogenic
and antiatherogenic effects by modulating macrophage cell
activity and foam cell formation. Of the branched-chain amino
acids (BCAAs), leucine (Leu) is the most extensively studied.
A study using apolipoprotein E null (ApoE−/−) mice showed
that Leu mediates its cardioprotective effects via improvement
in lipid profiles and a decrease in systemic inflammation
(26). These effects are likely related to the attenuation of
foam cell formation mediated by a decrease in macrophage
lipid content, dysregulated mitochondrial respiration, and ATP
production. The vasoprotective roles of glycine (Gly) are partly
mediated through the effects generated after binding to Gly-
gated channels and chloride influx into macrophages, thus
attenuating foam cell formation. In a study using New Zealand
White rabbits, a decrease in macrophage accumulation and
induction in macrophage apoptosis in intimal lesions were
found to mediate the antiatherogenic effects of L-arginine
(L-Arg) (27). Additionally, NO and L-citrulline are the products
of the reaction between oxygen and L-Arg. NO is a potent
vasodilative and antiatherogenic molecule, whilst methionine
(Met), a sulfur-containing AA, exerts its proatherogenic
effects through an increase in homocysteine (Hcy) production.
Hyperhomocysteinemia promotes atherogenesis by foam cell
production in addition to other mechanisms (28). During
atherogenesis, a core comprised of such foam cells is covered
with a fibrous cap produced by VSMCs that migrate into the
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intima (29); this process marks the transition from a fatty
streak to a fibrous fatty lesion (30). With continued cholesterol
accumulation, the fibrous fatty lesion eventually progresses into
fibrotic plaques that can rupture and trigger major coronary
events. Fortunately, large randomized trials with cholesterol-
lowering drugs (31–35) report a reduction in total mortality,
chronic heart disease deaths, and the risk of major coronary
events from such interventions.

The connection between atherosclerosis and cholesterol
accumulation is therefore, well-established (36). However,
several recent studies indicate that the relative presence and/or
absence of certain AAs may also contribute to atherosclerosis
development and occurrence (37). One such study utilizing a
rabbit atherosclerosis model reports alterations in the levels of
several proteins, metabolites, and AAs in rabbit aorta, as well
as in both rabbit and human plasma, suggesting that some of
thesemoleculesmay be potential atherosclerosis biomarkers (38).
Some specific AAs such as Gly and BCAAs such as valine (Val),
Leu, and isoleucine (Ile) can ameliorate cell metabolic processes
through mitochondrial biogenesis (39), influencing macrophage
foam cells and altering lipid metabolism (37). The effect of the
described amino acids on atherosclerosis and related diseases in
animal models and humans is shown in Table 1. The chronically
elevated levels of BCCAs and dysregulation of their catabolism
can affect glucose metabolism through the suppression of the
pyruvate dehydrogenase complex and lead to cardiac ischemic
injury (41).

Thus, BCAAs may also impact atherosclerosis prevention
and offer a novel therapeutic strategy for certain individuals
at risk of coronary events (37). ICs are impaired during
atherosclerotic formation, and such aberrations of normal
functioning correlate with the levels of specific AAs. AAs are
fundamental elements for protein metabolism and participate in
different cellular mechanisms for energy generation (63). Other
AAs are indirectly associated with atherosclerosis as they play
essential roles in vascular functioning; for example, L-Arg is
involved in NO synthesis (64, 65). On the other hand, despite
such essential roles for some AAs, elevated levels of BCAAs
can lead to pathological conditions, including neurological
disorders and cardiomyopathy (66). In this review, we summarize
the recent knowledge related to the role of AAs, including
the BCAAs, Tryptophan (Trp), L-Arg, Taurine (Tau), Cysteine
(Cys), Homoarginine (h-Arg) and Gly in the development and
progression of atherosclerosis and atherosclerosis-related CVDs.

ESSENTIAL AAs AND ATHEROSCLEROSIS

BCAAs Catabolism
Val, Leu, and Ile are essential BCAAs vital for the growth
and functioning of cells and organs. They differ in their side-
chain properties (e.g., hydrophobicity and conformation).
The BCAAs constitute nearly 40% of all the AAs in the body
(67). They represent about 35% of the essential AAs found in
mammalian proteins (68). Leu stimulates myofibrillar protein
synthesis (69, 70). In the presence of lowered glucose, Leu,
and its non-metabolizable analog, 2-aminobicyclo (2, 2, 1)
heptane-2-carboxylic acid stimulate insulin secretion from

the β cells of the pancreas (71). There is a strong requirement
of Leu during the synthesis of sterols in adipose and muscle
tissue (72). Approximately 60% of Leu is metabolized after
several hours, of which about 5% is converted to β-hydroxy
β-methylbutyric acid (73), and 40% is converted to acetyl-
coenzyme A (CoA) (74), which is used for the synthesis of
other compounds. Catabolism of Leu is controlled by the
enzymes, branched-chain amino acid aminotransferase (BCAT),
and branched-chain α-ketoacid dehydrogenase (BCKD)
to produce isovaleryl-CoA (75). Isovaleryl-CoA is further
processed by the isovaleryl-CoA dehydrogenase and converted
to 3-methylcrotonyl-CoA, which is used in the synthesis of
acetyl-CoA and acetoacetate by the enzymes 3-methylcrotonyl-
CoA carboxylase, 3-methylglutaconic-CoA hydratase and
3-hydroxy-3-methylglutaryl-CoA lyase (Figure 1). Following
transamination, Ile is converted into tiglyl-CoA, 2-methyl-
3-hydroxybutyryl-CoA and 2-methylacetoacetyl-CoA. The
latter is further converted to propionyl-CoA (a glucogenic
precursor) and acetyl-CoA, which enter into the tricarboxylic
acid cycle (Figure 1). Familial deficiency of the 2-methyl-3-
hydroxybutyryl-CoA dehydrogenase enzyme causes progressive
infantile neurodegeneration (76). Catabolism of Val starts
with the transamination process, which is catalyzed by BCAT,
which then through the action of BCKD produces isobutyryl-
CoA, which is successively converted into propionyl-CoA and
methylmalonyl-CoA. The latter compound enters into the
tricarboxylic acid cycle (77) (Figure 1). Val decomposition
products may act as signaling molecules. The only metabolite
of BCAAs that does not have a covalent attachment to CoA is
3-hydroxyisobutyric acid (3-HIB), which can easily leave the
mitochondrial matrix. The 3-HIB metabolite is synthesized
within muscle; the surrounding plasma concentrations of
3-HIB typically range between 30 and 50µM (78). Secreted
3-HIB acts as a paracrine signal acting on surrounding
microvascular ECs, where it promotes the uptake of fatty acids
and lipid accumulation in the muscle and can contribute to the
development of insulin resistance (IR) in mice (78).

The Role of BCAAs in Atherosclerosis
Alterations in the levels of BCAAs are associated with
disorders, including renal failure, atherosclerosis, and cancer
(79). Specifically, after circulating BCAAs were demonstrated
to correlate with increased risk for cardiovascular events
and IR, Mels et al. assessed whether BCAA levels are
associated with carotid intima-media thickness (cIMT) under
hyperglycaemic conditions (80). Using regression analyses, they
determined that an independent correlation exists between
BCAAs and cIMT in individuals with high HbA1c levels and
suggested that cardiovascular deterioration possibly accompanies
hyperglycemia (80). Also, Yang et al. investigated whether AAs
could be used to identify subclinical atherosclerosis subjects at
risk of developing coronary artery disease (CAD) caused by
atherosclerosis, as BCAA levels had previously been shown to
correlate with atherogenic dyslipidemia (40). Based on carotid
artery images and BCAA serum levels, they determined a
significant and independent positive correlation between BCAAs
(Val, Ile, and Leu) and increased cIMT (40). Identifying such
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TABLE 1 | Some effects of AAs observed in human and animal studies.

