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Recent study in our laboratory has demonstrated that BEFV-induced autophagy via
activation of the PI3K/Akt/NF-kB and Src/JNK pathways and suppression of the PI3K-
AKt-mTORC1 pathway is beneficial for virus replication. In the current study, we found
that both aspirin and 5-aminoimidazole-4-carboxamide-1-b-riboside (AICAR) siginificantly
attenuated virus replication by inhibiting BEFV-induced autophagy via suppressing the
BEFV-activated PI3K/Akt/NF-kB and Src/JNK pathways as well as inducing reversion of
the BEFV-suppressed PI3K-Akt-mTORC1 pathway. AICAR reversed the BEFV-activated
PI3K/Akt/NF-kB and Src/JNK pathways at the early to late stages of infection and
induced reversion of the BEFV-suppressed PI3K-AKt-mTORC1 pathway at the late stage
of infection. Our findings reveal that inhibition of BEFV-induced autophagy by AICAR is
independent of AMPK. Furthermore, we found that AICAR transcriptionally downregulates
the ATG related genes ULK1, Beclin 1, and LC3 and enhances Atg7 degradation by the
proteasome pathway. Aspirin suppresses virus replication by inhibiting BEFV-induced
autophagy. It directly suppressed the NF-kB pathway and reversed the BEFV-activated
Src/JNK pathway at the early stage of infection and reversed the BEFV-suppressed PI3K/
Akt/mTOR pathway at the late stage of infection. The current study provides mechanistic
insights into the effects of aspirin and AICAR on BEFV replication through suppression of
BEFV-induced autophagy.
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INTRODUCTION

Bovine ephemeral fever (BEF) is an acute febrile illness of cattle
and water buffalo. Clinically, it is characterized by sudden onset
of fever, stiffness, depression, nasal discharges, joint pain, and
lameness in three days (1). Although the mortality rate is low,
there are serious economic impacts including loss of milk
production in widespread regions of Africa, the Middle East,
Asia, and Australia (2). To date, treatment of BEF is mainly
supportive and symptomatic. BEFV is a negative, single stranded
RNA virus belonging to the rhabdovirus family in the order of
Mononegavirales. BEFV virions are cone shaped (3), composed
of a single-stranded, negative-sense RNA genome with a lipid
envelope and five structural proteins, (L, P, G, N, andM) (4). The
matrix (M) protein of BEFV is a nucleocytoplasmic shuttling
protein (5) and is essential for virus maturation, budding, and
regulation of the expression of viral and host proteins (6). It also
plays an important role in inducing autophagy during BEFV
infection (7). The PI3K/Akt signaling pathway and its
downstream target, the mammalian target of rapamycin
(mTOR), are involved in the regulation of diverse cellular
functions. Many viruses target and hijack this pathway for host
cell entry or viral protein translation (8, 9), especially for RNA
synthesis of non-segmented, negative-stranded RNA viruses (9).
An earlier study has shown that inhibition of PI3K and mTOR
has positive effects on BEFV replication (10). Cell entry of BEFV
follows a clathrin-mediated and dynamin 2-dependent
endocytosis pathway that requires Rab5 and Rab7 as well as
microtubules (11). In addition, upregulation of the PI3K-Akt-
NF-kB and Src-JNK-AP1 pathways by BEFV are essential not
only for cell entry (12) but also trigger autophagy for virus
replication (7). During cell entry, BEFV also triggers
cyclooxygenase-2 (Cox-2)-catalyzed prostaglandin E2 (PGE2)
synthesis and induces expressions of G-protein-coupled E-
prostanoid (EP) receptors 2 and 4, leading to amplification of
these pathways (12). Aspirin, acetylsalicylic acid, is one of the
commonly used non-steroidal anti-inflammatory drugs
(NSAID) for analgesic, antipyretic, and anti-inflammatory
therapy. It causes an irreversible inactivation of Cox-1 and
Cox-2 and sequentially inhibits the formation of PGE2, thus
reducing the inflammation reaction (13). This infers an
inhibitory role of aspirin to BEFV.

Autophagy can be induced by interplays between AMP-
activated protein kinase (AMPK), mTOR, and Unc-51 like
autophagy activating kinase (ULK 1/2) (14). It was reported
that mTOR serves as a main gate way to autophagy under amino
acid stimulation (15). mTOR complex 1 (mTORC1) is a
repressor of autophagy under nutrient sufficiency conditions
(16). In energy critical situations, AMPK induces autophagy by
activating ULK 1/2 and by suppressing mTORC1 through
activating tuberous sclerosis complex 2 (TSC2) or inhibiting
the regulatory-associated protein of mTOR (raptor) (17, 18). Our
recent study has shown that BEFV induces autophagy by
suppression of mTORC1 (7). It is interesting to examine if
AMPK is involved in BEFV-induced autophagy. AMPK can be
activated indirectly by a modulator that causes AMP or calcium
accumulation or directly binds to and activates AMPK by
Frontiers in Immunology | www.frontiersin.org 2
conformational changes (19). 5-aminoimidazole-4-carboxamide
riboside (AICAR) is a common AMPK activator; it is
metabolized to AICAR 5’-monophosphate (ZMP) to bind to the
AMPKg subunit without changing the ADP : ATP ratio or altering
oxygen uptake (20). Interestingly, our findings reveal that AICAR
inhibits BEFV-induced autophagy in an AMPK-independent
mechanism. Collectivelly, the study provides mechanistic
insights into aspirin- and AICAR-modulated inhibition of
BEFV-induced autophagy via suppressing the BEFV-activated
PI3K/Akt/NF-kBand Src/JNK pathways as well as reversion of
BEFV-inactivated PI3K/Akt/mTORC1, thereby inhibiting
virus replication.
MATERIALS AND METHODS

Virus Titration
Madin-Darby bovine kidney (MDBK) cells were infected with
BEFV for 24 h. The supernatant containing BEFV particles was
collected and serially diluted with serum-free DMEM. Each serial
diluted virus solution (200 ml) was seeded in a 24-well-plate to
incubate with the MDBK cells for 1 h. Unabsorbed viruses were
removed by washing the cells with phosphate buffered saline
(PBS). Then, the cells were overlaid with DMEM containing 2%
FBS and 0.6 ml of 0.8% agarose. After incubation at 37°C for 2 to
3 days. BEFV formed plaques staining by neutral red for 3 h
were counted.

