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The number of patients affected by chronic diseases with special vaccination needs is

burgeoning. In this scenario, predictive markers of immunogenicity, as well as signatures

of immune responses are typically missing even though it would especially improve

the identification of personalized immunization practices in these populations. We

aimed to develop a predictive score of immunogenicity to Influenza Trivalent Inactivated

Vaccination (TIV) by applying deep machine learning algorithms using transcriptional

data from sort-purified lymphocyte subsets after in vitro stimulation. Peripheral blood

mononuclear cells (PBMCs) collected before TIV from 23 vertically HIV infected children

under ART and virally controlled were stimulated in vitrowith p09/H1N1 peptides (stim) or

left unstimulated (med). A multiplexed-qPCR for 96 genes was made on fixed numbers

of 3 B cell subsets, 3 T cell subsets and total PBMCs. The ability to respond to TIV

was assessed through hemagglutination Inhibition Assay (HIV) and ELIspot and patients

were classified as Responders (R) and Non Responders (NR). A predictive modeling

framework was applied to the data set in order to define genes and conditions with the

higher predicted probability able to inform the final score. Twelve NR and 11 R were

analyzed for gene expression differences in all subsets and 3 conditions [med, stim or 1

(stim-med)]. Differentially expressed genes between R and NR were selected and tested

with the Adaptive Boosting Model to build a prediction score. The score obtained from

subsets revealed the best prediction score from 46 genes from 5 different subsets and

conditions. Calculating a combined score based on these 5 categories, we achieved

a model accuracy of 95.6% and only one misclassified patient. These data show

how a predictive bioinformatic model applied to transcriptional analysis deriving from
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in-vitro stimulated lymphocytes subsets may predict poor or protective vaccination

immune response in vulnerable populations, such as HIV-infected individuals. Future

studies on larger cohorts are needed to validate such strategy in the context of

vaccination trials.

Keywords: gene expression, predictive biomarkers, artificial intelligence, deep learning, influenza vaccine, HIV,

vaccinomics

INTRODUCTION

The advent of vaccinations has reshaped the history of medicine
and across the twenty-first century has led to a decrease
in morbidity of previously fatal diseases (1, 2). However,
with steadily improving survival rates due to the availability
of novel therapeutic tools, the vulnerable populations with
special vaccination needs is burgeoning (3–5). Nowadays vaccine
development programs mainly focus on otherwise healthy
populations; as such, vaccine indications are based on data
arising from healthy study participants. Accordingly, most
vaccine indications in vulnerable groups (VPs), elderly, pregnant
women and patients affected by chronic conditions (i.e., HIV
infected patients), are derived from extrapolations, assumptions,
or post-licensure studies (5). Thus, limited data are currently
available to tailor vaccine interventions in these populations.
Since the seasonal flu vaccine is well-established in routine use
in HIV, it may represent the paradigm vaccine to illustrate
many of the issues that affect most or all vaccines in VPs.
Despite recommendations on seasonal influenza vaccination
for targeted or at-risk groups (i.e., HIV, elderly, comorbidities
etc.), such populations are at increased risk of acquiring
vaccine-preventable infections and suffer higher infectious
morbidity and mortality than healthy individuals (6, 7). This
represents a major health and economic burden to society,
which will become increasingly difficult to manage given
limited public resources (8). In parallel, many uncertainties
remain about the optimal strategies for identifying susceptible
individuals, and for offering them sustained protection through
a personalized immunization schedule. Novel biomarkers
of protective immune responses to vaccines are needed.
Vaccinology, based on the immune response network theory (9),
which utilizes immunogenetics, immunogenomics and systems
biology approaches to understand the basis for inter-individual
variations in vaccine induced immune responses can provide
such biomarkers (10, 11). In particular, vaccinomics utilize
high-throughput, high-dimensional systems biology approaches,
which aims to predict differences in protective or suboptimal
immune responses to vaccines (12). In this regard, the basis
of personalized and predictive vaccinology is the assessment
of an individual’s genetic background that may impact vaccine
immunogenicity and efficacy. Thus, far this approach has been
mostly conducted in healthy subjects leading to important
findings (13). However, these data can only be partially translated
in to specific populations. We recently described distinct
transcriptional signatures of purified B and T cell subsets in
vertically HIV infected children that was able to distinguish
between patients able to respond to Trivalent Inactivated

Vaccination (TIV) compared vs. non-responders (14, 15). In
addition, purified H1N1 specific B cells showed significant
differences in P-TEN/PI3KC2B pathway between responders and
non-responders (16, 17).