Amino acid Human studies Animal studies

Study Finding(s) Experimental model Finding(s)

BCAAs 472 subjects (272 males and

200 females, age 42–97)

Measurement of BCAA levels

Elevated level of BCAAs is

positively and independently

correlated with increased cIMT

(40)

PP2Cm germ-line knockout

mice

Impaired BCAAs catabolism

BCAA chronic accumulation

inhibits PDH activity,

suppresses glucose

metabolism, promotes

ischemic cardiac injury (41)

Trp 13 healthy females; 12 males

and 3 females subjected to

surgical endoarteriectomy

Measurement of Trp level

Lower serum level of Trp in

patients with atheromatous

plaques in comparison with

healthy (42)

Male Sprague–Dawley rats

Trp administration

Increased different serum AAs

concentrations, decreased

BCAAs, promoted the

oxidation of fatty acid, reduced

LDL level and fat deposition

(43)

L-Arg 12 healthy older persons (age

73.8 ± 2.7)

L-Arg supplementation

Improved artery diameter and

endothelial function (44)

Hypercholesterol-emic male

rabbits

L-Arg supplementation

Improved endothelial function,

reduction of atherosclerotic

plaques (45)

L-Arg 20 males and 2 females (age

57± 9) with stable angina

L-Arg supplementation

Improved exercise capacity

(46)

Hypercholesterol-emic rabbits

L-Arg supplementation

Improved NO-dependent

vasodilator functioning,

induced atheromatous lesion

regression, and reversed

endothelial dysfunction (47)

L-Arg 10 males and 10 females (age

59 ± 8) with CAD

L-Arg administration

Vasodilated coronary arteries

(48)

Hypercholesterol-emic rabbits

L-Arg supplementation

Prevention of intimal thickening

in coronary arteries, and

increased macrophage

accumulation in the intima

layer (49)

h-Arg 282 heart failure patients (231

males and 51 females, age 55

± 12)

Measurement of h-Arg

Low plasma levels of h-Arg

were associated with an

increased fatal outcome risk

from CVD and strokes (50)

C57BL/6J mice

h-Arg supplementation

Protective effect in a

post-myocardial infarction

heart failure (51)

Tau 2,734 subjects (1,352 males

and 1,382 females)

Measurement of Tau

Inverse association between

Tau levels and ischemic heart

disease mortality (52)

New Zealand white rabbits

Tau supplementation

Reduced myocardial apoptotic

nuclei (53)

Tau 17 patients (11 males and 6

females) with congestive heart

failure

Tau supplementation

Improved systolic left

ventricular functioning (54)

Male New Zealand white

rabbits

Tau supplementation

Decreased cholesterol,

triglyceride, MDA and DC

levels in the plasma, liver and

aorta (55)

Tau 22 healthy males (age 18–29)

Tau supplementation

Improved antioxidant effects,

antagonism of Ang II action,

and lipid profile (56)

Male homozygous

apoE-deficient mice

Tau supplementation

Reduced atherosclerotic lesion

formation, decreased serum

TBARS levels and oxidized

LDL formation (57)

Cys 389 patients (242 males, 147

females, 41–65 years) with

hyperlipidemia

Measurement of Cys

Plasma Cys levels being

significantly lower in healthy

individuals than in carotid

atherosclerosis in symptomatic

patients (58)

? ?

Gly 80,003 participants

(meta-analysis)

Identification of Gly genetic loci

Genetically associated with

lower CHD risk (identified 27

genetic loci) (59)

Male Wistar rats

Gly supplementation

Reduced O−

2 , protein carbonyl

and lipid peroxidation,

increased eNOS, NO and

biosynthesis of glutathione in

the aorta (60)

Gly 4,150 patients (72% men;

median age 62 years)

Measurement of DMG

DMG plasma levels were

associated with the risk of AMI

in patients with stable angina

pectoris (61)

Female Sprague-Dawley rats

Gly supplementation

Prevented aggregation of

platelets, increased bleeding

time (62)

AAs, amino acids; AMI, acute myocardial infarction; Ang II, angiotensin II; apoE, apolipoprotein E; BCAAs, branched-chain amino acids; CAD, coronary artery disease; CatC, cathepsin

C; cIMT, carotid intima-media thickness; CHD, chronic heart disease; CVD, cardiovascular disease; Cys, cysteine; DC, diene conjugate; DMG, dimethylglycine; eNOS, endothelial nitric

oxide synthase; Gly, glycine; h-Arg, homoarginine; L-Arg, L arginine; LDL, low-density lipoprotein; LDLR−/−, low-density lipoprotein receptor null allele mice; MDA, malondialdehyde;

NO, nitric oxide; PDH, pyruvate dehydrogenase; Tau, taurine; TBARS, thiobarbituric acid-reactive substances; Trp, tryptophan. The “?” sign indicates a conclusion could not be reached

with the currently available data.
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FIGURE 1 | Summary of the catabolism pathways of BCAAs. BCAT, branched-chain amino acid aminotransferase; BCKD, Branched-chain α-ketoacid

dehydrogenas; IVD, isovaleryl-CoA dehydrogenase; 3MCC, 3-methylcrotonyl-CoA carboxylase, 3MGA, 3-methylglutaconic-CoA hydratase; HMG lyase,

3-hydroxy-3-methylgutaryl-CoA lyase; CBCAD, methylbutyryl CoA dehydrogenase; MHBD, 2-methyl-3-hydroxyisobutyric dehydrogenase; IBDH,

isobutyryl-CoA-methyl-3-hydroxyisobutyric dehydrogenase; HIBDA, 3-hydroxyisobutyryl-CoA deacylase; HIBDH, 3-hydroxyisobutyrate dehydrogenase; MMSDH,

methylmalonic semialdehyde dehydrogenase; PCC, propionyl-CoA carboxylase; MUT, methylmalonyl-CoA mutase; TCA Cycle, tricaboxylic acid cycle.

risk factors offers hope for the prevention of early atherosclerosis
(40, 81). However, other studies have revealed that dietary and
circulating Ile, Leu, and Val levels are not correlated, suggesting

that other factors beyond dietary intake influence the levels of
BCAAs in plasma (82, 83). The most likely explanation is that
alterations in the metabolism of BCAAs contribute significantly
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to the elevated levels of circulating BCAAs observed, rather than
changes in BCAA intake (82, 83). Several studies have shown an
association between BCAAs, their metabolites, and CAD (84).
For example, mass spectrometric analysis of plasma samples
taken from almost 2,000 CVD patients showed 63 differentially
synthesized metabolites and further suggested that the levels of
some BCAAs and their metabolites are related to the severity of
CAD (84). The increase in plasma BCAA levels in CAD may
be due to lower BCAA uptake and usage by muscles and other
tissue (85), or lowered activity of the critical enzyme BCKD
complex (BCKDC) responsible for the degradation of all BCAAs
in animals (86, 87). The accumulation of BCKDC has been
linked to heart failure via direct perturbation of respiration and
increased ROS synthesis within the mitochondria (88). Defects
in BCAA catabolism can more widely affect metabolism in
murine failing hearts through alterations in Krupel-like factor-
15 (89). Supplementation with BCAAs can decrease heart muscle
injury and ameliorate hematological parameters in rats during
endurance exercises (90). Contrary to this, several prospective
metabolomic studies of incident coronary heart disease (CHD),
CAD, and MI failed to identify associations of any BCAAs
with CVD (91–93). Supplementation with BCAAs at a dose of
1.5 mg/g body weight/day in drinking water preserves skeletal
muscle weight and ameliorates HF in a rat model (94). Also,
Leu (1.5% w/v) supplementation in ApoE−/− mice reduces the
growth of atherosclerotic plaques via reduced inflammation and
an improvement in the lipid profile (increased high-density
lipoprotein cholesterol (HDLc) and reduced LDL) (26). Leu
(1.3% dietary protein-energy intake) was inversely associated
with arterial stiffness and atherosclerosis in females (95). Leu
supplementation in humans, at a dose of 5 g/day for 3 weeks,
modifies lipid metabolism in macrophages while simultaneously
enhancingmitochondrial respiration, whichmay offer a potential
strategy to attenuate atherosclerosis development in humans
(96). Regarding cardiovascular risk, there are positive and
negative atherogenic roles of BCAAs. Certain BCAAs, in
particular Leu, are well-known for their attenuative effects on
macrophage lipid accumulation and subsequent formation of
foam cells in blood vessel walls. This role is related to the
decrease in cholesterol and triglyceride macrophage content. A
decrease in cholesterol content is obtained through reduced very-
low-density lipoprotein (VLDL) uptake, inhibition of cholesterol
synthesis, and cholesterol cell efflux. On the other hand, a
decrease in cellular triglycerides results from inhibition of
the enzyme, diacylglycerol acyltransferase-1, which catalyzes
the synthesis of triglycerides in macrophages. One particular
study observed increased levels of circulating BCAAs in CVD,
diabetes, IR, obesity, and healthy individuals, independently
of body mass index (97). Metabolic status is the key element
that determines whether increased levels of a particular BCAA
has a positive or negative influence on CVD risk (97, 98). In
this regard, it is known that some stimuli can impact tissues
involved in BCAA clearance, such as brown adipose tissue
(BAT), a well-known thermogenic (and BCAA catabolic) organ.
Cold exposure influences BAT to promote the oxidation of
BCAAs to obtain enough energy for thermogenesis produced
by mitochondria, thus promoting systemic BCAA clearance.

Cold exposure additionally affects lipid catabolism but does not
influence glycaemia. Brown adipocytes take up and transport
BCAAs via mitochondrial BCAT1 and Solute Carrier Family 25
Member 44 gene (SLC25A44). Defects in these processes have
been shown to impair the thermogenesis and influence BCAA
systemic clearance leading to obesity and conditions linked to
IR (98). Collectively, BCAAs appear to represent important
indicators of CVD risk, and further work is required to fully
understand their involvement in such pathologies.

