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It is generally understood that the entry of semen into the female reproductive tract
provokes molecular and cellular changes facilitating conception and pregnancy. We show
a broader picture of the participation of prostaglandins in the fertilization, implantation and
maintenance of the embryo. A large number of cells and molecules are related to signaling
networks, which regulate tolerance to implantation and maintenance of the embryo and
fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets,
polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo
tolerance in order to have a wider view of how prostaglandins participate. The
combination of platelets and neutrophil extracellular traps (Nets), uterine innate
lymphoid cells (ulLC), Treg cells, NK cells, and sex hormones have an important
function in immunological tolerance. In both animals and humans, the functions of
these cells can be regulated by prostaglandins and soluble factors in seminal plasma to
achieve an immunological balance, which maintains fetal-maternal tolerance.
Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of
the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and
IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as
chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS
production, and the formation of extracellular traps, which could help prevent
trophoblast injury and fetal loss. The implications are related to fertility in female when
seminal fluid is deposited in the vagina or uterus.

Keywords: prostaglandins, PGE2, platelets, polymorphonuclear leukocyte, group 2 innate lymphoid cells,
embryo tolerance
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INTRODUCTION

Prostaglandins (PGs) belong to a subclass of eicosanoids known as
prostanoids, these are comprised of C20 atoms, including a
cyclopentane ring. PGs are hormone-like chemical messengers
which act as autacoids (1) through prostanoid receptors (G
protein-coupled receptors) and their variants or isoforms such as
E;.4 DP,, FP, TP,and IP (1, 2). The main precursor of eicosanoids is
arachidonic acid (AA), this is released by the action of phospholipases
A2 (PLA2) and C (PLC) (3), AA is then converted into different
metabolites through the COX, LOX, and CYP450 pathways (4). The
importance of prostaglandins becomes evident when ovulation and
fertilization are affected, e.g., as cyclooxygenase (COX) is inhibited by
aspirin or indomethacin (5).

PGs have a significant role in maternal immune tolerance and
the conception process. We consider prostaglandins in seminal
fluid as key in modulating responses in different types of cells
participating in fetal-maternal tolerance.

The balance of the immune response in maintaining fetal-
maternal tolerance is due to a complex network of soluble
molecules and cells, such as macrophages, and dendric, decidual,
and NK cells. In Table 1, cells and biological processes are
summarized. Moreover, many molecules are released by these
cells and have a fundamental role in the tolerance process. Table
2 summarizes the most important of these.

The molecules are released through macro-, micro-, and
nanovesicles, including exosomes from placenta cells,
syncytiotrophoblasts, denudated syncytiotrophoblasts, and
extravillous trophoblasts. All are part of the complex
intercommunication between the foetus and the mother. These
vesicles transport immunomodulatory proteins such as Fas ligand,
TRAIL, CD274, CD276, HLA-G5, Syncytin-1, hCG, glycodelin,
galectin-1 (107), which may maintain fetal-maternal tolerance, and
may even be related to recurrent early miscarriage (108).

The accumulated evidence indicates that when sexual
intercourse occurs and seminal fluid is deposited in the female
reproductive tract, the prostaglandins in the seminal fluid, i.e.,
PGE2, PGEI, PGE3, and PGF2 (109), initiate a signaling cascade
toward the woman’s innate immune cells. The cells mentioned in
Table 1, such as platelets, polymorphonuclear leukocytes, and
Group 2 innate lymphoid cells participate in the physiological
mechanisms in embryo tolerance and implantation, allowing
successful fertilization.

PREIMPLANTATION, IMPLANTATION,
AND DECIDUALIZATION

Implantation begins by apposition and adhesion of the embryo to
the luminal epithelium of the endometrium. Following its invasion
toward the stromal bed, the union of the embryo to the luminal
epithelium transforms the underlying stromal fibroblasts into
secretory cells of the epithelioid type, or decidualization (110).
Through different molecules such as IL-1B, steroid hormones,
insulin-like growth-factor-binding protein-1 (IGFBP-1) and

prostaglandin-endoperoxide synthase-2 (PTGS-2), the
decidualized cells regulate this stage with the invasion of embryos,
and the formation of the placenta (110).

Prostaglandins participate in each stage of the interaction of the
embryo with the endometrium, for example in preimplantation,
implantation (apposition, adhesion/attachment, invasion/
penetration) and decidualization; as well as affecting many other
cells and molecules. PGs have a complex role in each of these stages,
e.g., the essential role of prostaglandin E2 (PGE2) in the oocyte is to
enhance the cumulus expansion in ovulation for sperm penetration,
to regulate extracellular matrices disassembly (111), and also,
importantly, to participate during transport and embryo
implantation (112).

PROSTAGLANDIN SIGNALING BY
SEMINAL FLUID AND FERTILIZATION

Preceding evidence shows that sperm induces immunosuppression
against hapten-modified self and alloantigens, including cytotoxic T-
cell in mice responses (113). Also, seminal plasma contains high
concentrations of prostaglandins, key molecules in the regulation of
sexual intercourse signaling (114). The female immune response
tolerates seminal plasma and supplies cytokines and prostaglandins,
which are synthesized in the male accessory glands. In addition, it
causes molecular and cellular changes in the endometrium. This
facilitates the development and implantation of the embryo when
prostaglandins, cytokines and hormones bind to receptors in target
cells in the cervix and uterus (115).

The prostaglandins present in seminal fluid have a role in
immune modulation. They regulate the pathways that may
exacerbate inflammation in the female reproductive tract
during physiological processes such as ovulation, implantation,
and parturition (116), e.g., ejaculation or the spermatozoa induce
an inflammatory response in the endometrium in the
preimplantation period after mating, in which IL-1 (alpha and
beta), and TNF-alpha participate (117).