Following the idea that a single vaccine cannot “fit all”
(9), we here aimed at developing a predictive score of poor
or protective vaccination immune response to seasonal flu
vaccination through an artificial intelligence approach fed by data
deriving from a novel in vitro gene expression testing approach
(IVIGET) in HIV infected patients differentially responding to
TIV.We here showed that a multiplexed gene expression analysis
from sorted lymphocites subsets in different in vitro conditions
was able to feed an artificial inteligence model able to select
predictive features of influenza vaccination immunogenicity in
a pediatric population with suboptimal immune response upon
the influenza vaccination.

METHODS

Study Subjects
Twenty-three subjects vertically infected with HIV-1
(abbreviated as HIV) and on suppressive anti-retroviral
therapy (ART) were enrolled between September and November
2012 at Bambino Gesù Children’s Hospital, Rome, Italy. Written
informed consent was obtained from all subjects or parents/legal
guardians upon enrolment and the study was approved by the
Institutional review board of the Bambino Gesù Children’s
Hospital. PBMCs and plasma were isolated by density gradient
isolation [46] collected pre (T0) and 21 days post vaccination
(T1) and cryopreserved and processed for study at a later date.
Serum samples were stored at−80◦C.

Immunization and Sample Collection
Patients were immunized with a single dose of Inactivated
Influenza Vaccine Trivalent Types A and B (Split Virion)
VAXIGRIP R© (sanofi pasteur). The strains for the 2012–
2013 season were: A/California/7/2009 (H1N1) pdm09-like
strain (abbreviated as H1N1), A/Victoria/361/2011 (H3N2)-like
strain (abbreviated as H3N2) and B/Wisconsin/1/2010-like strain
(abbreviated as B).

Hemagglutination Inhibition (HI) Assay
The antibody titers to the H1N1, H3N2 and B influenza
strains in sera from HIV and HC were evaluated
separately by HI assay (18). The virus strains used in
the HI assay were A/California/7/2009 (H1N1) pdm09-
like strain, A/Victoria/361/2011 (H3N2)-like strain and
B/Wisconsin/1/2010-like strain according to the 2012–2013
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influenza vaccine formulation. The HI assay was performed
as previously described (18). The HI antibody titers were
expressed as the reciprocal of the highest serum dilution at which
hemagglutination was prevented. (http://www.gmp-compliance.
org/guidemgr/files/021496EN.PDF).

ELISPot
PBMCs collected at T0 and T1 from HIV and HC were
thawed and policlonally activated in vitro in complete RPMI
medium (Invitrogen) supplemented with 2.5µg/mL CpG type B
(Hycult biotech), 20 ng/mL IL-4 (Peprotech) and 20 ng/mL IL-21
(ProSpec). Cells were harvested after 5 days of culture at 37◦C.
ELISpot 96-well filtration plates (Millipore) were coated with the
addition of purified H1N1, H3N2, and B influenza inactivated
virus particles and subsequently loaded with 2 × 105 cells/well.
Membranes were punched out with an Eli.Punch device and
developed spots were scanned with an Eli.Scan and counted with
the ELISpot Analysis Software V5.1 (all from A.EL.VIS).

Determining Vaccine Response Status
T0 and T1 samples were employed to evaluate patient’s ability to
respond to the vaccination as previously described (17). Response
to vaccinations was determined both by ELISPot for the 3 strains
of Flu vaccines (H1N1, H3N2, B) and by Haemagglutination-
Inhibition assay (HIA) detected at the time of immunization
and 21 days after vaccination as previously described (14, 15).
In order to compare patients with differential ability to respond
to the vaccination, patients were first selected according to their
seroconversion toH1N1 21 days after the immunization resulting
in 2 groups, Seroconverter (HIA fold increase ≥ = 4) and Non
Seroconverter (HIA fold increase < 4). As additional criteria,
patients were selected according to the ELISpot responses for
H1N1 at 21 days after immunization as ELISpot negative (<80
H1N1 specific spots/106 PBMCs) and ELISpot positive (>80
H1N1 specific spots/106 PBMCs). According to these 2 criteria
we could select among the HIV infected children 12 non
responders (NR; HIA fold increase <4 ANDH1N1 specific spots
<80/106 PBMCs), 11 responders (R; HIA fold increase >= 4
AND H1N1 specific spots >80/106 PBMCs).