Trp Catabolism
Trp is an AA acquired through the diet because the human
body is unable to synthesize it. Once absorbed through the
intestine into theportal blood, 85–90% of Trp is transported
in the plasma bound to serum albumin, while only 10–
15% of the total plasma Trp is in the free form (99). The
metabolic pathway responsible for approximately 90% of Trp
catabolism is the kynurenine synthesis pathway (KP) (Figure 2)
(100). Trp is oxidized by cleavage of the indole ring, which
is initiated either by indoleamine 2,3-dioxygenase 1 (IDO-
1), indoleamine 2,3-dioxygenase 2 (IDO-2) or tryptophan
2,3-dioxygenase (TDO2) (101). The TDO2 enzyme can be
induced by the presence of Trp or by corticosteroids. IDO-
1 is the predominant enzyme found in most cell types and is
stimulated by inflammatory molecules (102). The KP produces
several intermediate metabolites, of which kynurenine (KYN)
is the first stable intermediate formed (103). Subsequently,
other neuroactive intermediates are generated, including 3-
hydroxyanthranilic acid (HAA) (104), quinolinic acid (105), and
picolinic acid. Picolinic acid is a natural iron and zinc (Zn)
chelator and serves as an endogenous neuroprotectant (106).
Serotonin [5-hydroxytryptamine (5-HT)] synthesis is one of the
most important Trp pathways (107). Note that 3% of dietary
Trp is used for 5-HT synthesis throughout the body, while
only 1% of dietary Trp is used for 5-HT synthesis in the brain
(108), where Trp is primarily involved in melatonin synthesis
(Figure 2) (109).

Role of Trp in Atherosclerosis
It has been proposed that IDO-1 impacts atherosclerotic
processes via multiple mechanisms. Cole et al. found that
IDO-1 is protective against atherosclerosis and that the
downstream products that occur following the breakdown of Trp
create a feedback loop that controls athero-inflammation
and atherogenesis (110). Also, inhibition of IDO-1 in
ApoE−/− mice has been shown to lead to increased vascular
inflammation and atherosclerosis. Zhang et al. found that the
downstream metabolite, HAA lowers plasma lipids (including
cholesterol and triglycerides) and decreases atherosclerosis in
hypercholesterolemic mice (111). Another suggested mechanism
by which IDO-1 protects against atherosclerosis is through
inhibition of IL-10 production by a kynurenic acid (KA)-induced
mechanism (112).

A study examining patients with CHD found that they
had a low serum Trp and an elevated serum KYN/Trp ratio
(113). The sera of patients with atheromatous plaques was
also found to have lower levels of Trp compared with healthy

Frontiers in Immunology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 551758

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zaric et al. AAs in Atherosclerosis

FIGURE 2 | Trp catabolism via the KP. IDO-1, indoleamine 2,3-dioxygenase; IDO-2, indoleamine 2,3-dioxygenase 2; TDO2, tryptophan 2,3-dioxygenase.

controls (42). After oral supplementation with L-Trp, patients
suffering from MI or angina pectoris showed lower Trp and
higher KYN concentrations in serum than healthy controls
(114). Elevated concentrations of KA, a catabolite of Trp,
in atheromatous plaques are associated with unstable human
atherosclerotic lesions, whereas lower levels of KA are found in
stable fibrous plaques (112). Serum Trp and KYN levels were
also estimated by a chromatography-based method in subjects
undergoing coronary angiography and in persons with healthy
coronary arteries; following L-Trp supplementation, lower serum
Trp and higher KYN concentrations were detected in patients
suffering from MI or angina pectoris compared with healthy
controls (113). Reduced plasma Trp levels are associated with
various disease states. Further work is required to understand

whether Trp supplementation may represent a therapeutic (or
preventative) strategy to improve cardiovascular health. The role
of IDO in vascular biology warrants further investigation.

CONDITIONALLY ESSENTIAL AAs IN
ATHEROSCLEROSIS

Of the classically categorized non-essential AAs, some have
been shown to become essential under specific conditions such
as illness, injury, or stress. Thus, they can be classified as
conditionally essential. The known conditionally essential AAs
include Arg, Cys, Gly, glutamine, proline, tyrosine, and Tau.
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Several conditionally essential AAs play a role in atherosclerosis,
including L-Arg, Tau, Cys, and Gly (115).

L-Arg Metabolism
L-Arg is a conditionally essential AA, as our ability to synthesize
L-Arg is altered at different developmental stages and in certain
disease states (116). L-Arg is essential for wound healing (117),
biosynthesis of NO (118), and blood pressure regulation (119).
Free L-Arg is obtained by de novo synthesis, from the diet or
during protein turnover. Synthesis of L-Arg in humans occurs
in the epithelial cells of the small intestine and kidney (120).
Impaired renal functionmay decrease L-Arg synthesis, increasing
the dietary requirement (121).

L-Arg is synthesized from the non-essential AA, citrulline by
the successive action of the cytosolic enzymes argininosuccinate
synthetase and argininosuccinate lyase (122). L-Arg can also
be synthesized from glutamine in the gut (123) and citrulline
through the condensation of ornithine and carbamoyl phosphate
in the small bowel (124, 125). Citrulline is also produced from
L-Arg through the enzymatic activity of NO synthase (NOS)
and from asymmetric dimethylarginine (ADMA) through
dimethylarginine dimethylaminohydrolase (DDAH) (126).
ADMA, an endogenous L-Arg analog, inhibits NOS activity
and, consequently, the production of NO. The dimethylarginine
molecules can be converted into L-Arg by DDAH (127). NO
produced by inducible NOS (iNOS) produces peroxynitrite
radicals, which promotes atherogenesis (128).

Catabolism of L-Arg occurs through the action of several
enzymes in mammalian cells; most notably, NOS, arginine
glycine amidinotransferase (AGAT), arginase 1 (ARG1), arginase
2 (ARG2) and arginine decarboxylase. There are cytosolic
and mitochondrial isoforms of ARG (126). ARG catalyzes the
final step in the urea cycle (conversion of L-Arg into L-
ornithine; Figure 3). The enzyme arginine decarboxylase utilizes
L-Arg to produce agmatine (AG). AG has a broad spectrum
of actions (on neurotransmitter systems, atherosclerosis, NO
synthesis, and polyamine metabolism), suggesting the potential
for its supplementation as a strategy to treat various disorders
(129, 130). The enzyme AGAT utilizes L-Arg and Gly to
produce guanidinoacetate, which is further metabolized to
form creatine. This enzyme can also utilize lysine as a
substrate to synthesize h-Arg (which is discussed in more
detail in section h-Arg Metabolism and Atherosclerosis)
and ornithine.

L-Arg is a substrate for the synthesis of putrescine
(PUTR), which can be made in two ways. In the first, L-
Arg is transformed into AG (by arginine decarboxylase), then
agmatinase converts AG into PUTR. In the second mechanism,
L-Arg is converted into L-ornithine, and L-ornithine is converted
into PUTR. In both cases, PUTR is further converted, by
the action of spermidine synthase and spermine synthase,
into spermine (Figure 3). PUTR is a polyamine growth factor
necessary for cell division. PUTR is found in semen, as is
spermidine and spermine (131). PUTR has a role in continual
and controlled efferocytosis, which is the process by which
macrophages clear apoptotic cells. Yurdagul et al. found that
this process is enhanced in apoptotic cells by the conversion

of Arg and ornithine to PUTR that is catalyzed by the
macrophage enzymes, ARG, and ornithine decarboxylase. The
role of PUTR is to facilitate subsequent rounds of dead
cell internalization. Impaired efferocytosis is seen in chronic
diseases and is associated with atherosclerosis’s acceleration,
a consequence of the inhibition of apoptosis. The net result
is inflammation and necrosis of non-internalized apoptotic
cells. Such inflammation transforms stable atherosclerotic
plaques into unstable forms that can rupture and cause
embolization (132).

L-Arg can be converted into glutamate (shown in Figure 3)
and can undergo several post-translational modifications.
For example, specific L-Arg residues in proteins can be
methylated by a family of protein arginine methyltransferases
resulting in transformations to either monomethyl arginine
or symmetric dimethylarginine or ADMA. ADMA inhibits
constitutive endothelial and neuronal NOS (eNOS and nNOS)
(133) and is a less potent inhibitor of iNOS (134). After the
degradation of proteins, methylated L-Arg residues are released
into a free AA pool where they competitively inhibit NOS activity
(135). In addition to methylation, L-Arg can also be ribosylated,
citrullinated, or phosphorylated (136). A healthy diet provides
∼5.4 g of L-Arg per day (137). Only 40% of our L-Arg is taken
up directly from the diet through the portal blood, with the
rest sourced through the action of intestinal arginase (138).
Impairment of the L-Arg/eNOS pathway is implicated in CAD
(139). L-Arg may play a role in the prevention of CAD through
its capacity to stimulate the pathway mentioned above, and some
NO-independent actions.

Role of L-Arg in Atherosclerosis
NO produced by L-Arg possesses anti-atherogenic properties
and plays a role in cardiovascular protection. However, in the
pathological state, eNOS overactivation causes over-production
of NO, leading to the development of atherosclerosis and damage
of ECs (140). Modern therapies used to treat atherosclerosis
often work to increase the bioavailability of NO in the
vascular endothelium.