Cells and Viruses
MDBK cells were cultured in Dulbecco’s modified eagle medium
(DMEM) supplemented with 10% fetal bovine serum (FBS).
(1x106) cells were seeded in 6-cm cell culture dishes one day
before initiating the experiment and were incubated at 37 °C with
5% CO2. The 2004/TW/TN1 strain of BEFV was propagated in
MDBK cells. The supernatants of BEFV-infected cells were
harvested when 70%–80% cytopathic effect (CPE) was
detected, and then concentrated by Polyethylene glycol (PEG)
6000 precipitation. The harvested BEF viruses were dialysed and
resuspended in phosphate-buffered saline (PBS), then stored at
-70°C before use.

Chemical Inhibitors and Reagents
5-aminoimidazole-4-carboxamide-1-b-riboside (AICAR) and
Furancarboxylic acid were purchased from Calbiochem Co.
(San Diego, USA). Aspirin, indomethacin, MG132, and NS-398
(Cox-2 specific inhibitor) were purchased from Sigma-Aldrich
Co. Prostaglandin E2 (PGE2) EIA kit was purchased from
Cayman Chemical Co. (Ann Arbor, USA).

Antibodies
The catalog numbers and dilution factor of the primary
antibodies antibodies used in this study are shown in Table 1.
Polyclonal antibodies against the BEFV M protein are from our
laboratory stock. Anti-rabbit IgG (H + L) and anti-mouse IgG
(H + L) antibodies were purchased from Kirkegaard & Perry
Laboratories (Washington, DC., USA).
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shRNAs
The shRNAs were constructed using the pGFP-V-RS (TR30007)
plasmid from OriGene Co. (Rockville, USA). Based on the results
of prelimninary tests, the shRNAs exhibiting the most significant
suppression effect to the target gene expression were used in this
study. Sequences for shRNAs are as follows: AMPK: CTCCAAG
ACCAGGAAGTCATACAATAGAA(Cat no: TG505729; Tube
ID: GI 505440), EP2: AACTTCCTGTTCTACACAGTCAGA
TGCCA(Cat no: TG516357; Tube ID: GI340313), EP4:
TGGTGCTTCATCGACTGGACCACCAACGT(Cat no:
TG516511; Tube ID: GI340311). TurboFect™ in vitro
transfection reagent (Thermo Fisher Scientific, Waltham, USA)
was used for transfection. After 24 h post transfection, cells were
infected with BEFV at a multiplicity of infection (MOI) of 1 for
further research purposes.

Cell Viability Assay
Cell viability was determined using the MTT assay to examine
for the deleterious effects on cells by the compounds used in this
Frontiers in Immunology | www.frontiersin.org 3
study. MDBK cells were seeded in 4-well plates, grown for 1 day
until about 60% confluence, and then treated with the
compounds for 24 h. Cells were swirled gently for a few
seconds after 50 ml of thiazolyl blue tetrazolium bromide
(MTT; Sigma-Aldrich) was added to each well, and then
cultured for 3 h. After removing the medium, the cells were
washed with PBS twice. 50 ml of supernatant was evaluated at 570
nm for optical density, with subtraction of background at
670 nm.

Determination of Virus Titer
To explore whether aspirin and AICAR inhibit viral growth,
MDBK cells were pretreated with or without aspirin (5 mM) or
AICAR (1 mM), respectively, for 30 min and then infected with
BEFV at an MOI of 1 for 18 h. The effect of aspirin and AICAR
on BEFV production was determined by virus titer. Virus titer
was determined as described previously (7). Briefly, BEFV-
infected MDBK cell supernatant was collected for determining
virus titer by an agar overlay plaque assay carried out in
triplicate. Cells in 6-cm cell culture dishes were incubated for
1 h with diluted virus in 100 ml serum-free MEM. The cells were
then washed twice with MEM to remove unabsorbed viruses and
overlaid with 2 ml of 1% agarose in MEMwhich contains 5% FBS
and antibiotics. Plaques were checked after an incubation period
of 2 days at 37°C by staining with neutral red for 3h.

Real-Time Quantitative Reverse Transcription
and Polymerase Chain Reaction (qRT-PCR)
To investigate whether aspirin and AICAR influence the
transcription of the BEFV M gene as well as ATG-related
genes of ULK1, Atg7, and LC3, MDCK cells were either drugs-
treated or infected with BEFV at an MOI of 1. All cultures were
collected and lysed at 18 h post infection (hpi). Total RNA was
isolated from drug-treated or virus-infected cells using Trizol
and Rneasy Mini Kit (QIAGEN) according to the manufacturer’s
protocols. Total RNAs were then subjected to a real-time qRT-
PCR as described previously (21). To obtain cDNAs from the
RNA samples, reverse transcription was carried out at 42°C for
60 min with 2 mg of total RNA, 4 ml of 2.5 mM dNTP, 500 ng of
oligo dT, 5 ml of 5X RT buffer, and 1 ml of M‐MLV reverse
transcriptase (200 U/ml) (Promega, Fitchburg, USA), and
nuclease‐free water in a total volume of 25 ml. Target cDNAs
were further amplified with iQ™ SYBR Green Supermix (Bio-
Rad, Hercules, USA) with primers listed in Table 2. The
reactions contained 0.25 mg total cDNA, 0.5 ml forward and
reverse primers (0.5 mM) each, 10 ml of iQ™ SYBR Green
Supermix, reagent and PCR grade water to a final volume of
20 ml. The PCR amplification programm was 95°C for 3 min, 35
cycles of 95°C for 15 s, and 56°C for 1 min. Relative quantitation
results were analysed with the CFX connect model of real time
PCR detection system (Bio-Rad). The glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) gene was used as an
internal control for normalization.