In vitro Stimulation, Cell Sorting, and RNA
Extraction
T0 PBMC were thawed and cells were counted with Countess
Automated Cell counter (Life technology). Cells were
resuspended in complete RPMI medium at a concentration
of 5 × 106 PBMCs/mL and left at 37◦C for 16 h in the presence
or absence of H1N1 A/California /09 HA peptides in a final
concentration 20 µL/mL. PMBCs were stained for surface
markers, Vivid (Pacific Blue), CD10 (PECy7), CD20 (PE), CD27
(APC), IgD (FITC), CD21 (PECy5) for the B cell panel for 15min
and for CD3 (AmCyan), CD4 (PerCP Cy5.5), CD45RO (ECD),
CCR7 (Alexa Fluor 700), and CXCR5 (Alexa Fluor 647) and a
live/dead marker (ViViD; Molecular Probes) for the T cell panel
for 15min. Subsequently, stained PBMCs were washed twice in
PBS, finally filtered with a 40 uMmesh and sorted by FACSAriaII
(BD Biosciences). The purity of the sorted cell populations were
typically >99%. All antibodies were previously titrated. Viable

lymphocytes were identified as live dead amine dye negative
(ViViD-) cells (Invitrogen).

Five-Hundred live cells per B and T cell subset were sorted
into tubes previously loaded with 9 µL of PCR buffer (see
also Figure 1 for gating strategy). After sorting, cells were
immediately centrifuged (3000RPM for 3min) and kept on ice.
Samples were subsequently transferred in PCR tubes and 18 PCR
cycles were performed on a C1000 Thermal Cycler (Bio Rad)
with the following scheme (50◦C for 20′, 95◦C for 2′, 95◦C 15′′,
60◦C for 4′. Last step repeated 18 times). Cells were finally kept
at −20 until further analysis. PCR buffer premix for cell sorting
contained the following: Cells Direct Reaction mix 5 µL, DEPC
water 1,4, Superscript III+Taq 1µl, 0.2x diluted assay (96 primer
mix) 2.5 µL, Superasein 0,1 µL.

Multiplexed RT-PCR
Previously amplified samples were loaded on a Fluidigm 96.96
standard chip following manufacturer’s instructions. Briefly,
assay pre-mix was prepared 1:1 20X TaqMan Gene Expression
Assay (Applied Biosystems) and Assay Loading Reagent
(Fluidigm, Biomark R©). The sample pre-mix was prepared with
TaqMan Universal PCR Master Mix (2X)(Applied Biosystems),
20XGE Sample Loading Reagent (Fluidigm), and cDNA. Full list
of the two panels of gene probes (B subsets and T subsets is
shown in Supplemental Table 1 and 2). 5µl of Assay and Sample
mix were loaded into the chip according to manufacturers
instructions. Genes’ selection has been made according to
previous analysis on RNA Sequencing on HIV infected children
from a different cohort (data not shown), the literature and online
gene banks and biological queries.

Cycle threshold value (Ct) deriving from exported files was
corrected according to number of cells sorted if lower than 500.
Calculations were made following the expression 67, 5/500 =

Y/X where X is the number of cells sorted and Y is the cells
equivalent cDNA of cell sorted. The dilution factor (n) was
calculated as n = 67, 5/Y, and base 2 log of n was subsequently
subtracted to Ct value in order to get Corrected Cycle Threshold
(c-Ct). Expression threshold (Et), which was used for the
main analysis was finally obtained with 40-cCT. Once exported
and corrected, data were analyzed through Fluidigm SingluaR
(SingulaR analysis toolset 3.0) package, loaded on R (software
R 3.0.2 GUI 1.62). As previously described (De Armas, 2017)
gene expression differences between different groups within
same subset and condition were used to identify Differentially
Expressed Genes (DEGs). Alternatively, paired gene expression
differences between stimulated (stim) and unstimulated samples
(med) (stim-med) within the same subset were used to define
Differentially Induced Genes (DIGs). All raw data on gene
expression analysis used for the present project are available
on the Gene Expression Omnibus: NCBI gene expression and
hybridization array data repository (GEO) (GSE155730).