In a L-Arg supplementation study (2.25% final concentration
in drinking water) in experimental hypercholesterolemic male
rabbits, an improvement in endothelial function, a reduction
of atherosclerotic plaques and the consequent reduction of
atherosclerosis were reported (45). In rabbits, administration
of L-Arg (2.25% in drinking water) in combination with
the NO synthesis inhibitor, N-nitroarginine methyl ester,
led to partially renewed endothelium-dependent relaxation of
NO production (as indicated by increased NO3− excretion)
and restored endothelial function in hypercholesterolemia (as
indicated by enhanced NO production and reduced early
breakdown of NO by O2) (141). In hypercholesterolemic rabbits,
L-Arg (2.0% in drinking water) also improved NO-dependent
vasodilator functioning, induced atheromatous lesion regression
and reversed endothelial dysfunction. The mechanisms thought
to be responsible for this effect include the restoration of NO
synthase substrate availability and the reduction of vascular
oxidative stress (47). Hypercholesterolemic rabbits were also
used to show that supplementation with L-Arg (2.25% in
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FIGURE 3 | Pathways involved in L-Arg Catabolism. 1, NO synthases; 2, arginine: glycine amidinotransferase (AGAT); 3, arginase; 4, arginine decarboxylase; 5,

ornithine decarboxylase; 6, agmatinase; 7, spermidine synthase; 8, spermine synthase; 9, ornithine aminotransferase; 10, pyrroline-5-carboxylate dehydrogenase; 11,

pyrroline-5-carboxylate reductase; 12, glutaminase; 13, glutamate dexydrogenase.
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the drinking water) prevents intimal thickening in coronary
arteries and significantly decreases monocyte and macrophage
accumulation in the intima layer for a period extending from
1 to 10 weeks (49). In hypercholesterolemic rabbits, oral
L-Arg (2.5% in the drinking water) has also been shown
to diminish the formation of atherosclerotic lesions (142).
Further, in hypercholesterolemic rabbits, L-Arg (2% in drinking
water) or alpha-tocopherol (300mg/day) improves endothelium-
dependent vasodilator function, NO production (143), and
reduces oxidative stress and progression of atherosclerosis in
experimental animals. Supplementation with L-Arg improves
endothelial functioning in hypercholesterolemic young adults
without changing the lipid profile, demonstrating that this AA
has anti-atherogenic properties (144). In humans, aging is an
independent risk factor for atherosclerosis development (145);
elderly patients with CVDs exhibit flow-mediated dilation of
the brachial artery. Further to this, a prospective randomized
crossover trial wherein 12 healthy older persons (aged 73.8 ±

2.7 years) were administered 8 g of L-Arg twice daily for 14
days (44). It was reported that artery diameter measured by
high-resolution ultrasound, significantly improved after L-Arg
supplementation, as did endothelial function, probably due to
a normalization of the L-Arg/ADMA ratio (44). Ceremuzynski
et al. reported that CAD patients with stable angina exhibit
an improved exercise capacity after being supplemented with
6 g of L-Arg daily for 3 days (46). L-Arg at doses of 50
and 150 mmol/min via intracoronary infusions for 8min also
led to vasodilation of coronary arteries in CAD patients (48).
Another study additionally used intravascular ultrasonography
to measure neointimal volume in stents after L-Arg treatment
(100 mg/ml) through the catheter for 15min; a 35% increase
in neointimal volume was measured after L-Arg treatment
(compared with placebo-treated patients), however, luminal
volume remained the same (146). A study by Creager et al.
that included 14 hypercholesterolemic individuals found that
the intravenous administration of L-Arg (administered at a
rate of 10 mg/kg per min) improves endothelium-dependent
vasodilation (147).

Contrary to these findings, Blum et al. reported that CAD
patients on an appropriate therapy that were additionally
administered L-Arg (9 g supplementation every day for 1month),
showed a significantly increased level of L-Arg in plasma, yet
NO bioavailability did not improve (148). Similarly, in a study
involving male subjects that were followed up over 10 years, it
was found that increased dietary L-Arg intake did not lower the
risk of CHD mortality (149).

In a double-blind, randomized study, subjects administered
3 g of L-Arg three times a day for 6 months exhibited
increased coronary blood flow in response to increased
acetylcholine, which was explained by a decrease in the levels
of plasma endothelin in the L-Arg-treated group compared
with the placebo group (150). Results from this study support
the concept that L-Arg is a suitable therapeutic agent for
patients suffering from coronary endothelial dysfunction and
non-obstructive CAD (cases in which atherosclerotic plaques
are not expected to obstruct blood flow or cause anginal
symptoms). In a second double-blind, randomized crossover

study, ten male patients with coronary atherosclerosis were
either administered with 7 g of L-Arg three times per day
or placebo for 3 days, with a washout period of 10 days.
Elevated levels of plasma L-Arg and endothelium-dependent
dilatation were observed in the patients administered L-
Arg. This suggests L-Arg improves the dilatation of the
brachial artery and reduces the adhesion of monocytes/ECs
(151). In another study, CAD patients were intravenously
administered L-Arg (5 mg/kg/min for 20min) yet showed no
improvement in ST-segment responses or exercise tolerance,
despite the ability of acetylcholine to improve forearm vasomotor
responses (152). L-Arg given at a dose of either 2.5 g/m2

or 5 g/m2 three times a day was also unable to improve
endothelial function in chronic renal failure patients (153). In
atherosclerotic diseases, such as peripheral arterial occlusive
disease and CAD, long-term L-Arg supplementation (10 g/day
for 3 or 6 months) may lead to better utilization of nitrite
by improving the kidney reabsorption of carbonic anhydrase-
dependent nitrite. However, it is important to point out that the
optimum dose of oral L-Arg remains undetermined for diseases
with NO-related dysfunction (154). Some studies in patients
with atherosclerosis and related complications show benefits
with L-Arg administration and others not. There are several
possible explanations:

1. One possibility may be variations between patients
(demographic characteristics, age, gender). Also, parameters
like the optimal dose and duration of L-Arg treatment are
not standardized.

2. L-Arg supplementation does not always enhance NO
synthesis because guanidine-methylated L-Arg derivatives
that inhibit NOS activity are also sources from L-Arg.
Simultaneous generation of methylated L-Arg residues from
supplemented L-Arg may negate the positive effects of L-Arg
on NO. In healthy individuals, ADMA infusion causes a
temporary reduction in the cardiac output and induces a
reduction of effective renal plasma flow in a dose-dependent
manner (155).

3. ARG activity may influence L-Arg’s cellular levels, decreasing
NO production resulting in endothelial dysfunction (156).

4. A large proportion of L-Arg flux is used to synthesize
creatine via the enzyme AGAT (157). The creatine generation
is estimated to consume ∼70% of labile methyl groups,
with S-adenosyl methionine (SAM) serving as the methyl
donor (Figure 3). When the methyl groups are donated
to guanidinoacetate, SAM is converted to S-adenosyl
homocysteine and, eventually, to Hcy. Since Hcy has adverse
effects on endothelial function, L-Arg supplementation can
also perturb endothelial function (158, 159).

5. L-Arg supplementation has a beneficial effect in
hypercholesterolemia, probably because OxLDL and
lysophosphatidylcholine are unable to inhibit protein
transport (160). L-Arg competes with cationic AAs for cell
uptake via the y+ AA transporter system, and increased
L-Arg supplementation may increase L-Arg concentration in
the cells by competitively inhibiting cellular uptake of other
cationic AA. This relates to the Arg paradox, a phenomenon
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where exogenous L-Arg leads to NO-mediated biological
effects even though NOS, which utilizes L-Arg as a substrate,
is saturated (161).

6. L-Arg can undergo a decarboxylation reaction to produce AG,
a competitive NOS inhibitor (162).

More studies are required to identify which individuals would
benefit from L-Arg and those in which it should be used with
caution (if at all). The optimum oral dosage of L-Arg is also
not established in these and other diseases associated with
NO-related dysfunction.

h-Arg Metabolism and Atherosclerosis
h-Arg is a non-essential cationic AA that is synthesized
during the catabolism of lysine or the transamination of L-Arg
(Figure 3). These reactions involve ornithine transcarbamoylase,
an enzyme from the urea cycle, or AGAT, an enzyme from
the creatine biosynthesis pathway. h-Arg is found in the liver,
kidneys, brain, and small intestine of humans and animals (163).
h-Arg is an Arg homolog, that possesses an additional methylene
group in its main chain andmay represent a major NOS substrate
(163). ARG also has the potential to alter h-Arg levels (164).
Non-essential AAs can be synthesized in humans (and other
animals) in addition to being obtained from the diet. The
primary substrate for their synthesis is glucose (165). The plasma
h-Arg concentration is positively associated with endothelial
functioning (166), a reduction in platelet aggregation (167), and
stimulation of insulin secretion (168). A study that performed
angiographies on over 3,000 patients with acute coronary
syndrome revealed that the group of patients with the highest
plasma concentration of h-Arg had the most favorable outcomes
(169), suggesting a protective effect in this context. Similarly,
results of a separate study with type 2 diabetes mellitus patients
undergoing hemodialysis for <2 years, revealed that lower h-
Arg levels associate with negative outcomes including a lower
estimated glomerular filtration rate, low plasma serum albumin,
low body mass index and lower levels of LDL cholesterol
(170). The study also found that patients on hemodialysis had
lower plasma h-Arg levels and experienced significantly higher
mortality rates (170). Low serum levels of h-Arg are associated
with an increased fatal outcome risk from CVD and strokes (50).
A Finnish longitudinal study involving over 4,000 children and
adolescents that focused on the evolution of cardiovascular risk
factors from childhood, revealed that plasma h-Arg levels are
directly associated with cardiometabolic disease risk and that
low levels predict increased mortality risk (171). In the Hoorn
study, it was found that h-Arg levels are higher in older men
than in women and that low h-Arg plasma concentrations are
significantly associated with all-cause mortality and, in particular,
with cardiovascular mortality (172). A prospective observational
study that included patients with intermittent claudication
reported h-Arg/ADMA and h-Arg/symmetric dimethylarginine
ratios to be independent predictors for events in patients
with lower extremity arterial disease (LEAD, or atherosclerotic
stenosis) and long-term cardiovascular mortality (173). Studies
utilizing mouse models have demonstrated NOS and arginase
can metabolize h-Arg (100). Supplementation with 14 mg/L