PGE2 Assay
MDBK cells were infected with BEFV at an MOI of 1 and
cultured for 18 h. The medium was harvested, and the PGE2
TABLE 1 | The catalog numbers and dilution factor of the respective antibodies
used in this study.

Antibodies Catalog
numbers

Clone
name

Dilutionfactor Manufacture

Mouse anti-M – – 2000 Our laboratory
Rabbit anti-p-mTOR
(S2448)

2971 ND 1500 Cell Signaling

Rabbit anti-mTOR 2983 7C10 3000 Cell Signaling
Rabbit anti-p-PI3K p85
(Y458)

4228 ND 2000 Cell Signaling

Rabbit anti-PI3K p85 4257 19H8 2000 Cell Signaling
Rabbit anti-p-Akt
(T308)

2965 C31E5E 3000 Cell Signaling

Rabbit anti-p-Akt
(S473)

3787 736E11 2000 Cell Signaling

Rabbit anti-Akt 2964 5B5 3000 Cell Signaling
Rabbit anti-Atg7 8558 D12B11 3000 Cell Signaling
Rabbit anti-Beclin 1 3495 D40C5 1500 Cell Signaling
Mouse anti-IkBa 4814 L35A5 3000 Cell Signaling
Rabbit anti-p65 4764 C22B4 2000 Cell Signaling
Rabbit anti-p50 3035 ND 2000 Cell Signaling
Rabbit anti-histone
H2A

2578 ND 2000 Cell Signaling

Mouse anti-p-Bcl-2
(S70)

O5-613 ND 1500 Upstate

Mouse anti-Bcl-2 15071 124 3000 Cell Signaling
Rabbit anti-p62 7695 D10E10 2000 Cell Signaling
Rabbit anti-p-Src
(Y416)

2113 100F9 1500 Cell Signaling

Mouse anti-Src 2110 L4A1 3000 Cell Signaling
Rabbit anti-p-SAPK/
JNK (T183/Y185)

9251 ND 2000 Cell Signaling

Rabbit anti-SAPK/JNK 9252 ND 3000 Cell Signaling
Rabbit anti-p-AMPK
(T172)

2531 ND 2000 Cell Signaling

Rabbit anti-AMPK 2532 ND 2000 Cell Signaling
Rabbit anti-LC3B 2775 ND 3000 Cell Signaling
Rabbit anti-Cox2 160107 ND 2000 Cayman

Chemical
Rabbit anti-EP2 ab167171 ND 2000 Abcam
Rabbit anti-EP4 sc-55596 C-4 1000 Santa Cruz
Mouse anti-b-actin sc-47778 C4 5000 Santa Cruz
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concentration in the culture medium of infected MDBK cells was
determined using the Prostaglandin E2 EIA Kit (Cayman
Chemical Co., Ann Arbor, USA).

Isolation of Cytoplasmic and Nuclear
Protein Fractions
Cellular protein fractions were extracted through serial buffers in
the CNM compartmental Protein Extraction Kit (Biochain Institute
Inc., Hayward, USA). Cells were suspended in ice-cold buffer C
then homogenized by passing through a syringe with a bent 26.5
gauge needle. The supernatant containing cytoplasmic proteins was
collected and placed in another tube after centrifugation at 15,000 g
at 4 °C for 20 min. Cold buffer Wwas added to wash the pellet then
removed after centrifugation at 15,000 g at 4°C for 20 min. The
pellet was resuspended with cold buffer, centrifuged at 15,000 xg at
4 °C for 20 min, and the supernatant containing nuclear proteins
was transferred to a clean tube.

Plasmid Construction
A pH-sensitive GFP-mCherry-LC3 reporter plasmid described
previously (7) was used to observe the maturation of
autolysosome from autophagosomes. GFP lost its fluorescence
under a low pH environment when autophagosomes fuse with
lysosomes to form autolysosomes. Thus, GFP-mCherry-LC3
could be a marker to detect autophagosome and autolysosomes.

Transient Transfection
For the transfection experiments, MDBK cells were seeded into
six-well plates. At about 75% confluence, cells were transfected
with the respective constructs using Turbofect reagent according
to the manufacturer’s instructions (Level Biotechnology Inc.,
New Taipei City, Taiwan).

Electrophoresis and Western Blot
Cells were lysed with Laemmli loading buffer (200 mM Tris, pH
6.8; 8% SDS, 10% b-mercaptoethanol, 40% glycerol, 0.04%
bromophenol blue) after washing with PBS twice. The cell
lysates were collected and boiled for 10 min. Samples were
separated on 10% or 15% sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and then
transferred to PVDF membranes. Protein expression was
detected by using specific primary antibodies and a secondary
antibody conjugated with horseradish peroxidase (HRP). The
membranes were washed with TBST buffer (50 mM Tris-HCl
Frontiers in Immunology | www.frontiersin.org 4
pH7.5, 150 mM NaCl, and 0.1% Tween 20), soaked with
enhanced chemiluminescence solution (ECL plus) (Amersham
Biosciences, Little Chalfont, Buckinghamshire, UK), and exposed
to X-ray film. Protein band intensity was calculated using the
program Photocapt (Vilber Lourmat, France). ImageJ was used
to quantify Western blots signals.