Bioinformatics and Statistical Analysis
Predictive Modeling Framework

We propose a workflow (Figure 2) used for gene selection and
model building that use the 96 genes with age and sex as
covariates. Thismethodwas applied to each subset of B cells (AM,
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FIGURE 1 | Experimental design. The cartoon on the top panel depicts the experimental procedure. Briefly, total PBMCs are in 2 aliquotes, one stimulated and the

latter unstimulated. After sorting lymphocite subsets, gene expression is analyzed by Fluidigm Biomark. Bottom panel describes the gating strategies and the

lymphocites subsets selected for sorting and gene expression analysis. Mathematical analysis applied on the subsets in order to obtain differentially expressed genes

(DEGs) and differentially induced genes (DIGs) are described.

DN, REM) and T cells (CD4, NT, PBMC, TFH), further divided
into two conditions, namely stimulated (stim), unstimulated
(med) and the derived data of the stim-med, for 23 patients. In
addition, this workflow has also been applied to the entire dataset
(B and T cells) to obtain a predicted probability score. Due to the
small sample size and high dimensional data, the Wilcoxon Rank
Sum Test was used to select genes whose expression levels are
different between responders and non-responders. As compared
to other feature selection methods, this test outperforms others
in terms of accuracy and robustness (19) Using the two-sided
test to evaluate whether these two subpopulations had different
gene levels, p-values were derived to assess significance at α =

0.05. Genes with significantly different expression levels were
used in the next step of the analysis framework. The feature
selection process was applied to each dataset to select those
genes that are predictive of response to vaccine. Applying
multiple machine learning methods, each using a different
approach, increased the confidence in selecting the best genes
for the model.

The machine learning methods used were Elastic Net (glmnet
function in R) (20), Support Vector Machines (svm.fs function in
R) (21) and Random Forests (randomForest function in R) using
3-fold cross validation repeated 8 times (22). Variable importance
was also calculated by Random Forests and used to define the

gene importance ranking as previously described (22). If a gene
or feature was selected at least 10 times in total throughout
the process, then it was considered for further analysis in the
prediction model.

After selecting a subset of features by using the Wilcoxon
Rank Sum Test and machine learning, an Adaptive Boosting
model using continuous predictors and generating predicted
probabilities of response was used as the final predictive model.
The Adaptive Boosting model (http://rob.schapire.net/papers/
explaining-adaboost.pdf) was used as it is less susceptible to
overfitting and attempts to combine rules to create a more
accurate prediction. This model was implemented in R using
the caret (http://topepo.github.io/caret/index.html) package. The
ADA Boost method uses a training set, a subset of the
data that is set aside, and assigns a ±1 as classifier values.
A classifier value indicates how important a feature is for
the model. The classifiers are then weighted based on the
training set, and the prediction is recalculated. Using the data,
the program will assign weights to features beyond the ±1
classifier at every stage. To obtain the final results of the
model, ADA Boost uses the sum of every weight and classifier
combination to provide a probability of response. The result
of the model is a predicted probability of response for each
patient (Figures 3, 4). Considering both the Wilcoxon and
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FIGURE 2 | Analysis framework flowchart: pipeline workflow for predicting the vaccine response. Differentially induced genes between responders and

non-responders were selected using a machine learning feature selection based on three different algorithms and the Wilcoxon test for each cell subset and condition.

The list of selected genes was used by the Adaptive Boosting algorithm to build the predictive model and calculate the prediction score.

FIGURE 3 | ADA Boost Probability Scores for T Cells (A) and B cell subsets (B). The probabilities of prediction are shown for each patient (the non-responder in red

and responder in blue). If the probability is >0.50 the patient has been classified as responder, on the contrary if <0.50.

feature selection significant genes, the final model uses the
intersection (B cells) or union (T cells) of the genes across
subsets. The R statistical software version 3.0.3 was used for all
analyses (www.r-project.org).

The R package “enrichR” v2.1 was used to perform
functional annotation and pathway enrichment analysis on
the genes selected to build the five models with the best
prediction precision.