h-Arg hydrochloride in the drinking water for 4 weeks has
a direct protective effect in a post-myocardial infarction HF
murine model (51). Mice treated with h-Arg (at 30 mg/kg/day
in saline) showed reduced neointima hyperplasia in balloon-
injured rat carotid arteries compared with supplemented mice
(174). The weight of evidence suggests that h-Arg may be
more than just a marker of the adverse outcomes, but play a
direct protective role in cardiovascular andmetabolic pathologies
(175). Additional clinical studies in humans involving h-Arg are
needed to confirm its beneficial effects in atherosclerosis and
related disorders.

Tau Metabolism
Tau (2-aminoethanesulfonic acid) is the most prevalent
intracellular sulfur-containing neutral β-amino acid (176).
Tau is non-essential in rodents, but essential in cats (177)
and may be conditionally essential in humans (178, 179). Tau
can be obtained through the diet or through biosynthesis
utilizing sulfur-containing AAs, such as Cys and Met (180).
Cysteine dioxygenase converts Cys into cysteine sufinic acid.
Then cysteine sulfinic acid decarboxylase converts cysteine
sulfinic acid to hypotaurine, which can then be modified to
generate Tau (181). Met can also be metabolized to form
Cys for Tau synthesis. For this, Met is converted into Hcy,
which cystathione synthase converts into cystathionine. Finally,
cystathionine is then converted into Cys by cystathionase (182).
Tau makes up ∼0.1% of the body’s total weight (180). The
highest concentrations of Tau are usually found in the heart,
brain, and musculature; it is less abundant in plasma. In the
heart, Tau represents up to 60% of the total free AA pool.
Concentrations of Tau in different species range from 3.5 µmol/g
wet weight in cows to 30 µmol/g in rats (183). Tau is synthesized
mainly in the liver or in the brain from Cys or Met, as indicated
above (Figure 4) (184). The kidneys regulate the total body
pool of Tau by regulating its tubular reabsorption (185). Tau
has a cytoprotective role via neutralization of hypochlorous
acid (186), and diminishes the synthesis of free radicals in
mitochondria (187). Tau also regulates cellular functions
such as the cell cycle, cell death/survival, and Tau depletion
stimulates unfolding protein response (188). Tau regulates the
expression of enzymes involved in BCAA catabolism (including
BCAT 2; mitochondrial, BCAT 1, cytosolic; branched-chain
keto acid dehydrogenase; 3-hydroxy-3-methylglutaryl-CoA
lyase) (189).

Tau is essential for maintaining an osmotic balance (in
response to high osmotic load, intracellular Tau increases)
(190), normal retinal ganglion cell survival (191), and has an
antiarrhythmic action (192). Tau supplementation has been
approved for the treatment of congestive heart failure in Japan
(54) and has been shown to induce regression of serum
cholesterol levels in atherogenic animal models (193), as it
inhibits cholesterol synthesis (194). Tau deficiency impairs
the contractile function of both cardiac and skeletal muscle
(195). Supplementation with Tau prevents the development of
hypertension in several animal models (196, 197). Tau has also
been shown to reduce blood pressure and improve vascular
function in hypertensive individuals (198). The Tau homolog,
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FIGURE 4 | General pathway of Tau synthesis from Met.

homotaurine, also exhibits beneficial effects, specifically on
Parkinson’s disease (199).

Tau and Atherosclerosis
The effect of Tau supplementation in hypercholesterolemic
rats (induced by a high-cholesterol diet) has previously
been investigated. In this study it was found that the
hypocholesterolemic effects of Tau are mediated by enhanced
cholesterol degradation and the excretion of bile acid (200).
In New Zealand, white rabbits, Tau was found to reduce the

formation of myocardial apoptotic nuclei (53). However, the
exact mechanism(s) by which this is mediated is unclear (53).
Furthermore, Tau exhibits antioxidative properties in rabbits
fed a high cholesterol diet (55). Tau has also been shown to
reduce atherosclerotic risk in hyperlipidemic mice (57) and
rabbits (201). In the latter study, Tau reduced atherosclerotic
lesions in hyperlipidemic rabbits; the aortic lesions decreased by
31% and the levels of cholesteryl ester in the abdominal aorta,
thoracic aorta, and aortic arch decreased by 54, 43, and 35%,
respectively (201). Atherosclerosis inhibition in these rabbits
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may involve the antioxidant action of Tau (201). In Japanese
quails fed a high cholesterol diet, Tau given as a supplement
was shown to improve serum lipid levels and reduce the
formation of atherosclerotic lesions (202). Tau supplementation
also reduces aortic lipid accumulation in ApoE−/− mice (57), and
reduced the development and the progression of atherosclerosis
in spontaneously hyperlipidemic mice, probably by lowering the
content of oxidized substances and increasing serum HDLc,
by mechanisms other than simply lowering cholesterol (203).
Evidence of the anti-atherosclerotic effects of Tau in humans is
lacking; however, epidemiological studies indicate that Tau intake
has beneficial effects on CVD prevention. In a multicentre WHO
Cardiovascular Diseases and Alimentary Comparison (WHO-
CARDIAC) study carried out across 24 medical centers in 16
countries, Tau excretion in urine was measured over 5 years (52).
The Japanese population exhibited the highest values recorded
for 24 h urinary Tau excretion, and an inverse association
between Tau levels and ischemic heart disease mortality, possibly
due to their high dietary consumption of seafood, much of
which contains high levels of Tau (52). In a follow-up study
using 3,960 individuals from the WHO-CARDIAC Study (which
included the Japanese population that consumed high levels of
Tau), the Tau/creatinine (Cr), and magnesium (Mg)/Cr ratios
were measured. It was found that the patients with ratios above
the mean 24 h urine Tau/Cr and Mg/Cr ratios of 639.4 and
82.8, respectively, exhibited an inverse relationship with body
mass index, total cholesterol in plasma, blood pressure (diastolic
and systolic) and atherogenic indices (total cholesterol/HDLc),
compared with the patients with lower levels of urinary Tau
excretion (204). In support of these findings, a more recent
24 h nutrient analysis study by Jun and Choi similarly reported
a negative association between Tau intake and atherogenic
index in men, but not in women who appeared to have a
positive association between Tau intake and diastolic blood
pressure (205). In a human study that included smokers, it
was found that Tau was positively associated with endothelial
functioning (206). Recently, it was shown that Tau exerts anti-
atherogenic as well as anti-inflammatory effects (lowering of
C-reactive protein (CRP) and platelets) in patients with HF
and a left ventricular ejection fraction of <50% (207). Tau
and Mg supplementation significantly increased the endothelial
progenitor cell (EPC) colony numbers (EPCs repair endothelial
damage to prevent CVDs) and significantly decreased free radical
levels and thiobarbituric acid scores in healthy men. The same
trend was obtained in spontaneously hypertensive rats (208).

Interestingly, Tau is abundant in ECs and aids in their
protection against oxidative stress, inflammation, and cell
apoptosis suppression (209, 210). Tau also exerts a beneficial
effect on lipid metabolism, which may have an essential role in
CVD prevention (211). A study conducted on 17 patients with
congestive HF, examined the effects of oral administration of
Tau and coenzyme Q, reported improved systolic left ventricular
functioning (54). Tau improves cardiovascular function by
improving antioxidant effects, antagonism of Ang II action,
and lipid profile (56). NO has a prominent role in Tau
vasodilatory action in response to vasoactive agents and,
consequently, blocks the effects of Ang II (56). Tau induces

concentration-dependent inhibition of lysophosphatidic acid
(found in human atherosclerotic plaques) and stimulates an
increase in intracellular calcium (Ca2+) in culturedVSMCs (212).
Tau may also slow the progression of atherosclerosis and reduce
the oxidation of LDL (211).