Immunofluorescence Staining
MDBK cells expressing GFP-mCherry-LC3 or GFP-LC3 proteins
described previously (7) were seeded on 18 x 18 mm coverslips
and cultured for 24 h. The medium was replaced to 2% FBS and
the chemical agent of desire for 30 min before BEFV infection.
Cells were infected with BEFV at an MOI of 1 and fixed with 4%
paraformaldehyde in PBS for 1 h at room temperature, followed
by soaking in PBS with 0.3% Triton X-100 for 10 min. After
washing with PBS, the cells were blocked with SuperBlock® T20
(PBS) blocking buffer (Thermo Fisher Scientific, Waltham, USA)
at 4°C for 30 min. Cell nuclei were stained with 4’, 6-diamidino-
2-phenylindole (DAPI) for 10 min in the dark, followed by
observation with a BX51 fluorescence microscope (Olympus,
Tokyo, Japan). The coverslips were washed with PBS three times
at room temperature and then mounted onto glass slides using
ibidi mounting medium (ibidi GmbH, Lochhamer Schlag,
Germany). The LC3 punta images were observed under
fluorescence microscopy and the montage was edited using
Adobe Photoshop CC.

Statistical Analysis
All data obtained in this study were evaluated for statistical
significance according to student t-test or the Duncan’s multiple
range test (DMRT) using SPSS software (version 20.0). P values that
were less than 0.05 were considered statistically significant (22).
RESULTS

Aspirin and AICAR Transcriptionally
Downregulate the BEFV M Gene
and Inhibit Virus Replication
As reported previously, we found that Cox-2 and PGE2 are
important in BEFV entry and subsequent replication (12). More
recently, we demonstrated that BEFV-induced autophagy
enhancing virus replication via upregulation of the Src/JNK/AP1
and PI3K/Akt/NF-kB pathways and suppression of the PI3K/Akt/
TABLE 2 | Primers used in this study for amplification of the respective targeted genes.

Gene Accession number Sequence (5′-3′) Location Expectedsize (bp)

BEFV M AF234533 F: GAGATGGTTACCCTTTTCAAGAAA GG
R: TCATGACTTAACTAAGTTAGTGAAACCATG

1–23
672–643

672

ULK1 NM_001205927 F: AAGGGCAGCGCCAGCGAGG
R: CGTCCGCCTGGTCCGTGA

2605–2623
3094–3077

490

ATG7 NM_001142967 F: ATGGCCTTTGAGGAACCTTT
R: ATGCCTCCCTTCTGGTTCTT

726–745
935–916

210

LC3B NM_001001169 F: ATGCCGTCCGAGAAAACCTT
R: TTACACAGATAATTTCATTCC

1–20
378–358

378

GAPDH NM-001034034 F: CAAGGTCATCCATGACAACTTTG
R: GTCCACCACCCTGTTGCTGTAG

477–499
972–951

496
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mTOR pathway (7). In this study, we further exploreed whether
aspirin and AICAR affect Cox-2 and the signaling pathways,
which are involved in virus entry and induction of autophagy.
The concentrations that produced a 50% inhibitory effect (IC50) of
aspirin and AICAR have been shown previously (23, 24). MDBK
cells were infected with BEFV at an MOI of 1 for 18 h with or
without pretreatment of two comcentions of aspirin and AICAR,
respectively. In this work,virus yield was significantly reduced in
aspirin- and AICAR-treated MDBK cells (Figure 1A), suggesting
that these drugs have a potential anti-viral ability. To examine
whether all compounds used in this study had the deleterious
effects on MDBK cells, cell viability was determined using the
MTT assay. As shown in Figure 1B, cell viability was slighly
reduced compared to the cases with mock treatments. Recently, we
have shown that the BEFV M protein is one of major protein that
is involved in BEFV-induced autophagy (7). Thus, the levels of the
BEFV M protein were also analyzed in aspirin- and AICAR-
treated MDBK cells. Our results reveal tha both aspirin and
Frontiers in Immunology | www.frontiersin.org 5
AICAR reduced the levels of BEFV M protein (Figure 1C).
Furthermore, in the presence of proteasome inhibitor MG132,
the decreased level of M protein was not reversed in aspirin- and
AICAR-treated MDBK cells (Figure 1D), suggesting that these
drugs reeduce the level of the BEFV M protein is independent of
the proteaseome pathway. To further examine whether aspirin or
AICAR transcriptionally downregulate the BEFV M, the M
mRNA levels in aspirin- and AICAR-treated MDBK cells were
examined. As shown in Figure 1E, the M mRNA levels in aspirin-
and AICAR-treated MDBK cells were reduced as comparsion to
those in untreated cells, suggesting that the BEFV M is
transcriptionally downregulated by aspirin and AICAR.