Seminal plasma derived from the male accessory sex glands
performs a fundamental function in fertilization in animals. The
components of seminal plasma participate in the transport and
survival of viable sperm and the elimination of non-viable sperm
from the uterus (118). In the quail species, the cloacal gland
produces prostaglandin F2o. (PGF20), which contributes to
successful fertilization and acts as a natural mechanism for the
protection of sperm from rejection or death by the female
reproductive tract (119). Seminal fluid factors exert significant
effects on the female reproductive tract, as shown by Shahnazi
etal. (120). Also, in the uterine tissues of mice that were paired with
mice without seminal vesicles, implantation rates, enzyme cytosolic
PGE synthase (cPGES), microsomal PGE synthase (mPGES) and
receptors EP2 and EP4 involved in the signaling pathway of PGE2,
were all significantly low (120). In addition, 19-hydroxy PGE and
19-hydroxy PGF are regulators of sperm motility, and its effects may
be mediated by the content of ATP in sperm (121). Prostaglandins
such as PGE-1 are potent stimulators of adenylate cyclase in various
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TABLE 1 | Cells related to maternal-fetal tolerance and implantation.

Cells Biological process Molecules related Prostaglandins related Authors

Dendritic ILT4" Dendritic cells (DCs)  Induction of Foxp3* Treg cells. DCs suppress T-cell activity, IL-10 Liu et al. (6)

cells induce T helper cell anergy and inhibit the differentiation of

cytotoxic T cells.
Tolerogenic dendritic cells  Present the antigen to ThO cells, which become activated, PGE2-EP4 receptor signaling Florez-Grau et al. (7)
(tol-DCs) proliferate and differentiate into peripherally derived Tregs inhibits IL-12 and promotes IL-23  Robertson et al. (8)
(pTregs). production.
PGE2 regulates IL-10 production.

Macrophages M1 macrophages Skew T cell responses to a TH1 mediated immune response. IL-12, IL-23, ROS PGE2 is essential to corpus Brown et al. (9)
luteum formation by stimulating Liu et al. (10)
macrophages to induce
angiogenesis through EP2/EP4.

M2 macrophages Promote TH2 or antibody mediated immune responses. IL-10, TGF-B PGD2, PGF2a, and PGE2 Brown et al. (9) Magatti
contribute to differentiation toward et al. (11)
M2-like macrophages
NK cells Uterine NK cells (UNK) Respond to fetal MHC class | molecules. Stimulate fetal IFN-v, growth-promoting factors Sojka et al. (12) Fu
growth. Regulate decidual blood vessel remodeling. etal (13)
Endometrial NK cells Inactive cells (before IL-15 activation) that are present in the IP-10 or IFN-y Yang et al. (14)
(eNK) endometrium before conception and pregnancy. Manaster et al. (15)
Decidual NK cells (dNK) Widen maternal blood vessels and promote fetal growth. IL-24, Angiopoietin 1 and 2 (Ang 1, Ang 2),  Suppression of their activity has Yang et al. (14)
(CD56”ICD167) Interact with resident myeloid cells and participate in the vascular endothelial growth factor C (VEGF-  been observed in humans and Yu et al. (16)
induction of regulatory T cells C), TGF-B1, SDF-1, pleiotrophin, mice by PGE2.
osteoglycin, IL-8, protein-10.
Decidual Decidual stromal cells Differentiation and development of dNK during decidualization.  IL-24, TGF-B The DSC-induced inhibition is Yang et al. (14) Sojka
cells (DSCs) Induce the downregulation of activating NK receptors and primarily mediate by PGE2. etal (12)
inhibit NK cell proliferation, cytotoxicity, and IFN-y production. Vacca et al. (17)
Croxatto et al. (18)
Decidual ILC3 Establish physical and functional interactions with neutrophils IL-8, IL-22, GM-CSF, TNF, IL-17 Vacca et al. (17)
(NCR*NCR") and produce factors for pregnancy induction/maintenance and
promotion of the early inflammatory phase.
Decidual Tregs Express CD25, CTLA4, and PD-L1, which are hallmark IL-10, TGF-B Robertson et al. (8)
mediators of Treg suppression. Downregulate DC costimulatory
molecules CD80 and CD86 needed for T effector (Teff)
activation.
Decidual T cells Proliferate in response to fetal tissue. Elevated expression of IL-4, IL-10, IFN-y, leukaemia inhibitory Ernerudh et al. (19)
proteins associated with the response to interferon signaling. factor and colony-stimulating factor 1 (M- Powell et al. (20)
CSF).
Decidual myeloid cells Induce Treg, dNK and dCD14" cells resulting in the production  TGF-B, indoleamine 2,3-dioxygenase (IDO). Vacca et al. (17)
(dCD14%) of IFN-v.
Decidual CD4"EM cells Increase expression of the immune inhibitory checkpoint IFN-y, IL-4 Kieffer et al. (21)
receptors PD-1, Tim-3, cytotoxic T lymphocyte antigen 4
(CTLA-4), and lymphocyte activation gene 3 (LAG-3).
Decidual CD8"EM cells The interaction with trophoblasts induces the upregulation of IFN-y, IL-4 PGE2 is an important modulator  Kieffer et al. (21)
(CD45RA™CCR7") Tim-3 and PD-1. Trophoblasts may induce tolerance in CD8" of CD8 membrane expression in  Tilburgs et al. (22)
EM cells in the decidua. Reduced expression of perforin and human lymphocytes. Ouellette et al. (23)
granzyme B.
T Cells Tregs Inhibit the activation and function of Th1 and Th17 cells and TGF-B, IL-10, Heme oxygenases-1(HO-1) PGE2 promotes the development  Robertson et al. (8)
(CD4*CD25"FOXP3*) control inflammation. Control IL-15 release from DCs and of regulatory T cells. Erkers et al. (24)

suppress UNK cytolytic activity.

(Continued)
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Authors
Ernerudh et al. (19)
Grasso et al. (25)
Ahmadi et al. (26)
Wang et al. (27)
Dunn et al. (28)

De Clercq et al. (29)
Gnecco et al. (30)
Oettel et al. (31)

Prostaglandins related
expression and release by ESCs

PGE2 can stimulate IL-15

Molecules related

VIP, TGF-B

IL-10
IL-15
TGF-B

b, IL-10, and IL-4. Vasoactive intestinal peptide (VIP) modulates

to toward a tolerogenic profile.
domain-containing molecule-3 (Tim-3) and programme death-1

(PD-1) inducing inflammation. Regulating trophoblast function.
In humans, the so-called “decidualization window” transforms
endometrial stromal cells into larger round decidual cells. This
phenomenon is largely dependent on hemodynamic forces,

Biological process
Induce the mucosal environment that is intrinsically rich in TGF-
progesterone, and prostacyclin.