RESULTS

Patients’ Characteristics and H1N1
Response to Influenza Vaccination
To define the ability to elicit memory response upon H1N1 of
the trivalent inactivated Influenza vaccination 2012/2013 (TIV)
we investigated hemoagglutination inhibition assay in 65 HIV
infected children under stable and highly active antiretroviral
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FIGURE 4 | ADA Boost Probability Scores (B and T Cells): the combined prediction score between B and T cells are shown for each patient (the non-responder in red

and responder in blue). If the probability is >0.50 the patient has been classified as responder, on the contrary if <0.50.

treatment (HAART) and viral control at the time of vaccination.
Clinical characteristics are listed in Table 1. Study participants

were classified as vaccine responders (R) and vaccine non-
responders (NR) according to the criteria established by Food

and Drug Administration Guidance for Industry as previously

described (14). R were characterized by HAI titer to H1N1
antigen (Ag) at T1 of >1:40 and > four-fold increase compared

to baseline. In order to validate our criteria of selection, even

considering the lower reliability of serological correlates in
such patients, we applied an additional measure of vaccine

responsiveness in our study population performing the B cell
ELISpot response to H1N1 Ag (≥ or < 80 spots /106 PBMCs in
responders (R) and non-responders (NR), respectively).

Features Selection and Identification of
Predictive Score Through Artificial
Intelligence
In order to predict the vaccination response based on
the expression levels of 96 genes, we have implemented a
bioinformatic pipeline that was tested on six sorted subsets of B
and T cells, as reported in Figure 1 and PBMC in 23 patients.
For each subset, the conditions of stimulation (stim), non-
stimulation (med) and the difference between the two (stim-med)
have been considered. For each of these subset/condition, the
algorithm, reported in Figure 2, selects the Differentially Induced
Genes (DIGs) and Differentially Expressed Genes (DEGs) whose
expression levels can, better than others, discriminate responding
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TABLE 1 | Study subjects’ characteristics.

Baseline characteristics HIV NR HIV R

Age years, mean (SEM) 15.16 (2.1) 13.72 (2.3)

n (female) 12 (7) 11 (5)

%CD4+ T cells, mean (SEM) 37.97 (4.9) 32.49 (6.0)

HIV RNA <50cp/mL, n 11 10

IgG (mg/dL) (mean) 1387.4 1,356

IgM (mg/dL) (mean) 135.1 118.9

IgA (mg/dL) (mean) 210.7 225.1

CDC (A/B/C) (1/2/3) (3/4/5) (3/4/5)(2/5/4) (4/3/4)

Lymphocites/mm3 mean (SEM) 2494 (278,9) 3109 (363,1)

WBC 103/uL, mean (SEM) 7.6 (1.5) 7.3 (0.7)

ART regimen (2 NRTI+PI-r/2 nNRTI+ NRTI/2 NRTI+ii) (5/5/2) (5/4/2)

SEM, standard error of the mean; CRP, C-reactive protein; CDC, Center for

Disease Control classification of AIDS. WBC, white blood cells. ART, antiretroviral

treatment; NRTI, Nucleoside and Nucleotide Analog Reverse Transcriptase Inhibitors; PI,

Protease Inhibitors; nNRTI, Non-Nucleoside Analog Reverse Transcriptase Inhibitors; ii,

Integrase Inhibitors.

individuals from non-responders upon TIV. A total of 179
genes/conditions were initially selected among the different
subsets and conditions (Table 2). As shown in Table 2, a specific
number of genes were respectively, selected for the med (55
genes), stim (62 genes), and med-stim conditions (62 genes).
Subsequently, these genes were then used to build statistical
models. The ADA Boost models generated for each category
returned a probability score that estimates the classification
of each patient in responder (R) and non-responder (NR).
Assuming a predicted probability >0.50 classified as a responder,
the ADA Boost model was able to predict R and NR in specific
subsets and conditions according to the previously selected genes.
Indeed, the Resting Memory (REM) med-stim, Double Negative
(DN) stim, TFH med-stim and PBMC med datasets showed
the best results in terms of predicted probability as shown in
Figure 3. No mispredictions were found in REM med-stim, DN
stim and PBMC unstim, whereas only one misprediction was
found according the ADA boost of TFH med-stim.