Cox-2 Is Essential for BEFV-Induced
Autophagy
We have shown previously that BEFV up-regulates the
expression of Cox-2 in a time-dependent manner (12). Cox-1
and Cox-2 are two isozymes of cyclooxygenase which are
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FIGURE 1 | Aspirin and 5-aminoimidazole-4-carboxamide-1-b-riboside (AICAR) inhibit viral growth. (A) Madin-Darby bovine kidney (MDBK) cells were pretreated
with or without aspirin (2.5 and 5 mM) or AICAR (0.5 and 1 mM), respectively, for 30 min and then infected with BEFV at an MOI of 1 for 18 h. The effect of aspirin
and AICAR on BEFV production was determined. Significance between the treatments was determined by Duncan’s Multiple Range Test (MDRT) using SPSS
software (Version 20.0). Means with common alphabets (a, b, c, d,e, f) denotes no significance at p <0.05. Each value represents mean ± SE of three independent
experiments. (B) To examine whether the compounds used in this study had the deleterious effects on cells, cell viability was determined using the MTT assay. Each
value represents mean ± SE of three independent experiments. (C, D) The levels of the BEFV M protein in aspirin- and AICAR-treated MDBK cells were examined
(C) in the presence or absence of proteasome inhibitor MG132 (D). The levels of indicated proteins in the BEFV-infected group were considered onefold. The
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in all Western blots were quantified with ImageJ software. All experiments were conducted in three independent experiments. (E) The BEFV M and GADPH mRNA
levels were quantified by real-time qRT-PCR in BEFV-infected MDBK cells in the presence or absence of indicated drugs. In real-time qRT-PCR amplification of the
M and GADPH genes, MDBK cells were infected with BEFV at an MOI of 1. The BEFV-infected cells were collected at either 24 hpi, and total RNAs were extracted
for real-time qRT-PCR. Significance between the treatments was determined by Duncan’s Multiple Range Test (MDRT) using SPSS software (Version 20.0). Means
with common alphabets (a, b) denotes no significance at p <0.05. Each value represents mean ± SE of three independent experiments.
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encoded by individual genes and exert functional differences
(25). It is interesting to study the roles of each after BEFV entry.
As illustrated in Figure 2A, the levels of Cox-2 and LC3-II
increased in BEFV-infected MDBK cells. Selective inhibition of
the activity of Cox-2 by NS398 (26) reduced the levels of the
BEFV M protein and LC3-II while the Cox-2 level increased
(Figure 2A). Our results were consistent with previous studies
that suggest NS-398 blocks Cox-2 activity but upregulates Cox-2
(27–29). Indomethacin is one of the NSAIDs, which non-
selectively inhibits cyclooxygenase activity but is more potent
against Cox-1 than Cox-2 (30). A concomitant decreased
expression level of Cox-2 by indomethacin was also reported
(31–33). Although an increased level of Cox-2 induced by BEFV
was notably reduced by indomethacin, the decrease in the levels
of the BEFV M protein and LC3-II were less pronounced as
compared to NS398 (Figure 2A). Collectively, our findings reveal
that inhibition of Cox-2 reduces the levels of the BEFVM protein
and LC3-II.

Suppression of BEFV-Induced Autophagy
by AICAR Is Independent of AMPK
AMPK is a serine-threonine kinase up-regulated by various
stimuli through sensing an elevated intracellular AMP/ATP
ratio. AMPK signaling is involved in multiple metabolic
reprogramming and cell growth as well as autophagy.
Accordingly, we investigated the role of AMPK in BEFV-
induced autophagy. The effect of AMPK on BEFV was
examined by measuring the expression level of the BEFV M
protein. As shown in Figure 2A, the increased levels of Cox-2
and LC3-II were seen in BEFV-infected MDBK cells. Activation
Frontiers in Immunology | www.frontiersin.org 6
of AMPK by an AMPK activator, furancarboxylic acid, increased
the phosphorylated forms of AMPK (p-AMPK) and Cox-2 level
in BEFV-infected cells (Figure 2A). Interestingly, elevated levels
of Cox-2 and LC3-II in BEFV-infected or furancarboxylic acid
pre-treated groups were not altered in AMPK-knockdown cells
(Figure 2B). Collectively, these data reveal that BEFV-induced
autophagy is not regulated by AMPK signaling. In contrast,
AICAR as an AMPK activator reduced the levels of BEFV M
protein, Cox-2, LC3-II in BEFV-infected cells, and AMPK-
knockdown cells (Figure 2B). Our finding suggests that
AICAR inhibits BEFV-induced autophagy through an AMPK-
independent mechanism.

Aspirin and AICAR-Mediated Inhibition of
BEFV-Activated Prostaglandin E2 (PGE2)
and G-Protein-Coupled E-Prostanoid
Receptors 2 (EP2)
Our earlier study has shown that BEFV activates the Src/JNK/
AP1 and PI3K/Akt/NF-kB pathways to induce Cox-2-mediated
production of intracellular PGE2 at the stage of virus entry (12).
PGE2 interacts with EP2 and EP4, further enhancing the Src/
JNK/AP1 and PI3K/Akt/NF-kB pathways in an autocrine or
paracrine fashion to increase virus entry (12). More recently, we
also found that BEFV triggers autophagy via activation of the
Src/JNK/AP1 pathway (7). The crosstalk between PGE2 and
autophagy induction and the potential role of EP-mediated
signaling in BEFV-induced autophagy were further investigated.
In this work, MDBK cells were infected with BEFV at an MOI of 1
for 18 h, with or without pretreatment of AICAR or aspirin,
respectively. As shown in Figure 3A, BEFV-induced accumulation
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FIGURE 2 | BEFV-induced autophagy requires Cox-2 and is AMPK-independent. (A) MDBK cells were pretreated either with Furancarboxylic acid, NS-398 (25 mM)
and indomethacin for 1 h followed by infection with BEFV at an MOI of 1 for 18 h. (B) MDBK cells were transfected with AMPK shRNA for 6 h, then with or without
pretreatment of Furancarboxylic acid or AICAR for 1 h, followed by infection with BEFV at an MOI of 1. The cell lysates were harvested at 18 hpi and subjected to
immunoblotting using antibodies as indicated. The levels of indicated proteins in the mock group were considered onefold. The activation and inactivation folds
indicated below each lane were normalized against values for the mock control group. Protein levels were normalized to those for b‐actin. Signals in all Western blots
were quantified with ImageJ software. All experiments were conducted in three independent experiments. The predicted size of each protein was labeled at the right-
hand side in kDa.
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of PGE2 was observed. Both aspirin and AICAR reduced the
concentrations of PGE2 elevated by BEFV. We next analyzed the
effect of EPs on BEFV-induced autophagy. We found that
knockdown of EP2 via a specific shRNA reversed the increased
levels of p-Src and LC3-II by BEFV while there is no obvious
inhibitory effect on EP4 knockdown cells (Figure 3B). These results
suggested that activation of a PGE2/EP2 signal to amplify the Src/
JNK/AP1 pathway is important for BEFV to induce autophagy.
Reversion of the BEFV-Activated PI3K/Akt/
NF-kB and Src/JNK/AP1 Pathways as Well
as the BEFV-Anactivated PI3K/Akt/mTOR
Pathway by AICAR
Having shown that AICAR inhibits BEFV-induced autophagy
through an AMPK-independent manner. We next wanted to
explore the mechanisms of AICAR on suppression of BEFV-
induced autophagy. As shown in Figure 4A, the BEFV-induced
increased levels of the phosphorylated form of PI3Kp85 (Y458),
Akt (T308 and S473), Src (Y416), and JNK(T183/T185) were
reversed by AICAR in a dose-dependent manner. BEFV-
modulated inhibition of IkBa and nuclear translocation of NF-
kB subunits (p50 and p65) were simultaneously reversed by
AICAR in a dose-dependent manner (Figure 4B). These results
suggest that the PI3K/Akt/NF-kB and Src/JNK/AP1 pathways
activated at an early stage of BEFV infection were reversed by
Frontiers in Immunology | www.frontiersin.org 7
AICAR. At the late stage of BEFV infection, the expression level
of the BEFV M protein was dramatically reduced in AICAR-
treated cells (Figure 5A). Recently, we showed that the BEFV M
protein suppresses the PI3K/Akt/mTORC1 pathway to enhance
BEFV-induced autophagy (7). In the current study, BEFV-
induced decreased levels of p-PI3Kp85 and p-Akt along with
p-mTOR were not further suppressed but were increased by
AICAR treatment (Figure 5A). All of these reversions induced
by AICAR were dose-dependent (Figures 4A, B, 5A).