Possess immune-regulating properties and are one of the first
fetal cells to make contact with foreign maternal immune cells.

Express higher levels of T cell immunoglobulin- and mucin-
Also, increase the Treg cell population.
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Endothelial Cells
(HUVECS)

cellular systems (122). An increase in adenylate cyclase activity and
subsequent entry into cAMP levels may also be involved. PGs
stimulate the fertilization capacity of human sperm by facilitating
the transport of calcium through their plasma membrane (123).

The amplification of effects by microparticles from epididymal
fluid (epididymosomes) and prostasomes could lead to the
activation of many genes and the expression of related molecules,
as reported in humans and mice, some species of cows, pigs and
sheep (123, 124). More specifically, signaling may affect the enzymes
of the cyclooxygenase pathway and other molecules related to the
metabolism of arachidonic acid, e.g., Cytochrome P450 in
blastocyst implantation (125), and prostaglandin D2 in the
maintenance of pregnancy through Th1/Th2 and T-cytotoxic
(Tc) 2 cells balance (126, 127).

The change induced by seminal plasma in a porcine uterus
makes conception and pregnancy possible (128), it also reduces
embryonic mortality in pigs and other livestock (129). In
addition, seminal plasma possesses potent immunosuppressive
activity caused by immune-deviating soluble factors, inducing
tolerance, with molecules, such as Transforming growth factor-3
(TGFB) and prostaglandin E (PGE).

EFFECTS OF PROSTAGLANDINS AND
RELATED MOLECULES ON INNATE
IMMUNITY AND FEMALE REPRODUCTIVE
TRACT CELLS

Cells of the innate immune response are modulated by
prostaglandins (130), among them, are the following:

1. M1 macrophages (Mo1l) which produce proinflammatory
cytokines (TNFo., IL-6, IL-12, IL-23, and IL-1f), M2
macrophages(M¢2) which produce IL-10 and TGFf
(transforming growth factor ) and have anti-inflammatory
and immune down-regulating properties. Both are regulated by
prostaglandins in pregnancy (9) (Table 1).

2. Dendritic cells (DCs) have several subclasses, e.g., CD103",
myeloid, plasmacytoid, the latter are related to the production
of high IFNa levels. In infertile patients with endometriosis,
CD4", CD25", and CD103" dendritic cells are increased in
peritoneal fluid (131), dendritic cells CD103* have a relevant
role in implantation (132); in addition, CD103" dendritic cells
are regulated by prostaglandin D2 in different disorders (133).

3. Endothelial cells have innate and immune tolerogenic function
(134). In patients with preeclampsia (PE), in the presence of
vascular endothelial growth factor (VEGF), these cells increase
levels of prostacyclin (135). In the pathogenesis of PE, VEGF
(VEGF-A) participates in the proliferation, migration and
angiogenesis of endothelial cells, and works through the
receptors VEGFR-1 (or Flt-1) and VEGFR-2. In PE this
increases the release of FMS-like tyrosine kinase-1 (sFlt-1)
and blocks free VEGF to protect the fetus from toxicity (136).

4. Neutrophils (PMN) are regulated by cytokines and
prostaglandins (137). The aspirin (ASA) is used for prevention
of preeclampsia in high-risk patients (138, 139). ASA triggers
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TABLE 2 | Principal soluble molecules acting in implantation (apposition/adhesion/invasion) to maintain fetal-maternal tolerance.

Effects Soluble molecule

Biological process

Steroid hormones and related molecules

Author

Attachment and
implantation

Oestrogen

17B-oestradiol (E2)

Progesterone (P4)

Chorionic
gonadotropin (CG)

Neuropeptide
kisspeptin (KP)

Platelet-Activating
Factor (PAF)

Cytokine mediators of  IL-6
implantation and
decidualization

Regulation of oestrogen receptors p/IL-24 (ERB/IL-24) signal
pathways. Induces the recruitment of macrophages and DCs.

Promotes uterine blood flow, myometrial growth stimulates
breast growth and later promotes cervical softening and
expression of myometrial receptors. Expansion and activation
of monocytic-myeloid-derived suppressor cells (M-MDSCs)
through signal transducer and activator of transcription
(STAT)-3.

Stimulates the activity of some specific enzyme matrix
metalloproteinases and adhesion molecules. Inhibits antibody
production and suppresses T-cell activation and cytotoxicity
and modifies the activity of natural killer cells; influences B cells
and induces secretion of protective asymmetric antibodies.

hCG is comprised of 4 molecules, one produced by

villous syncytiotrophoblastic cells, another hyperglycosylated
hCG produced by cytotrophoblast cells, the free beta subunit,
and hCG produced by anterior pituitary gonadotropic cells.
Stimulates P4 production by the corpus luteum, facilitating
trophoblast invasion, and promoting angiogenesis.
Kisspeptins participate in reproduction. Regulates trophoblast
cell invasion alongside tumor necrosis factor o..

Platelet-activating factor is an acetylated
Glycerophospholipid, releasing histamine from platelets, which
increase vascular permeability.

IL-6 is a cytokine with functions in immunity, metabolism and
tissue regeneration. It is

produced in the endometrial epithelium and stromal cells
during implantation.

Promotes the conversion of peripheral Tregs in secondary lymphoid
organs. Prolongs the survivals of H-Y skin grafts by the expansion of
Tregs, suppression of CD3(+) CD8(+) effector T-cells and immune shifts
toward Th2 cytokines.

E2-treated MDSCs have a stronger capability in suppressing T cell
responses.

17B-oestradiol, FSH, oxytocin, and arachidonic acid (AA) induce
receptors and enzymes through the synthetic pathway for PGE2.

Progesterone-induced blocking factor (PIBF) mediates the
immunomodulatory effects of progesterone. Consumption of IL-4
increases and the number of cells undergoing apoptosis. Increases
secretion of IL-10, IL-27, causes increased secretion of IL-13 and
decreased secretion of IL-23 by the monocyte-derived dendritic cells.
Upregulates macrophage-colony-stimulating factor (M-CSF) and
downregulates granulocyte-macrophage colony-stimulating factor (GM-
CSF).