Tau has essential roles in a range of processes such as
cytoprotection, cell death, and survival, maintenance of Ca2+

homeostasis, and cell cycle regulation. Tau supplementation
relieves symptoms and abnormalities of the circulatory
system such as hypertension, ischemia-reperfusion injury,
atherosclerosis, HF, and myocardial arrhythmias. Tau also
prevents a high-fat diet from elevating the LDL and VLDL
cholesterol levels. Tau is present in ECs and helps them
adapt to hypotonic stress, protecting them from apoptosis
(213). Worldwide epidemiological studies have also revealed
the beneficial effects of Tau intake on CVD prevention.
Based on human and animal data, Tau is a promising
nutritional supplement. Although clinical evaluation of Tau
supplementation has been limited to only a few clinical
conditions, it has already been approved for use in congestive
HF (54).

Cys, Hcy, and Met
Elevated levels of Hcy are implicated in occlusive arterial
disease in the heart, kidney, and brain, in addition to venous
thrombosis, chronic renal failure (214), and oxidative stress
(215). Moreover, hyperhomocysteinemia (identified as a risk
factor for atherosclerosis) led Jacob et al. to investigate whether
both cysteine and Hcy are associated with hyperlipidemia
(58). They reported that both Cys and Hcy levels are lower
in asymptomatic patients than in CVD patients. They
concluded that high Cys levels are likely to be a risk factor
for atherosclerosis in patients with hyperlipidemia based
on plasma Cys levels being significantly lower in healthy
individuals than in patients with carotid atherosclerosis.
Other CVD risk factors, including smoking, hypertension,
hypercholesterolaemia, hyperhomocysteinaemia, diabetes,
obesity, and their combinations, are also associated with
increased Cys levels (216).

Homocysteinemia is associated with arteriosclerotic plaques
in cases where the enzymes involved in the converting Met to
Hcy harbored mutations (217). Since Met is the only known
source of Hcy, other studies examined Met intake in relation
to vascular disease. Specifically, Toborek et al. fed 20 male New
Zealand rabbits with standard chow or chow enriched with 0.3%
Met for 6 or 9 months (218). They reported significant increases
in levels of aortic thiobarbituric acid reactive substances and
antioxidant activities, as well as typical atherosclerotic changes,
such as calcification and deposition of cholesterol and intimal
thickening, in the aortas of the Met-fed rabbits.

Subsequently, Julve et al. studied the impact of Met-
induced hyperhomocysteinemia on two primary antiatherogenic
functions of HDL, namely preventing LDL oxidation and
inducing macrophage-specific reverse cholesterol transport
(219). They fed C57BL/6NCr mice with standard chow and
added 1% Met as a supplement to the drinking water of a
subset of mice to induce hyperhomocysteinemia. The mice
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with Met-induced hyperhomocysteinemia exhibited decreased
HDL-cholesterol levels and apolipoprotein A-I (by about 20%)
and reduced activities for HDL-associated antioxidant enzymes,
platelet activation factor acetylhydrolase and paraoxonase-1.
Also, the hyperhomocysteinemic mice displayed decreased HDL-
related cholesterol efflux from macrophages. Thus, the mice
with Met-induced hyperhomocysteinemia were more prone to
oxidation and displayed a lower capacity to protect their LDL
against oxidative modification, which suggests the mechanism by
which dietary Met induces hyperhomocysteinemia may facilitate
the progression of atherosclerosis (219). Yang et al. demonstrated
that ApoE−/− mice fed high-Met diets develop lipid deposition
in the arterial wall, and that fatty acid-binding protein (FABP4)
promotes lipid accumulation in arterial endothelium. They also
demonstrated that the demethylation of FABP4 is involved
in Hcy-mediated atherosclerosis and that DNA (cytosine-5)-
methyltransferase 1 enzyme (DNMT1) is a FABP4 methylation
regulatory factor (220). These data suggest that DNMT1 should
be considered a possible therapeutic target for the treatment of
Hcy-related atherosclerosis.

As Met load usually leads to high Hcy and cardiovascular
effects, Selhub and Troen designed a study to determine if
increased Met intake is atherogenic (221). They fed ApoE−/−

mice diets that satisfied three conditions:

• High Met intake with normal blood Hcy.
• High Met intake with hyperhomocysteinemia and vitamin

B deficiency.
• Normal Met intake with both hyperhomocysteinemia and

vitamin B deficiency.

It was found that mice that had normal plasma Hcy at the start of
the study, that were fed Met-rich diets exhibited atheromatous
effects, while mice with normal Met levels were deficient in
vitamin B and developed severe hyperhomocysteinemia (221).
These results suggest that the role of Hcy in arteriosclerosis is
complex, as increased Met intake is atherogenic in susceptible
mice, while high plasmaHcy is not. This further suggests that Cys
may also not be atherogenic, as the increased Cys levels associated
with atherosclerosis may merely be a consequence of Met, Hcy,
and Cys being part of the transsulfuration pathway (Figure 5).

Gly and Dimethylglycine Metabolism and
Its Role in Atherosclerosis
Gly is the simplest proteinogenic AA that can be produced
endogenously, but some studies indicate that its synthesis alone
is insufficient to meet the metabolic needs of an organism
(222). This AA is usually a constituent part of all three
types of collagen (223), and elastin (224). Gly has a role
in gene expression (225), glutathione synthesis (226), and

FIGURE 5 | The transsulfuration pathway connecting Met and Cys biosynthesis. CBS, Cystathionine-β-synthase; CGL, cystathionine gamma-lyase; BHMT,

betaine-homocysteine S-methyltransferase; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase.
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low levels are associated with metabolic disorders (227, 228).
Oral supplementation with Gly alleviates symptoms of several
metabolic disorders (229). In humans, Gly synthesis occurs
from hydroxyproline, serine, glyoxylate, and threonine primarily
in the liver and kidneys (222). Approximately 2.5 g of Gly
is synthesized from serine per day, which is close to the
mean dietary intake of Gly (222). Gly can be catabolized back
to serine (230) or can be degraded by glycine synthase via
a mechanism that involves decarboxylation and deamination
(231), or via a third mechanism, into glyoxalate (232). Gly
exerts anti-inflammatory and antioxidative effects (233) and has
been inversely associated with traditional cardiovascular risk
factors, such as obesity (234), hypertension (235), and diabetes
mellitus (236).

The anti-inflammatory activities of Gly are most probably
the result of a decrease in macrophage and leucocyte signaling
and the synthesis of inflammatory mediators. A decrease in cell
signaling may originate from glycine-gated chloride channel-
induced hyperpolarization at the cell membrane. This could
explain its protective effects on coronary arteries, accompanied
by an increase in eNOS and NO bioavailability (237). CHD
risk inversely correlates with serum levels of Gly, independently
of sex (59, 238). Concerning its cardiovascular activities, the
cardioprotective effects of Gly are mediated via activation of
Gly receptor α2 (GlyRα2) in cardiomyocytes, which promotes
attenuation of cardiac hypertrophy and fibrosis in animal models
(238). Low Gly levels are linked to IR and type 2 diabetes.
Gly stimulates insulin secretion by binding to GlyRα1 on
pancreatic β cells (238, 239). The antiatherogenic potential of
Gly has been examined by monitoring the levels of Gly and the
expression of APOA1BP, the gene that encodes apoA1-binding
protein. APOA1BP is involved in HDL-mediated (reverse)
cholesterol transport from peripheral tissues to the liver (240).
Gly levels positively correlate with serum HDL-C and apoA1
levels and are inversely correlated with triglyceride, CRP and
apoB levels, and cIMT (238, 240). Additionally, Gly inhibits
cellular VLDL uptake and decreases triglyceride synthesis
(238). Gly exerts its antioxidative effects by reducing through
oxidative stress components and restoration of glutathione
biosynthesis, a major antioxidant in human vascular tissues.
The underlying mechanisms that mediate such effects involve
reducing NADPH-oxidase activity and increasing copper (Cu),
Zn-SOD activity (241).

Rom et al. studied the effects of supplementation with
0.75% Gly in the drinking water of ApoE−/− mice for 40
days. They reported that triglyceride and aortic cholesterol
mass, and aortic lipid peroxides, have a decreasing trend
following supplementation (242). Gly exerts protective
effects, including immunomodulatory, anti-inflammatory,
and direct cytoprotective actions. Gly suppresses free radical
formation, transcription factor activation, and inflammatory
cytokines by acting on inflammatory cells such as macrophages
(243). In a rat model, it was found that intraperitoneal
administration of Gly (0.5 mg/g body weight) reduces cardiac
ischemia/reperfusion injury and myocardial apoptosis, with the
ischemic area significantly decreased (244). This study suggests
that Gly is a reliable therapeutic agent that can ameliorate

heart failure after MI (244). In rat cardiomyocyte cultures
(HL-1), the addition of Gly (3mM) during re-energization
completely prevented necrotic cell death associated with pH
normalization an hour after simulated ischemia (245). Gly
supplementation has a positive effect on cardiomyocyte survival
after an ischaemic insult and could represent a promising
therapeutic approach to prevent cell death in reperfused
myocardium (245).