Having demonstrated that multiple pathways regulated by
BEFV were reversed by AICAR, we further investigated the effect
of AICAR to Atg-related protein expression in BEFV-infected
cells. Autophagy consists of several sequential steps including
induction, autophagosome formation, degradation and reuse
(34). Class III phosphatidylinositol 3-kinase complex I
(PI3KC3-C1) and the ULK1 complex are two major initiation
complexes involving in commencement of autophagy. Beclin 1 is
a constituent of the PI3KC3-C1 complex, and Bcl-2 binds to
Beclin 1 to inhibit autophagy (35). Phosphorylation of Bcl-2 to
dissociate Beclin 1 can be induced by activating JNK to initiate
autophagy (36). We have shown that BEFV increases JNK-
mediated phosphorylation of Bcl-2 and the level of Cox-2 for
autophagy (7). The present study reveals that increased levels of
Bcl-2 phosphorylation induced by the Src-JNK pathway and the
increased level of Cox-2 induced by BEFV were reversed by
AICAR (Figure 5A). Phosphorylation of Beclin 1 by ULK1 is
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required for full autophagy induction (36). Suppression of the
PI3K/Akt signal decreases phosphorylation of mTOR at Ser2448

and results in inactivation of mTOR, which hence loses its ability
to control ULK1 by phosphorylation at site S757 so as to activate
ULK1. As illustrated in Figure 5A, BEFV suppressed the PI3K/
Akt/mTOR pathway to reduce phosphorylation of ULK1 (S757),
but AICAR did not reverse this and the level of p-ULK1 was even
further decreased (Figure 5A). We also observed that AICAR
decreases the level of Atg-related proteins including ULK1, Atg7,
and Beclin 1 (Figure 5A). To investigate the precise mechanism
of AICAR on these ATG-related proteins, real-time qRT-PCR
was carried out. Data presented in Figure 5B demonstrate a
suppression effect of AICAR on mRNA expression of the ULK1
and LC3 genes except for Atg7, suggesting that AICAR
transcriptionally downregultes ULK1 and LC3. Furthermore,
co-treatment of AICAR with MG132 counteracted the effect of
AICAR on the reduction of Atg7 levels (Figure 5C), suggesting
that AICAR enhances Atg7 degradation by the proteasome
pathway. Collectively, our results reveal that AICAR suppresses
Frontiers in Immunology | www.frontiersin.org 8
BEF-induced autophagy via suppression of ATG-related proteins
of ULK1, Atg7, and LC3.
Reversion of the BEFV-Activated PI3K/Akt/
NF-kB and Src/JNK/AP1 Pathways in the
Early Stage of Infection and the BEFV-
Suppressed PI3K/Akt/mTOR Pathway
in the Late Stage of Infection by Aspirin
Having shown that aspirin significantly inhibites virus yield
(Figure 1A), we next wanted to explore the precise mechanism
of the suppression effect of aspirin on BEFV replication. MDBK
cells were pretreated with or without aspirin (5 mM) for 30 min
followed by infection with BEFV at an MOI of 1. Cell lysates were
collected and immunoblotted with the respective antibodies. As
illustrated in Figure 6A, at the early stage of BEFV infection,
increased levels of p-Src and p-JNK induced by BEFV were
moderately reversed by aspirin while increased levels of p-PI3K
and p-Akt induced by BEFV were only slightly reversed by aspirin
(Figure 6A). However, degradation of IkBa and nuclear
translocation of NF-kB subunits (p50 and p65) were reversed by
aspirin (Figure 6A). At the late stage of BEFV infection, the
decreased levels of p-PI3Kp85, p-Akt, p-mTOR, and p-ULK1 were
detected and reversed by aspirin while increased levels of p-Src
and p-JNK induced by BEFV were not reversed by aspirin (Figure
6C). Similar to AICAR treatment, the expression level of the BEFV
M protein was dramatically reduced in aspirin-treated cells at the
late stage of BEFV infection (Figures 6B, C). The BEFV-induced
increased level of LC3-II was dramatically reversed by aspirin. In
contrast to AICAR, the levels of Atg7, Beclin 1, and ULK were not
affected in aspirin-treated cells (Figures 5A, 6B). Collectively,
these results show that aspirin reverses BEFV-mediated
degradation of IkBa, upregulates PI3K/Akt/NF-kB and Src/
JNK/AP1 pathways in the early stage of infection, and
downregulates the PI3K/Akt/mTOR pathway in the late stage of
infection. Our findings suggest that aspirin inhibits BEFV-induced
autophagy, thereby inhibiting virus propagation.
Reversion of Autophagy Flux Delayed
by BEFV by Aspirin and AICAR
The final process of autophagy is degradation and reused by
fusion of autophagosomes with lysosomes to form
autolysosomes. Our recent report showed that autophagic flux
was delayed during BEFV infection (7). It is interesting to
investigate whether aspirin or AICAR affect the autophagic
flux. BEFV-infected MDBK cells were pretreated with or
without AICAR (1 mM) and aspirin (5 mM), respectively. Cell
lysates were collected at the indicated time points and the levels
of M protein and autophagic protein markers including p62 and
LC3-II were analyzed. p62 is a multifunctional protein and serves
as an autophagic flux reporter and integration center for the
autophagosome and ubiquitin-proteasome system (37). It
interacts with LC3-II and is selectively degraded by the
autophage-lysosome pathway. As shown in Figure 7A, the
increased level of p62 was further increased at 12 hpi and then
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FIGURE 4 | BEFV activates the PI3K/Akt/NF-kB and Src/JNK/AP-1
pathways in the early stage and is suppressed by 5-aminoimidazole-4-
carboxamide-1-b-riboside (AICAR). MDBK cells were pretreated with or
without AICAR (0.5 and 1 mM), respectively, for 30 min, followed by infection