Progesterone and prostaglandin E have synergistic inhibition effects on
T-cell mitogenesis.

It is a pleiotropic molecule that mediates implantation.

Upregulation of indoleamine 2,3-dioxygenase activity of dendritic cells.
hCG may have a biological role in the regulation of PG (PGE and 6-
keto-PGF1) synthesis in trophoblasts.

In particular, the hyperglycosylated form stimulates implantation
through the invasion of cytotrophoblast cells.

KP is a regulator of Gonadotropin (GnRH) secretion and stimulates LH
secretion and LH pulse frequency.

KP-10 moderates trophoblast invasion

and regulating implantation.

PAF is related to processes of ovulation, implantation and parturition,
and is regulated by ovarian steroid hormones.

PAF is associated with sperm motility, acrosome reaction, and
fertilization.

Variation in the expression of pro-inflammatory cytokines such as IL-6,
CSF-1, macrophage colony-stimulating factor (CSF-1), granulocyte-
macrophage colony-stimulating factor (GM-CSF), interleukin 1-alpha,
interleukin 1-beta, and tumor necrosis factor-alpha (TNF alpha) has
been reported in the uterus immediately after mating in mice.

Changes in the bioavailability of IL-6 are important for pregnancy. The
increase of IL6 is related to unexplained infertility, recurrent miscarriage,
preeclampsia and preterm delivery and inhibition of the generation of
CD4 + regulatory T cells in pregnancy tolerance. Local IL-6 insufficiency
could also contribute to recurrent spontaneous abortion.

IL6 activate cathepsin S (CTSS) in dendritic cells, in decidualized
endometrial stromal cells, this process is regulated by cystatins CST7
and CST3.

Padmanabhan et al. (32)
Vrtacnik et al. (33)
Lin et al. (34)

Rahimipour et al. (35)
Pan et al. (36)
Falchi and Scaramuzzi, (37)

Rahimipour et al. (35)
Kyurkchiev et al. (38)
Svensson et al. (39)
Fujisaki et al. (40)

Cole, 2020. (41).
Szmidt et al. (42)
Bansal et al. (43)
Schumacher et al. (44)
North et al. (45)

Mumtaz et al. (46)
Francis et al. (47)
Skorupskaite et al. (48)
Pinilla et al. (49)
Harper, 1989. (50)
Tieman, 2008. (51)
Roudebush, 2001. (52)

De et al. (53)
Ochoa-Bernal et al. (54)
Cork et al. (55)

Prins et al. (56)
Baston-Buest et al. (57)

(Continued)
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TABLE 2 | Continued

Effects

Soluble molecule

Biological process

Steroid hormones and related molecules

Author

Implantation and
decidualization

Leukaemia inhibitory
factor (LIF)

IL-1

IL-11

IL-15

IL-24

Cytokine-like protein 1
(Cyti)

Cellular Adhesion
Molecules (CAMs)

Melatonin

Calcitonin (CT)

Platelet-derived growth
factor (PDGF-BB)

It is @ member of the interleukin-6 family of cytokines.
Upregulation of poFUT1, promotes trophoblast cell migration,
invasion and differentiation at the fetal-maternal interface
through activating the Janus kinase/signal transducers and
fetal transcription

(JAK/STAT) and a mitogen-activated protein kinase (MAPK)
signaling pathway.

Acts on blastocysts, syncytiotrophoblasts and endometrial
glands.

IL-11 regulates endometrial epithelial cell increasing adhesion
to fibronectin and collagen IV, similar to IL-6.

Promotes the differentiation of the local eNK cells toward dNK
cells.

Regulates the function of eNK and pNK through the Janus
kinase (JAK)/STAT3 pathway.

Regulation of embryo implantation. It is an ovarian hormone-
dependent protein expressed in the endometrium that
stimulates the secretion of LIF and heparin-binding epidermal
growth factor (HB-EGF). Induces endometrial cell proliferation.
Adhesion molecules include integrins, cadherins, selectins,
and the immunoglobulin superfamily.

Melatonin is an indoleamine acting as an antioxidant, free
radical scavenger, and it promotes embryo development in
different species

It is a peptide hormone which regulates calcium homeostasis

Decidualized endometrial stromal cells migrate upon exposure
to PDGF-BB.

Urokinase-type plasminogen activator receptor (UPAR) is upregulated
by LIF, also it is mediated by phosphoinositide-3-kinase—protein kinase
B/Akt (PISK/AKT) signaling pathway.

LIF participates in placentation by up-regulating PGE2 production and
PGE2 receptor expression.

Stimulates endometrial secretion of endometrial leukaemia inhibitory
factor (LIF), prostaglandin E2, and integrin B3 subunit expression.

IL-11 decreases TNFa in a dose-dependent way in epithelial and
stromal cells, in endometria, through gp130.

IL-11 production is maximal during decidualization, its production
depends on steroid hormones, relaxin and PGE2.

Decidual NK cells secrete cytokines and angiogenic factors to placental
vascular remodeling and differentiation.

IFN-y, IP-10, vascular endothelial growth factor (VEGF), Placenta
growth factor (PIGF).

Suppression of IL-15-activated NK cell is mediated by PGE (2).
Contributes in differentiation to CD56°"9™CD16~dNK with low cytotoxic
activity, high immunomodulation and angiogenic activity by inhibiting
CD16, Granzyme B and perforin, IFN-y, upregulating KIR2DL1,
KIR3DL, TGF-B, IL-10, and IL-8.

Releases LIF, HB-EGF, and IL-1, in decidualization.

Numerous integrins interact with the trophoblast, especially the aVB3,
with its ligand osteopontin. HOXA 10 and IL-1 regulated B3 subunit
expression in the receptive endometrium.

The absence of L-selectin and its Meca-79 ligand is associated with
recurrent implantation failure (RIF), also, a significant reduction of
HOXA-10 and E-cadherin in recurrent implantation failure (RIF) and
recurrent miscarriage (RM).

ICAM-1, VCAM-1, NCAM, CD44, and CD49d provide interaction
between the embryo and maternal cells.

A positive feedback loop among p53, p38, and p21 inhibiting mucin 1
and activating LIF is realized by melatonin signaling, which improves
adhesion proteins, present at the membrane level on endometrial cells
and the blastocyst, in the pre-implantation stage.