In mice, it was shown that Gly (at a dose of 700 mg/kg)
attenuates left ventricular hypertrophy and cardiac fibrosis
induced by either transverse aortic constriction or Ang II
administration, potentially via inhibition of extracellular signal-
regulated kinase phosphorylation and the reduced synthesis
of transforming growth factor-β and ET-1 in cardiomyocytes
(246). Human platelets are Gly-responsive and express Gly-
gated chloride channels. Gly prevents aggregation of platelets,
a process central to clot formation (62). Gly supplementation
(1% Gly added to the drinking water) was examined in
rats after sucrose ingestion. It was found that Gly decreased
IR and the levels of various oxidative stress markers (247).
Associations between plasma Gly and the incidence of acute
MI (AMI) in a cohort of patients with suspected stable angina
pectoris show Gly is inversely associated with several CAD risk
factors (248).

Gly exhibits notable roles in a wide range of processes,
including cell signaling pathways. Current evidence suggests
that Gly supplementation may offer a therapeutic benefit
to some patients, particularly following ischaemic events.
Dimethylglycine (DMG) is a derivative of Gly with the structural
formula (CH3)2NCH2COOH. Dietary sources of DMG include
beans and liver, but DMG can also be synthesized from betaine
during Hcy remethylation toMet (249). This reaction is catalyzed
by the enzyme, betaine-homocysteine methyltransferase, which
is found predominantly in the liver and kidneys (250). DMG
is metabolized to sarcosine, providing a substrate for the
synthesis of 5,10-methylenetetrahydrofolate (251). A smaller
proportion of DMG is excreted unmetabolized in the urine
(252). A study involving LDL receptor-deficient mice fed a
high-fat diet showed that DMG perturbed the tricarboxylic
acid cycle, fatty acid metabolism, choline metabolism, and
markedly reduced excretion of urine due to the lower recycling
rate of choline-containing metabolites (253). Plasma DMG
concentrations were observed to be elevated in patients with
chronic renal failure, based on a study involving 33 dialysis
patients, where DMG levels positively correlated with Hcy
levels, which present independently of other atherosclerotic risk
factors (254).

DMG levels are strongly and independently associated with
the risk of future AMI in patients with stable angina pectoris
(61). Furthermore, there is a causal relationship between DMG
and stable angina pectoris and AMI. It has been shown
that plasma DMG improved risk prediction for all-cause
cardiovascular mortality in a group of patients with AMI
(255). In both children with congenital heart defects and their
mothers, serum or plasma concentrations of DMG are higher
compared with controls. Elevated DMG in the disease group
may indicate the upregulation of the betaine homocysteine
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methyltransferase pathway (256). Low levels of plasma DMG are
associated with a lower bone mineral density and an increased
risk of hip fracture (257). Based on these studies, increased
plasma DMG levels are associated with atherosclerotic CVD,
whereas elevated Gly has positive effects on atherosclerosis and
associated disorders.

IMMUNOMODULATION OF
ATHEROSCLEROSIS

Atherosclerotic plaques contain a variety of ICs, including T
cells, macrophages, dendritic cells, neutrophils, and natural
killer cells (258). As mentioned above, monocytes infiltrate the
intima and transform into macrophages that engulf oxLDL
and apoptotic cells, which leads to their transformation into
foam cells (64). These macrophages polarize into L-Arg, h-Arg,
and Trp metabolizing subtypes. In vivo studies were used
to demonstrate the induction of ARG1 and SLC7A1 (CAT)
transporter expression in myeloid-derived suppressor cells. Also,
based on gene expression data, neutrophils express a relatively
low number of SLC7A (CAT) transporters, which import
extracellular Arg but highly express ARG2, which will facilitate
Arg catabolism. This observation suggests that neutrophils can
deprive their environment of Arg, which may affect surrounding
cells (259). Macrophages are similarly able to import AAs
to influence the function of neighboring cells. Macrophages
express all major enzymes involved in L-Arg, h-Arg, and
Trp metabolism, including ARG1, iNOS, and IDO-1, which
collectively arm macrophages with various immune regulatory
capacities. Specifically, in a mouse model (Female C57BL/6), M1
macrophages are classified based on their expression of iNOS,
whereas M2 macrophages characteristically express ARG1 (260).
Macrophage differentiation is cytokine-induced, suggesting that
plaque-laden macrophages form clusters of particular subsets
dependent on their local environment. For example, it is known
that the expression of iNOS andARG1 inmacrophages is induced
by Th2-cytokines (64).

Macrophages
In 1979, Gerrity et al. were the first to report that macrophages
constitute a large portion of porcine lesions (261). Today, we
know that macrophages release inflammatory cytokines, play
a role in vascular remodeling (262), and are transformed into
foam cells. The uptake of lipids by macrophages is enhanced
after stimulation of Toll-like receptors (TLRs) TLR2, TLR4, and
TLR9 by corresponding ligands, making TLRs important for
atheroma development. Intracellular lipid accumulation by foam
cells in the arterial walls is enhanced after stimulation by pro-
inflammatory molecules (263). Thus, atheroma development is
dependent on the activity of TLRs (263, 264). Macrophages
possess TLR3, TLR4, and TLR9 receptors, which stimulate
the expression of Scavenger receptors that, in turn, facilitate
LDL intake (265), and suppress cholesterol efflux from
macrophages (266).

As previously mentioned, macrophage phenotypes can be
altered in response to various signals (267). The two major

macrophage subtypes are M1 (pro-inflammatory) andM2 (tissue
homeostasis and repair). These subtypes play opposing roles
but are both found in atherosclerotic plaques. The classical
M1 phenotype is induced by inflammatory cytokine signaling
[such as interferon-γ (IFN-γ)], tumor necrosis factor-α (TNF-
α) and invading pathogens (268, 269). M1 macrophages release
inflammatory cytokines, IL-1β, IL-23, IL-12, IL-6, and TNF-
α and chemokines, CXCL11, CXCL10, and CXCL9 (270). M1
cells participate in Th1-mediated immune responses and produce
high levels of NO and ROS. By contrast, M2 macrophages are
involved in Th2-dependent immune cascades and play an anti-
inflammatory role. Th2-type cytokines induce the formation
of M2 macrophages, which release the anti-inflammatory
cytokine, IL-10 (270). Unique macrophage subtypes play
anti-inflammatory, antioxidant and atheroprotective roles in
hemorrhagic atherosclerotic plaques (258).

Extensive cellular metabolic changes accompany macrophage
differentiation. Pro-inflammatory M1 macrophages utilize L-Arg
to produce NO, which is catalyzed by iNOS. On the other
hand, activated M2 macrophages use a different metabolic route
for L-Arg, that is, L-Arg is processed to ornithine and then
in turn into L-proline via the enzymes ARG and ornithine
aminotransferase (271).

M2 macrophages metabolize glucose through oxidative
phosphorylation, while M1 macrophages are dependent
on glycolysis (271). Macrophage differentiation also alters
cholesterol metabolism during atherosclerosis development
(272). The pro-inflammatory properties of the atherogenic
modified LDL can influence the monocyte/macrophage
phenotype by altering cell metabolism. Stimulation of
myeloid cells with modified LDL brings about changes
in cholesterol metabolism and glycolysis rate relative to
oxidative phosphorylation (272, 273). This effect has been
demonstrated both in vitro and in vivo using animal models.
Thus, atherosclerosis development is highly dependent on the
balance between pro- and anti-inflammatory differentiation of
macrophages. Consequently, statins that normalize cholesterol
metabolism and antioxidants that counteract ROS formation
are being used to modulate macrophage metabolism to treat
atherosclerosis (258).

Both pro- and anti-inflammatory macrophages are found
in atherosclerotic plaques, and the balance between these at
the arterial wall is tightly linked to atherosclerotic lesion
progression (274). Each macrophage subset differs in its
localization at the lesion and its relative abundance. Specific
macrophage subtypes are responsible for heme cleaning at sites
of intraplaque hemorrhage. The M1 macrophages that trigger
plaque destabilization and promote thrombus formation are
localized in the plaque lipid core in humans but are distributed
across the lesion in advanced murine plaques (275, 276). By
contrast, the M2 macrophages, which are present in human
and murine plaques (275, 276), contain smaller lipid droplets
compared with M1 macrophages and the M2 macrophages,
which surround the lipid core (275). M2 macrophages function
in the recruitment of fibroblasts, wound healing, and tissue repair
through matrix remodeling and also potentially in apoptotic cell
clearance within the plaque (274).
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Role of IDO
IDO is an important element of various pathological conditions
due to its immunoregulatory features. IDO-1 expression and
activity in numerous cell types, such as cancer, immune,
endothelial, and smooth muscle cells are controlled by
inflammatory processes (277). The main mechanisms by which
IDO modulates immunity are via Trp depletion, stimulation
of the stress sensor General Control Nonderepressible 2 (278),
and regulation of the KYN pathway via bioactive metabolite
production (279).

Since inflammation is an integral part of atherosclerosis,
various experimental models have demonstrated that
modulation of innate or adaptive immune responses is
effective against atherosclerosis (280–282). Inflammation
induced by atherosclerosis is controlled through the release of
Th1-type cytokines, specifically, IFN-γ (283), which induces
IDO expression. Further to this, IDO deficiency dysregulates
cytokine IL-10 release and promotes early-stage atherosclerosis
(110). These data suggest that IDO, through its immune-
inflammatory actions, may be a promising therapeutic agent
against atherosclerosis (284).