In order to provide a comprehensive description of gene
expression with higher accuracy in terms of prediction
probability, all gene expression analyses, from multiple subsets
and conditions were ranked.

Table 3 summarizes the classification accuracy and a relative
ranking for each category. Rankings were used to identify the
cell subsets and conditions that yielded high prediction accuracy
as well as a wider range of predicted probability values. Correct
prediction ranged from 68% up to 100% when tested on the
cohort. Following these criteria, five cell subsets/conditions
providing the highest classification accuracy combined with the
highest predicted probability were highlighted (Table 3).

Finally, the B and T cells subsets/conditions were used to
calculate a combined score. The score, was then tested in our
cohort of patients which were blindly predicted as responders and
non-responders. In this case, as shown in Figure 4 and Table 4,

TABLE 2 | Selected genes and conditions.

Condition

Cell type Cell subset Med stim Med-stim

B AM 1 2 5

DN 5 9 5

REM 8 8 3

T CD4 7 9 12

NT 12 14 12

PBMC 18 9 12

TFH 4 11 13

Total 55 62 62

only one patient out of the entire cohort was misclassified
providing a prediction accuracy of 95.6%.

Due to the small sample size, in order to overcome the
unfeasibility to perform a nested cross valitation, we confirmed
the stability of the accuracy in features’ selection of the top
5 B/T subsets/conditions resampling the dataset according
to these 5 subset/condition. This re-analysis confirmed the
stability in feature’s selection of the initial model. Indeed, all
subset models out of the 5 selected cell subsets/ condition
feature displayed between 80 and 100% accuracy according to
the bootstrap replications (Supplementary Table 3). The best
performing subset by this metric was the B DN med_stim
subset with a confidence interval ranging from 94 to 100%. All
genes from the subset models had 50–90% selection rates in
bootstrap replicates.

Functional Analysis of Genes Selected by
Artificial Intelligence
In order to characterize the biological functions of the genes used
to build the five models with the highest prediction accuracy,
we performed a functional enrichment analysis on the five sets
of genes shown in Table 5. According to gene set enrichment
analysis, the REM med_stim selected genes associated with
transcription pathways of chemokine expression and T cell-
oriented proliferation (Figure 5). These results are in line with
ontologies which were particularly enriched in the positive
regulation of T helper I type immune responses (Figure 5). In
the T cell counterpart, pTFH cells, several genes involved in
cytokine-cytokine mediated signaling were enriched. Also JAK-
STAT signaling and TLR oriented stimulation pathways were
upregulated (Figure 5) in patients able to respond to TIV. It
is important to mention that other genes, such as IL21 and
TNSF13 (APRIL), previously reported to be crucial in the T-B cell
interaction (23, 24), resulted informative after in vitro stimulation
to define responders. According to our previous analysis (15)
these data may suggest that the functional expression of these
genes after in vitro stimulation is able to predict the ability of
these cells to activate a functional cascade which sustain an
effective humoral response after vaccination.

Gene ontology analysis also revealed the expression of
chemokine receptors with complementary activity between IgD-
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TABLE 3 | Subsets and conditions importance ranking.