Melatonin is associated with the inhibition of prostaglandin synthesis.
Promotes endometrial receptivity and embryo implantation.

Involvement of ERK1/2 and PI3K/Akt signaling in endometrial stromal
cell chemotaxis.

Both epidermal growth factor (EGF) and platelet-derived growth factor
(PDGF) participate in implantation in the first days of gestation.

Szmidt et al. (42)
Liu et al. (58)

Zheng et al. (59)
Horita et al. (60)

Vigano et al. (61)
Hambartsoumian, 1998.
(©2)

Fouladi-Nashta et al. (63)
Cork et al. (55)

Marwood et al. (64)

von Rango et al. (65)

Manaster et al. (15)
Kopcow and Karumanchi,
2007. (66)

Joshi et al. (67)

Yang et al. (14)

Ai et al. (68)

Wang et al. (69)
Moghani-Ghoroghi et al.
(70)

Achache and Revel, 2006.
(71)

Foulk et al. (72)

Yang et al. (73)

Luetal. (74)

Carlomagno et al. (75)
Voiculescu et al. (76)
Gimeno et al. (77)

Xiong et al. (78)

Xiong et al. (79)
Schwenke et al. (80)
Jaber and Kan, 1998. (81)
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TABLE 2 | Continued

Effects

Soluble molecule

Biological process

Steroid hormones and related molecules

Author

Immune tolerance

Platelet-derived growth
factor (PDGF-AA)

Tissue inhibitor of
MMP (TIMP)
Heparin-binding
epidermal growth
factor (HB-EGF)

Lipoxins

Complement
components and their
receptors (C1q, gC1q,
a4B1 integrin)

Protein O-
fructosyltransferase 1
(poFUTT)

Matrix
metalloproteinase
(MMP-2) -2

Gonadotropin-
releasing hormone
type Il (GnRH-II)
agonist

Human leukocyte
antigen G (HLA-G)

Soluble MHC class |
(SMHC-I)

Soluble MHC class I
(SMHC-II)

Secreted by the trophoblast cell line AC-1M88 and by first
trimester villous explants. Trigger endometrial stromal cell
chemotaxis.

Endogenous inhibitor of MMP activity in tissues.

HB-EGF has a function in implantation, decidualization and
placenta development. Promotes differentiation of trophoblast
cells to the invasive phenotype. Stimulates the migration of
decidualized endometrial stromal cells.

These are derived from arachidonic acid, an w-6 fatty acid.
They exert their anti-inflammatory

effects through binding to high-affinity

G protein-coupled lipoxin receptors.

It is produced at the fetal-maternal interface by macrophages,
decidual endothelial cells and invading trophoblasts.

Favors trophoblast cell migration and invasion at the fetal-
maternal interface.

Implicated in the remodeling of the extracellular matrix (ECM)
during the trophoblast invasion process.

Promotes cell motility of human decidual endometrial stromal
cells through the GnRH-IR by phosphorylation of ERK1/2 and
JNK in decidual endometrial stromal cells.

Promotes proliferation and cytokine production by uNK cells.

SMHC-I induces apoptosis by stimulating expression of CD95-
L and regulates the Fas/FasL system.

It has important immunoregulatory properties, stimulates
proliferation of CD25— CD4+, CD25+ CD8+ and CD25+ CD4
+ cell, as well as inhibits CD25- CD8+ cells.

Participates in attracting decidualized endometrial stromal cells to the

implantation site.

Modulates early post-implantation.

Inhibits trophoblast invasion. Decidual cell production. TIMP-2
attenuates the proteolysis of IGFBP-1 by MMP-3.

Endometrial stromal cells with HB-EGF increase the level of the

tetraspanin CD82, a metastasis suppressor found in decidual cells at

the implantation site. A decreased level of HB-EGF is related to
pregnancy complications.

Lipoxins, calcitonin, leukaemia inhibitory factor, and homeobox A10 are

essential in implantation.

Lipoxin A4 is regulated by human chorionic gonadotrophin (hCG)
during early pregnancy and it has anti-inflammatory activity in human

endometrium and decidua tissue.
Synthesis of C1q by decidual endothelial cells is crucial for the

replacement by endovascular trophoblasts. Surfactant proteins SP-A
and SP-D play a role in implantation, trophoblast invasion and placental

development.

Increases Tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1,
TIMP-2) expression further inhibited MMP-2 activity. Activates MAPK

and PI3K/Akt signaling pathways.
Synthesis and degradation of the extracellular matrix under

physiological and pathological conditions. It is capable of degrading
collagen. During the implantation process, matrix metalloproteinase
(MMP)/insulin-like growth factor binding protein-1 (IGFBP-1) activity is
stimulated by leukaemia inhibitory factor (LIF) and colony-stimulating

factor (CSF).
Increased expression and proteolytic activity of matrix
metalloproteinase-2 and -9 (MMP-2, MMP-9) is due to GnRH-II

Secretion of growth-promoting factors essential for fetal development

by uNK cells. Levels of sHLA-G > 2 U/ml in embryos which were

selected for transfer after IVF based on culture media gave a 65%
pregnancy rate compared with low levels of sHLA-G. The HLA-G -725
promoter polymorphism has a high risk for recurrent miscarriage.

sHLAs downregulates T-cell responses.

sMHC-II decreases IL-2, increases IL-10, and inhibits phosphorylation
of ZAP-70, particularly LAT proteins in the pathways of TCR signaling in

CD4+ cells.

Schwenke et al. (80)
Haimovici and Anderson,
1993. (82)

Liu et al. (58)

Coppock et al. (83)
Schwenke et al. (80)
Gonzélez et al. (84)
Ozbilgin et al. (85)

Xiong et al. (79)
Macdonald et al. (86)

Agostinis et al. (87)
Madhukran et al. (88)

Liu et al. (58)
Liu et al. (89)

Liu et al. (58)
Ortega et al. (90)
Herrler et al. (91)

Wu et al. (92)

Sojka et al. (12)
Roussev and Coulam, (93)

Bakela and Athanassakis,
94

Zavazava and Kronke,
1996. (95)

Bakela and Athanassakis,
2018. (95)

Athanassakis and
Vassiliadis, 2003. (96)
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Steroid hormones and related molecules
Suppresses the production of TNFo and IL-1B. Controls the production  Schumacher et al. (44)

of HLA-G and the la antigen, it stimulates the growth of trophoblasts

participates in immune tolerance in pregnancy by suppressing the
containing paternal H2 antigens.