IDO inhibition with 1-methyl Trp in ApoE−/− mice led to
aberrant lipid handling and enhanced vascular inflammation
(285). Moreover, elevated IDO-1 is correlated with a reduction
of human and mouse atherosclerosis, where plasmacytoid
dendritic cells (pDCs) overexpress IDO-1 and modulate T
cell responses (286, 287). IDO immunomodulatory responses
in atherogenic plaques, precisely IDO-1 expression, are also
associated with ECs and VSMCs (288–290). Furthermore,
induced IDO-1 activity in cultured human VSMCs treated
with IFNγ, suppressed T cell accumulation, activation,
and proliferation (290). In hypercholesterolemic mice, the
genetic ablation of IDO-1 enhances vascular IL-10, confers
atheroprotection and IDO-dependent immunoregulatory
responses (112). Therefore, IDO-1 stimulated expression has
various actions on the immune system and might be effective
against inflammation (279). For instance, eicosapentaenoic acid
administration in LDLr−/− mice stimulates IDO-1 expression
and reduces vascular inflammation and atherosclerosis,
possibly through decreasing the numbers of macrophages,
DCs, and T cells (291–293). Regulatory T cells participate
in atherosclerosis by promoting plaque stabilization (294)
and influence inflammation by inducing IDO-1 expression in
antigen-presenting cells (295). IDO-1 stimulation may however,
lead to undesired effects, such as defective immunity and
increased susceptibility to infection (279). For example, IDO has
been shown to promote infection by reducing host protective
immunity (296).

Role of ARGs
ARG is an enzyme that regulates the bioavailability of NO
by inhibiting competitively with eNOS. ARG1 and ARG2
are two isoforms of ARG. Two separate genes encode the
arginase isoenzymes, and their products have different lengths
(ARG1 has 322 AAs, whereas ARG2 has 354 AAs) (297, 298).
The two isoenzymes occupy different intracellular locations as
well: ARG1 resides in the cytoplasmic compartment, whereas

ARG2 is localized in the mitochondria (299). Human ARG1
shares a sequence identity of 58% to human ARG2 (300).
These two isoenzymes catalyze the same reaction, but their
function depends on where they are localized within a
particular tissue or cell. Elevated activity of ARG isoforms
in the endothelium diminishes the vasoprotective role of NO
(301), whereas these two isoforms have opposite roles in
macrophages (302).

ARG1

ARG1 is an essential immunological regulator in macrophages.
It catalyzes L-Arg hydrolysis to form urea and L-ornithine
(a polyamine precursor) and L-proline. Thus, ARG1 activity
represses the NO-mediated cytotoxicity via L-Arg consumption
(300). Substrate competition between iNOS and ARG1 occurs
in mouse macrophages (300), but further studies are required
to confirm that this also happens in human macrophages. The
function of NO in human macrophages is controversial because
human monocyte-macrophage cells cannot be easily stimulated
to produce iNOS or NO (303). However, there is evidence that
human tissues express iNOS (304). In humans, ARG1 is most
highly localized within the granulocytes of a subpopulation of
myeloid cells (polymorphonuclear leukocytes) (305).

Macrophage ARG1 may slow down the progression of
atherosclerotic plaques (306). Both human (307) and mouse
(276, 308–310)—focused studies have reported ARG1 expression
in atherosclerotic plaques. Wang et al. (311) used New Zealand
rabbits to demonstrate that elevated ARG1 levels competitively
inhibit iNOS to stimulate an anti-inflammatory response, which
increases the release of Th2-type cytokines. They also found that
ARG1 provides a further protective role in atherosclerosis by
increasing intracellular polyamine production, and in VSMCs,
the generation of collagen, which thickens the fibrous cap to
provide stable plaques (276, 311). In two strains of rabbits
(with low or high atherosclerosis resistance), elevated levels
of ARG1 in macrophages were demonstrated to lead to
atherosclerosis (312).

ARG2

Ryoo et al. studied the role of ARG2 in the development
of atherosclerosis and reported that OxLDL stimulates ARG2
release and reduces NO production (313). They also reported
that the inhibition of endothelial ARG or the deletion of the
ARG2 gene restores endothelial function, and reduces plaque
burden. These data imply that ARG2 should be a target for
the treatment of atherosclerotic vascular disease. Thus, the
endothelium is protected through the genetic inhibition of
ARG (314). The idea that genetic inhibition of ARG may
be beneficial was confirmed by the repression of ARG2 gene
expression in a murine study (315). In animal models with
atherosclerosis, ARG2-dependent increases in ROS can lead to
endothelial cell dysfunction (316). Xiong et al. have recently
used human umbilical veins to demonstrate that activated ARG2
potentiates proliferative processes in vascular cells (317). Also,
Ming et al. used atherosclerosis mouse models with a deficiency
in ARG2 to demonstrate the protective effects (of reduced ARG2)
against atherosclerosis from an inflammatory perspective (318).
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Afterward, increased activity of ARG2, irrespective of plasma
lipid levels, was sufficient to induce inflammatory changes and
atherosclerosis formation (319).

ET-1 exerts proinflammatory effects through endothelin
receptors A and B, present in the VSMCs. In an atherosclerotic
mouse model, blocking ET-A receptors attenuated
atherosclerosis (320), and ET-1 has been associated with
human atherosclerosis experimental models (321). The interplay
between ET-1 and ARG expression and activity has been explored
in a study by Rafnsson et al. (322). They report results on human
carotid artery ECs, and THP-1 monocyte cells (a spontaneously
immortalized monocyte-like cell line), which show that ET-1 and
its receptors are expressed in the macrophages and ECs of human
carotid plaques. Specifically, ET-1 co-localizes with ARG1 and
ARG2. The same report also demonstrated that ET-1 stimulates
ARG expression, as well as ARG activity in both THP-1, derived
macrophages and ECs. ET-1 also stimulates the formation
of ROS through a mechanism dependent on ARG. All this
evidence indicates that in later stages of atherosclerosis,
there is a significant relationship between ET-1 and
ARG (322).

CONCLUSION

In this review, we have summarized our current knowledge
of essential, conditionally essential, and non-essential AAs in
atherosclerosis and atherosclerosis-related CVDs. At present, the
weight of evidence indicates that catabolic defects in BCAA
metabolism can lead to elevated plasma BCAA concentrations,
representing risk factors for cardiometabolic diseases. Alterations
in the levels of BCAAs are associated with disorders, including
renal failure, atherosclerosis, and cancer (79). Reduced plasma
Trp levels are related to various disease states. Patients with
atherosclerotic plaques have lower serum Trp levels compared
with healthy controls. Further work is required to understand
whether Trp supplementation may represent a therapeutic (or
preventative) strategy to improve cardiovascular health. Patients
with atherosclerosis and related complications in some studies
show benefits from L-Arg administration and in others not. The
optimum oral dosage of L-Arg also remains to be established in
these and other diseases associated with NO-related dysfunction.
The controversial effects of L-Arg are probably due to variations
between patients and their metabolism, which can generate
compounds that are inhibitors of NOS. More studies are required
before identifying those individuals who would benefit from
L-Arg and those who would not.

The weight of evidence suggests that h-Arg may be more
than merely a marker of adverse outcomes, but that it plays a
direct protective role in cardiovascular andmetabolic pathologies
(175). Worldwide epidemiological studies have also revealed
the beneficial effects of Tau intake on CVD prevention. Based
on human and animal data, Tau is a promising nutritional
supplement. Although Tau’s clinical evaluation has been limited
to a few disorders, it has already been approved for congestive
heart failure. Gly is a simple AA that is important for
cardiovascular health. It plays notable roles in a wide range of

processes, including cell signaling pathways. Gly plays prominent
roles in a wide range of pathologies, among which are following
ischemic events, and its role in lowering the lipid status is
known. Current evidence suggests that Gly supplementation
may offer a therapeutic benefit to some patients, particularly
following ischemic events. In contrast, elevated levels of the Gly-
derivative, DMG are associated with atherosclerosis and related
disorders. Elevated Cys in circulation correlates with CVD risk
factors. Collectively, AAs appear to represent important CVD
risk indicators, and further work is required to fully understand
their involvement in such pathologies.

Today, the immunomodulation of atherosclerosis is at the
center of current research. Available data suggest that IDO
regulation is mediated through various immunological signals
(288), and also suggest that IDO is a promising therapeutic
agent against atherosclerosis (284). Similarly, ARG inhibitors
have been considered and evaluated as promising therapeutic
agents against atherosclerosis and other CVDs since the 1990s
(301, 323).

These studies have yielded promising results in terms
of improving endothelial functioning. However, we still
do not have specific inhibitors for each isoform, limiting
our understanding as we do not know which isoforms
are responsible for particular observed effects. Innovative
therapeutic strategies for atherosclerosis prevention and
treatment through immunological induction of atheroprotective
mechanisms have been proposed and are desirable (6, 324, 325).
Data supporting a role for immune dysregulation underlying
atherosclerosis are now coming to light and are expected to yield
novel therapeutic targets.
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