Correct classification Predicted probability of response

Cell type, subset,

Condition

No. Patients Correct (%) Rank Minimum Maximum Range Rank

B_REM_med_stim 17 100% 2 0.022 0.972 0.950 1

B_DN_stim 20 100% 1 0.084 0.916 0.832 2

T_TFH_med_stim 22 95% 3 0.210 0.790 0.580 3

T_PBMC_med 21 90% 6 0.258 0.742 0.484 4

B_AM_med_stim 21 86% 12 0.261 0.739 0.479 5

B_REM_stim 19 89% 7 0.271 0.729 0.459 6

B_AM_stim 22 86% 10 0.273 0.727 0.453 7

T_NT_med 22 91% 5 0.286 0.714 0.429 8

T_PBMC_med_stim 21 86% 13 0.296 0.673 0.377 9

T_PBMC_stim 21 86% 14 0.326 0.674 0.347 10

B_AM_med 21 81% 16 0.329 0.671 0.343 11

T_CD4_med 23 74% 20 0.347 0.653 0.305 12

B_REM_med 18 83% 15 0.366 0.593 0.227 13

B_DN_med_stim 17 94% 4 0.392 0.608 0.217 14

T_CD4_stim 23 87% 8 0.404 0.596 0.192 15

B_DN_med 19 79% 17 0.414 0.586 0.172 16

T_NT_stim 23 87% 9 0.418 0.582 0.164 17

T_CD4_med_stim 23 78% 18 0.427 0.573 0.146 18

T_NT_med_stim 22 86% 11 0.429 0.571 0.142 19

T_TFH_stim 23 78% 19 0.447 0.553 0.106 20

T_TFH_med 22 68% 21 0.481 0.519 0.038 21

All subsets and conditions were ranked both for the accuracy of classification and for the expected probability range. According to both rankings, the categories with the best classification

capacity, highlighted in red, were selected for the final score.

CD27- Double Negative (DN) B cells and pTFH. Importantly IL2
and IL2RA were both selected in the pTFH and DN, respectively.
These data may suggest how activation of this pathway after
in vitro stimulation represents a functional correlate of plasma
cell lineage commitment after in vitro stimulation as previously
reported in mice (25).

DISCUSSION

Definitive and predictive biomarkers of vaccination efficacy are
still largely unknown and may provide crucial information
in the design or improvement of existing vaccines. This gap
further applies to specific groups of patients presenting with
underlying immunological conditions which increase their risk of
suboptimal responses to vaccinations (4, 5). In the present study
we developed a predictive score of immunogenicity to seasonal
flu vaccination through an artificial intelligence approach fed
by data deriving from a novel in vitro gene expression testing
approach (IVIGET) performed prior to the immunization in a
cohort of HIV infected patients.

Systems biology has helped to develop specific predictive
assays in the oncology field. Also, targeted molecular assays have
played an increasingly important role in identifying prognostic
outcomes or predicting response to chemotherapy, starting
from tumor biopsies (26). Indeed, these assays, which are

now routinely performed in local pathology labs to help guide
treatment decisions in breast cancer (27) lung cancer (28),
and colorectal cancer (29), have been tested and validated on
tumor biopsies.

On the other hand, systems vaccinology has been often
analyzed in total blood or cell suspensions (e.g., PMBCs)
which present an high intrinsic variability due to transitory
confounding effects (e.g., concomitant infections or vaccination,
inflammation, systemic immune deficiency, etc.) which may
represent important variables making the aim of systems biology
even more challenging. In addition, specific changes in cell
frequency due to underlying immune defects or to physiologic
conditions (i.e., age, pregnancy) may importantly interfere with
the analysis of functional correlates of vaccine efficacy (11, 30).

Additional confounding effects are represented by inter-
individual differences such as gender, age, pre-existing immunity,
microbiota or systemic conditions which may further affect data
analysis and their interpretation (31–33).

Following this idea, over the last few years we have described
trancriptional signatures of vaccine response from purified
lymphocyte subsets or single Ag specific cells in VPs (14, 16,
17). Our data demonstrated how the analysis of purified cell
subpopulations may provide additional information compared
to total PBMCs, and how gene expression analysis after in vitro
stimulation may provide distinct predictive correlates of Ab and
cellular response upon TIV (16) in VPs. In the present study,
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TABLE 4 | Cross validation of the model.

ID Non responder Responder Predicted Observed

H19 0.639 0.361 Non.Responder Non.Responder

H26 0.288 0.712 Responder Responder

H3 0.445 0.555 Responder Responder

H37 0.669 0.331 Non.Responder Non.Responder

H38 0.613 0.387 Non.Responder Non.Responder

H40 0.683 0.317 Non.Responder Non.Responder

H41 0.613 0.387 Non.Responder Responder

H44 0.331 0.669 Responder Responder

H46 0.683 0.317 Non.Responder Non.Responder

H47 0.443 0.557 Responder Responder

H48 0.712 0.288 Non.Responder Non.Responder

H52 0.403 0.597 Responder Responder

H55 0.683 0.317 Non.Responder Non.Responder

H56 0.397 0.603 Responder Responder

H58 0.617 0.383 Non.Responder Non.Responder

H60 0.712 0.288 Non.Responder Non.Responder

H69 0.683 0.317 Non.Responder Non.Responder

H7 0.443 0.557 Responder Responder

H70 0.712 0.288 Non.Responder Non.Responder

H75 0.356 0.644 Responder Responder

H8 0.473 0.527 Responder Responder

H80 0.397 0.603 Responder Responder

H83 0.683 0.317 Non.Responder Non.Responder

Predicted and observed outcome are listed for all patients.