CD16/56 expression by NK-cells and enhancing the CD16/56

expression by NKT-cells.
AFP is capable of driving B cells into apoptosis to avoid maternal B

differentiation of FoxP3+ regulatory T-cells from naive T-cells. PSG
cells in order to reach the foetus.

Induces the secretion of TGF-B1 from macrophages. Induces the

Inhibits macrophage expression of la antigens.

relationships during the first trimester and helps to protect the

It is released by trophoblasts during pregnancy. Acts as a fetal
foetus against attacks by the maternal immune system.

Biological process
Binds to the 250-residue latency-associated peptide (LAP)
transport protein. Influences fetal-maternal immunologic

and activates the latent form of TGF-B1.

Soluble molecule
beta-1-glycoprotein 9
Alpha-fetoprotein (AFP)

Pregnancy specific
(PSG9)

TABLE 2 | Continued

Effects

Mellor et al. (102)

IDO activity promotes tolerance due to the conversion of mature

IDO is involved in tolerance

Indoleamine-2,3-
dioxygenase
(IDO)

Mellor et al. (103)

dendritic cells (DCs) into tolerogenic antigen-presenting cells (APCs)
that suppress effector T cells (Teff) and promote regulatory T cells

(Tregs).

Kang et al. (104)

Factors which are expressed by Human amniotic membrane-derived
mesenchymal stem cells (hAM-MSCs) including hepatocyte growth

factor (HGF), TGF-B, prostaglandin E2 (PGE2), and indoleamine 2,3

dioxygenase (IDO) have immunomodulatory effects.

PIF promotes immunological tolerance due to increasing the expression Hakam et al. (105)

of HLA-G, -C, -E, and -F slightly. It also potentiates the effect of the
endogenous steroid and promotes the secretion of Th1/Th2 cytokines.

It is a fifteen amino acid linear peptide secreted by embryos
two-cell, four-cell and six-cell stages in mice, in humans and

bovines, respectively

Preimplantation Factor

(PIF)

Zare et al. (106)

transcellular biosynthesis of eicosanoids by acetylation of PGHS-
2. Eicosanoids correspond to 15R-epimers of lipoxins (ATL) and
are potent inhibitors of leukotriene B4-mediated neutrophils
(140). Considering that preeclampsia is associated with
increased proinflammatory, antiangiogenic and PMN-
endothelial cell adhesion, Gil-Villa et al. (141) shows that PMN
adhesion in patients with preeclampsia is reduced by Aspirin-
triggered lipoxin (ATL) when aspirin is used.

5. Natural killer and innate lymphoid cells (ILC). According to the
cytokine profile and transcription factor, ILCs are divided into
two groups, cytotoxic and “helper”-ILC (17). The cytotoxic ILC
group is represented by Natural Killer (NK). The “helper”-ILC
in humans has three subclasses, ILC1 with two subsets,
producing IENy; ILC2 produces IL-5, IL-13, and IL-4; and
ILC3 releases IL-17 and IL-22. The NK cells in a decidua
(dNK) microenvironment are around 50% to 70% of the total
of lymphoid cells in decidual tissue. They have CD56"™
CD16 KIR" CD9" and activate the NK receptor phenotype,
participate with cytokines, which mediate new vessel formation,
aid in the renovation of existing tissues and placentation
through the release of VEGF, stromal-derived factor-1 (SDF-
1) and IFN-y-inducing protein 10 (9). In stromal tissue, the
decidual stromal cells (DSCs) participate in the induction of
maternal tolerance, physically concur and have a regulatory
mechanism in dNK, and CD14" myelomonocytic cells, and
induce regulatory Treg. Also, DSCs inhibit dendritic cells
through prostaglandin E2 (PGE2) and Indoleamine 2,3-
dioxygenase (IDO), this inhibition favors the maintenance of
the pregnancy (18).

In the normal eutopic endometrium, the M2 together with the
Tregs predominate, providing an anti-inflammatory environment
for the implantation of the embryo, while in endometriosis, they can
cause infertility. The Mol provide a pro-inflammatory environment
which affects embryo implantation, the dendritic cells (DC) do not
increase in endometrial tissue, also the Treg is dysregulated.
Therefore, DC does not eliminate the cellular debris which could
migrate to the peritoneal cavity and grow in ectopic sites, developing
as endometriosis. On the other hand, Treg and NK have abnormal
behavior, the first favors a pro-inflammatory state and the second is
less cytotoxic which impacts embryo implantation (142). COX2 and
PGE2 are related to the pathogenesis of endometriosis. A high level of
COX-2 due to various factors such as estrogens, hypoxia and
environmental pollutants could suppress apoptosis and increase
cell proliferation through PGE2 and its receptors EP2, and EP4 in
endometriosis (143). In addition, experimental studies with
intralesional injections of ASA, in rabbits with peritoneal
endometriosis, eliminate endometriotic lesions (144).

PROSTAGLANDINS IN IMPLANTATION
AND MAINTENANCE OF GESTATION

The generation of prostaglandins and expression of receptors in a
mouse uterus has demonstrated their importance during
implantation and decidualization (145). In mice, PGE2 levels
increase from the 2-cell embryo stage to the blastocyst,
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demonstrating the importance of PGE2 in early development
(112). PGE2 also plays a significant role in peri-implantation in a
mouse uterus through the expression of EP2 and EP4 receptors,
which increase cAMP levels during the implantation and
decidualization processes. EP4 induces the activation of VEGF
(growth factor vascular endothelial), increasing vascular
permeability of the endometrium (146), implantation and
decidualization, together with PGF2 (132).

Inadequate production of prostaglandins in mice, and
possibly in humans, may explain some cases of infertility
(147). Low concentrations of PGE2, PGF and PGI2 cause
failure in ovulation, fertilization, implantation, and
decidualization (133). In mice, prostacyclin (PGI2) is the
primary prostaglandin at the implantation site. It participates
in implantation and decidualization through the peroxisome
proliferator-activated receptor (PPAR-§) and the RXRo
signaling pathway in the uterus (148).