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respective antibodies as indicated. The levels of indicated proteins in the
mock group were considered onefold. The activation and inactivation folds
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normalization.Signals in all Western blots were quantified with ImageJ
software. All experiments were conducted in three independent experiments.
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decreased at 24 hpi., suggesting that BEFV protects p62 from
degradation via an unknown mechanism before completing
virus replication. The increased level of lipid conjugated LC3-II
by BEFV became evident at 18 hpi. and then decreased at 24 hpi.
The expression level of M protein was decreased in AICAR- or
aspirin-treated MDBK cells as compared to BEFV infection
alone (Figure 7A). This is consistent with the data shown in
Figure 1. Pretreatment with AICAR or aspirin, respectively,
inhibited the accumulation of p62 or LC3-II induced by BEFV
(Figure 7A). To further confirm this observation, we used a pH-
sensitive GFP-mCherry-LC3 reporter plasmid to examine the
maturation process of autophagosomes. GFP-LC3 is unstable in
the lysosomal acidic and degradative conditions, while mCherry-
LC3 is relative stable (7). After 18 hpi., the puncta of cells
pretreated with AICAR or aspirin were significantly reduced
(Figure 7B), suggesting that autophagosome formation was
inhibited by aspirin and AICAR. The count of GFP-mCherry-
LC3 puncta was significantly diminished in drug pretreated cells
as compared to BEFV-infected cells (Figure 7C). These results
indicate that delayed autophagy flux induced by BEFV was
inhibited by aspirin or AICAR.
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DISCUSSION

The present study provides a promising approach to inhibit
BEFV replication for therapeutic purposes. We demonstrate for
the first time that AICAR and aspirin attenuate BEFV replication
by inhibiting BEFV-induced autophagy via suppression of the
BEFV-activated PI3K/Akt/NF-kB and Src/JNK pathways and
reversion of the BEFV-suppressed PI3K/Akt/mTOR pathway.
Our results also reveal that aspirin and AICAR negatively
regulate the BEFV M protein, which is one of the major
protein for BEFV-indiced autophagy (7). Autophagy is the
cellular catabolic process in which cytoplasmic target material
is transported to lysosomes for degradation via phagosomes,
which are a double-membrane vacuoles (38). This is a self-
degradative process in response to nutrient stress or balancing
sources of energy at critical conditions (39) and acts as a cell-
intrinsic anti-viral immune defense (40). Autophagy plays a role
in immunological processes to direct elimination of microbes,
control inflammation, and also plays a role in antigen
presentation, lymphocyte homeostasis, and secretion of
immune mediators (41). Although viruses can be eliminated
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through the innate immune response and selective degradation
of immune components with viral particles by autophagy, viruses
develop diverse strategies such as evasion of autophagic
degradation, manipulation of autophagosomes, regulation of
lipophagy, and exocytosis to hijack and subvert autophagy for
their replication (42–46). Autophagy can be induced by
suppression of mTOR or activation of AMPK. Our recent
study demonstrated that BEFV triggers autophagy to beneft its
replication through suppression of the PI3K/Akt/mTOR
pathway (12). AMPK serves as a double-edged sword to
viruses and its activation is essential for some viruses. For
example, the p17 protein of avian reovirus activates AMPK to
induce autophagy for replication (42), Bluetongue virus induces
autophagy through activation of AMPK to sustain viral
replication (47), and respiratory syncytial virus induces
autophagy through ROS and AMPK activation, which is
beneficial for viral replication (48). On the other hand,
activation of AMPK is lethal to certain viruses such as hepatitis
C virus (HCV) (49), Epstein-Barr virus (50), and herpes simplex
virus (51). AICAR is a common AMPK activator. Several studies
suggested that AICAR activates AMPK activity, resulting in
inhibition of HCV (52), herpes simplex virus type 1 (53),
Coxsackievirus B3 (54), Kaposi’s sarcoma-associated herpes
virus (55), and hepatitis B virus (HBV) (56). In the current
Frontiers in Immunology | www.frontiersin.org 10
study, AICAR suppresses BEFV replication by inhibiting
autophagy. However, autophagy induced by BEFV is AMPK
independent. Our findings presented in this work revealed that
AICAR inhibits BEFV-induced autophagy is in an AMPK-
independent manner. AICAR does not directly activate AMPK
but is metabolized to a direct activator, ZMP (57). ZMP as an
AMP mimetic is an intermediate for de novo purine biosynthesis
of inosine monophosphate (IMP) (20). ZMP binds to and
activates a riboswitch to directly regulate the expression of
one-carbon metabolism genes in multiple bacterial lineages
(22), and is regarded as a master regulator of one-carbon
metabolism (58). It should be taken into account that AICAR
is able to activate many other AMP-dependent enzymes, such as
fructose-1, 6-bisphosphatase (59). Several studies have shown
that cellular metabolism regulated by AICAR is AMPK-
independent, including apoptosis induction in Jurkat cells (60),
inhibition of glucose phosphorylation in rat hepatocytes (61),
induction of nuclear translocation of Nrf2 in hepatocytes
(62), suppression of LPS-induced iNOS & Cox-2 mRNA/protein
(63), decreased transcription of NF-kB-dependent genes (23), and
inhibitory inflammatory responses in macrophages (64).