As an example, PGF2a. is used in fertilization procedures, in
addition to GnRH, to pre-synchronize ovulation before applying
for a resynchronization program in cows in dairy herds with
acceptable pregnancy outcomes (149).

PROSTAGLANDINS IN MATERNAL
IMMUNE TOLERANCE

When intercourse occurs, endothelial cells release IL-8, IL-1,
INF-0, and TNF-o to recruit immune cells (150). Neutrophils
are mobilized in the oviduct in female mammals in response to
the presence of sperm (151). This process may also induce a state
of unresponsiveness by the presence of anti-inflammatory
cytokines, such as IL-4, IL-10, IL-13, and TGF-f (152) Figure 1.

In order to prevent a compromised systemic maternal
immune response, local immune regulation in the fetal-
maternal interface is very important. This is achieved by
several mechanisms. One of these is local immunoregulation
at the fetal-maternal interface, e.g., Human amniotic
membrane-derived mesenchymal stem cells (hAM-MSCs)
release factors such as indoleamine 2,3 dioxygenase (IDO),
TGF-B, prostaglandin E2 (PGE2), and others inducing
immunomodulatory effects (153).

PGs release or regulate different kinds of cells, such as Tolerogenic
dendritic cells (tol-DCs), M1 and M2 macrophages, Decidual NK
cells (dNK) (CD56°8"CD167), Decidual stromal cells (DSCs),
Endometrial stromal cells, Tregs (CD4"CD25"FOXP3"), and
Decidual CD8"EM cells (CD45RA™CCR7") (Table 1).

Prostaglandin E (PGE), specifically, induces T-helper type 3
(Th3) and T-regulatory 1 cells (Tr1), as shown by Lewis" rat and
mouse test (154, 155). PGE2 secretion by human deciduous cells
in the first trimester of pregnancy blocks the activation of
maternal leukocytes in the decidua and inhibits IL-2
production and its receptor (156).

Other cells assisting in the decidualization of endometrial
stromal cells (ESCs) and pregnancy maintenance are decidual
natural killer (dNK) cells (157) and CD14" cells for Treg
induction and immunosuppression (158). Also, Treg and Breg

may contribute to the regulation of type 1 and 2-like T helper
anti-fetal immune mechanisms during human pregnancy (159)
(Table 1).

PLATELETS

It is evident that platelets may be important in tolerance
mechanisms. Platelet activity is inhibited post-coitus, and this
inhibition depends on prostaglandins (160). Seminal fluid has
factors that favor clot formation, similar to peripheral blood, such
as Factor VIII: Ag, FVIIL: C and Von Willebrand factor (vWF), in
addition to other factors (161). vVWF (162), fibronectin (163), and
vitronectin (164) are proteins that favor platelet adhesion (165).
This implies that inhibition of platelet aggregation by PGI2 could be
a compensatory mechanism for pro-adhesive molecules.

Using a mouse model, Etulain et al. (166) found that platelets act
through P-selectin glycoprotein ligand-1 (PSGL-1), and directly
affect neutrophil extracellular traps (NETosis). Platelet P-selectin is
crucial for neutrophil recruitment (167). Furthermore, NETs cause
the recruitment and activation of platelets and induce procoagulant
activity due to the expression of histones H3 and H4, toll-like
receptor 2 (TLR2) and TLR4 platelets. NET's present a surface for
the activation of coagulation factor XII (168) in order to promote
thrombosis as a mechanism of rejection (169).

Platelets cause a decrease in the formation of extracellular traps
when preincubated with PGI2, followed by stimulation with
lipopolysaccharide (LPS), arachidonic acid, and a synthetic
diacylated lipopeptide (Pam3SCK4). This highlights the
physiological role of PGI2 in platelet modulation (170).
Prostaglandins may also inhibit the function of neutrophils by
increasing levels of cyclic adenosine monophosphate (cAMP) (171).

The interaction of PMN-platelets releases products of
arachidonic acid serving as precursors of neutrophil eicosanoids
(172).In polymorphonuclear neutrophils (PMN), PGE2 modulates
their response through the expression of EP2 and EP4
receptors (173).

In addition, other mechanisms of maternal immune tolerance are
mediated by placental trophoblast derived microvesicles (MVs) and
maternal thrombocyte-derived MVs. These bind to circulating
peripheral T lymphocytes through P-selectin (CD62P)-PSGL-1
(CD162) interaction induces STAT3 phosphorylation in T cells (174).

The above mentioned may explain why platelet aggregation is
inhibited post-intercourse and has a possible reduction in the
formation of NETSs to protect the embryo. It is possible that the
release of extracellular traps may contribute to trophoblast lesions.

Many other cells mentioned above participate through high
complexity fetal-maternal interface interaction to induce a
tolerance stage, which protects the embryo (175).

POLYMORPHONUCLEAR CELLS

In mammalian species, PMNs are implicated in endometrial
remodeling as being receptive to oocyte implantation. Human
neutrophils exposed to progesterone and estriol hormones
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FIGURE 1 | Schematic representation of the signaling in the maternal immune response that begins with the deposition of seminal fluid in the female reproductive
tract during intercourse. The seminal fluid start an immune signaling pathways mediated by PGE2 and PGI2 in the functions of endothelial cells, platelets, neutrophils,
ILC2, lymphocytes, macrophages, natural killer, dendritic cells and monocytes during oocyte fertilization and early implantation. In addition, the molecules released by
these cells like interleukins, HCG, IDO, and LXA4 have a fundamental role in this tolerance process. PGE2, prostaglandin E2; PG12, prostaglandin 12; PGF2,
prostaglandin F2; TGFp, transforming growth factor beta; IL-1, interleukin-1; IL-2, interleukin-2; IL-4, interleukin-4; IL-5, interleukin-5; IL-8, interleukin-8; IL-10,
interleukin-10; IL-13, interleukin-13; TNF-a., tumor necrosis factor-alpha; INF-a,, interferon alpha; Ca+, calcio; cAMP, cyclic adenosine monophosphate; NET's,
neutrophil extracellular traps; IDO, indoleamine-2,3-dioxygenase; DCs, mature dendritic cells; APCs, tolerogenic antigen presenting cells; Treg, regulatory T cells; Teff,
effector T cells; GATA-3, GATA-3 transcription factor; EP2, prostaglandin E2 receptor 2; EP4, prostaglandin E2 receptor 4; ILC2, group 2 innate lymphoid cells;

Breg, regulatory B cells; HCG, human chorionic gonadotropin; LXA4, Lipoxin A4.

promote the establishment of maternal tolerance through the
induction of CD4+ T cells (176).

In humans, during coitus, sperm is deposited into the female
reproductive tract (FRT). Neutrophils are then recruited for the
elimination of excess sperm through phagocytosis (177).

However, bovine seminal plasma is shown to reduce the ability of
PMNs to phagocytize bull sperm. Furthermore, equine seminal plasma
is reported to contain factors that reduce the binding of neutrophils to
sperm, avoiding the formation of NETs (178). In humans, when
granulocytes are exposed to the seminal plasma, the respiratory burst is
inhibited (179). These mechanisms allow more of the healthy motile
sperm to reach the oviduct, which makes it clear that seminal plasma
contains factors that modulate the response of PMN.

In addition, PGE2 can exert anti-inflammatory action on
neutrophils and other innate immune cells such as macrophages,
natural killer cells, dendritic cells, and monocytes (180, 181). Also, it
inhibits the production of IFN-oin plasmacytoid dendritic cellsand
the production of IL-12 in myeloid dendritic cells.

Finally, polymorphonuclear leukocytes contribute to preterm
labor by activating prostaglandin production from human fetal
membranes (182).

GROUP 2 INNATE LYMPHOID CELLS

Specific ILC2s (Group 2 innate lymphoid cells) and uterine innate
lymphoid cells (uILCs, uILC1, uILC2, and uILC3) (183) in the
uterus are regulated by PGD2, PGE2, PGI2, and sex hormones, in
particular, oestrogen (151, 184). Together, these may play a role in
the balance between immunity and tolerance at the beginning of
placenta formation and could be related to pregnancy loss, as shown
in mice (185). Some studies show that ILC2 is the most abundant
subset in the human fetal-maternal interface during premature and
full-term pregnancies, in which its presence is regulated by sex
hormones (e.g., oestrogen) (186). PGI2 decreases the proliferation
of ILC2 and significantly inhibits the expression of IL-5 and IL-13
induced by IL-33 (187).

The production of PGE2 could also suppress the function of
neutrophils and ulLCs, a particular cell, similar to ILC2, through its
EP2 and EP4 receptors in both healthy humans and mouse models
(188, 189). PGE2 inhibits the expression of GATA-3, as well as the
production of type 2 cytokines (IL-5 and IL-13) (144). These effects
are mediated by the action of the EP2 and EP4 prostanoid receptors,
which are specifically expressed in ILC2 (151, 190).
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In addition, Group 1ILCs, uNK cells, and uILC3s significantly
increase in abortion in mice. They also have a lower proportion
of uILC2s (183).

DISCUSSION

Of the hundreds of molecules released with cells in the
preimplantation, implantation, and decidualization processes;
prostaglandins are integrated into each of these stages by
seminal fluid, even until parturition. In particular, some of these
molecules are found to be related to infertility and abortions, such
as PGE2, PGF, and PGI2, which, in turn, are related to ovulation,
fertilization, implantation, and decidualization (133). Increased
levels of IL6 are also related to unexplained infertility, recurrent
miscarriage, and pre-eclampsia among other disorders (9), e.g., in
humans, cases of placental insufficiency, manifesting as
intrauterine fetal growth restriction, are observed where the level
of melatonin, a molecule with pleiotropic effects that regulates
inflammatory processes (191), is decreased (192). Melatonin
inhibits prostaglandin synthesis and is a potent inducer of
uterine contractility (54, 193), in addition, there is evidence that
in fish, melatonin is produced in the granulosa cells and is a critical
factor for ovulation (194). Likewise, in women, it increases
progesterone and regulates the corpus luteum (195). Also in a
recent clinical trial, melatonin is shown to improve intrafollicular
oxidative balance and gives a slight increase in the rate of human
live births (196). Another example is Polish landrace gilts treated
with pregnant mare serum gonadotropin (PMSG) and human
chorionic gonadotropin (hCG) (PMSG/hCG-induced). Treatment
with exogenous progesterone increases pregnancy success through
the expression of genes responsible for vascular function and
PGE2 synthesis (197). Therefore, the administration of inhibitors
of prostaglandin synthesis, e.g., PGE2, must be carefully
considered due to the multiple mechanisms of female fertility in
which they participate (111).

Also, the mechanism of control over the rate of gene
transcription or transcriptional regulation is altered in genes
involved in chronic endometritis and the inflammatory response
(IL-11, CCL4), growth factors (IGFBP1), and apoptotic proteins
(BCL2, BAX, CASP8) in infertile patients (198).

Another mechanism of transcriptional regulation is that of
Uterine Vascular Endothelial Growth Factor (UVEGF), in which
PGE2 regulates vascular development through receptors EP2
and EP4.
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CONCLUSIONS

To maintain fetal-maternal tolerance in the process of
implantation (apposition/adhesion/invasion), a whole network of
cells and molecules regulate different factors and responses
according to the stage of pregnancy. Among the most highly
studied cells and molecules are tolerogenic dendritic cells (tol-
DCs), M1 and M2 macrophages, Decidual NK cells (dNK)
(CD56brightCD16"), Decidual stromal cells (DSCs), Endometrial
stromal cells, Tregs (CD4" CD25" FOXP3") and Decidual CD8"
EM cells (CD45RA™ CCR7"), progesterone, oestrogen, Leukaemia
inhibitory factor (LIF), Indoleamine-2,3-dioxygenase (IDO), and
melatonin. Within this complex network, prostaglandins,
specifically, PGD2, PGF20,, and PGE2, are important modulators
and regulators in maintaining maternal-fetal tolerance, as we
deduced. Nevertheless, other cells such as platelets, ulLCs, and
polymorphonuclear leukocyte/Nets require more research.
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