Prostaglandin E2 is prostanoid that was first discovered in
1964 (65). Synthesis of prostanoids through eicosanoid
metabolism is initiated from hydrolysis of plasma membrane
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phospholipid to arachidonic acid by phospholipase A2.
Arachidonic acid is converted to PGH2 via cyclooxygenase
(Cox-1/Cox-2). Prostaglandin E2 is isomerized from PGH2 by
tissue specific prostaglandin E synthases (66, 67). PGE2 binds to
its corresponding receptors (EP1-4) to act on cells with a wide
variety of effects. By modulating inflammation and the immune
system through regulating cytokines, the influence on viral
infection is virus-family-dependent (68). Our previous studies
suggested that BEFV stimulates the Cox-2-mediated PGE2/EP
receptor signalling pathways to amplify the Src/JNK pathway for
cell entry and autophagy induction (7, 12). In the present study,
we further found that AICAR reversed BEFV-mediated
increased Cox-2 expression and PGE2 production, thereby
inhibiting autophagy and virus yield. Suppression of Cox-2
expression by AICAR has been reported (63, 69, 70). Our
findings are consistent with these studies. Aspirin blocks the
function of Cox-2 to decrease PEG2 production. Reduction of
BEFV-triggered PGE2 production by both AICAR and aspirin is
through different mechanisms.
Frontiers in Immunology | www.frontiersin.org 11
At the early stage of infection, both Src/JNK/AP-1 and PI3K/
Akt/NF-kB pathways are up-regulated to induce autophagy. As
illustrated in Figure 8, AICAR reverses the BEFV-activated
signaling pathways at the early and late stages of infection in a
AMPK-independent manner. Furthermore, the ATG-related
proteins including ULK1, Beclin 1, ATG7, and LC3 were all
suppressed in AICAR-treated but not in aspirin-treated cells. At
the late stage of infection, AICAR reversed the BEFV-activated
Src/JNK/AP-1 and BEFV-suppressed PI3K/Akt/mTORC1
pathways, but aspirin did not regulate the Src/JNK/AP-1
pathway. Although the BEFV-activated PI3K/Akt pathway at
the early stage of infection was not suppressed by aspirin, there
was still moderate suppression of NF-kB by aspirin. The
inhibition is granted by the innate ability of aspirin, since
salicylate inhibition of the NF-kB pathway has been well
recognized for a decade (71, 72).

Aspirin is a widely and historically used medication. It is utilized
for analgesic, anti-inflammation and anti-thrombosis properties due
to inhibition of Cox-1 and Cox-2 activity. Recent studies suggested
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that aspirin serves as a chemopreventive agent according to the
Cox-independent mechanisms including inhibition of NF-kB,
interruption of extracellular signal-regulated kinases (ERK),
induction of apoptosis by caspase activation and inhibition of the
Wnt/b-catenin pathway (73). Thus, the possible applications of
aspirin aremore than just as a Cox inhibitor. Several studies revealed
that aspirin induces autophagy in murine hepatocarcinoma, sarcoma
(74), and colorectal cancer cells (75), and inhibits histone
acetyltransferase (EP300) to induce autophagy (76). Conversely,
aspirin may inhibit autophagy in epithelial cells of the
gastrointestinal tract (77) and alleviates cardiac fibrosis in mice by
inhibiting autophagy (78). The antiviral ability of aspirin has been
previously reported, including influenza (79, 80), cytomegalovirus
(81), RNA viruses of the respiratory tract (82), feline foamy virus (83),
and Zika Virus (84); however, the underlying mechanisms remain
largely unknown. Our study demonstrats that aspirin inhibits BEFV
replication by inhibiting BEFV-induced autophagy via suppression of
the BEFV-activated Src/JNK/AP-1 pathway and its NF-kB-inhibiting
activity and revision of the BEFV-suppressed PI3K/Akt/
mTORC1 pathway.

The current study provides novel insights into aspirin- and
AICAR-impeded virus replication by inhibiting BEFV-induced
autophagy via suppression of the PI3K/Akt/NF-kB and Src/JNK
pathways as well as reversion of the BEFV-inactivated PI3K/Akt/
mTORC1 pathway. Hypothesized models for suppression of
BEFV-induced autophagy by aspirin and AICAR are shown in
Figure 8. The present study provides an option for treatment of
BEF by aspirin and AICAR.
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