TABLE 5 | List of the genes used to build the five models with the highest

prediction accuracy.

Subset/condition Gene name

REM med_stim BATF, CCR2, CD69

DN stim DUSP4, HAVCR2, IL2RA, PDL1, PPP3CA, SAMHD1,

SELPLG, STAT3, TLR9

TFH med_stim ABCB1, DUSP4,FOXP3, ICOS, IFNG, IL2, IL21, LAG3,

MAPK3, PDCD1, PDL1, SOCS1, TNFSF13

PBMC med ADAM17, BCL6, CAV1,CCR6, GATA3, IL6RA, IL6ST, PKC.A,

BST2, CD3D, CXCR4, ICOS,ID2, IFNG, IL21R,IRF4,MAF,

PTX3

DN med_stim CAMK4, MX1, SELPLG, SOCS1, TLR9

In red are shown the up-regulated genes for the med and stim categories (DN stim, PBMC

med) and the genes with the highest 1 (stim-med) value in the Responders for the med-

stim categories (REM med-stim, TFH med- stim, DN med-stim. In blue are shown the

down-regulated genes for the med and stim categories and the genes with the lowest 1

(stim-med) in the Responders for themed-stim categories (REMmed-stim, TFHmed-stim,

DN med-stim.

our analysis approach complement the evidence produced on
single subsets applying state-of- the-art machine learning and
methodology to the in vitro gene expression testing (IVIGET)
which is focused on cell subsets directly involved in the immune
responses upon Influenza vaccination. After multiple gene
selection methods were applied for all subsets and conditions the
score was interrogated at the time of vaccination on the ability
to predict immune response to TIV in a previously investigated

cohort of HIV infected patients (14). Albeit limited by the small
sample size, which made the nested cross validation unfeasible,
our analysis was able to perform a selection of genes and
conditions able to predict vaccination response in specific B and
T cell subsets. Conditions with higher prediction probability and
correct classification were further ranked and selected to produce
the final score which was blindly tested on the cohort. To further
overcome the contamination of the test set, the 5 top ranked
subsets after single-model re-analysis confirmed the stability of
the accuracy and suggests how the model is able to build a
predictive score for vaccination response by selecting important
subset/condition to be validated in larger scale studies. Four out
of five of the subset/condition selected for the final score included
the stimulated condition and more precisely three out of the
five refer to data derived from the difference in gene expression
between the stimulated and unstimulated condition. Overall
these results suggest that this in vitro stimulation approach in
combination with others in vitro tests recently described (34)
may provide important information in term of prediction of
vaccine responsiveness and early pre-clinical selection of effective
vaccine candidates for VPs. Our data may thus confirm that gene
expression after a relatively short (16 h) in vitro stimulation may
emulate early transcriptional changes that were analyzed in vivo
both in mice (35) and in humans (36, 37). Early transcriptional
changes, derived from whole transcriptome sequencing from
blood samples collected at day 0, 1, 3, and 7 after immunization
were shown to be informative in predicting long-term humoral
and cell mediated responses to Hepatitis B, Ebola (38) and yellow
fever (36) vaccinations. Interestingly the majority of differentially
expressed genes (DEGs) resulted from the analyis between day 1
or day 3 and day 0 suggesting that early signatures were able to
orchestrate and correlate with long term memory responses. In
line with this, our analysis revealed how the majority of selected
features were among Differentially Induced Genes (DIGs) after
a peptide mix stimulation of 16 h). Following these evidence
we also recently reported how early signatures after in vitro
stimulation in Ag specific B cells were able to define the B cell fate
after re-encountering of the antigen (39). Overall these findings
suggest that both the analysis of purified cells, directly involved in
the immune response triggered by a peptide-specific stimulation
may provide distinct signatures of immunogenicity that may be
useful to implement vaccination predictive tools.

It is important to consider as a limit of the tools presented
here, that effectiveness of the score may be specific to the
seasonal influenza vaccination (e.g., 2009) and may not apply to
other viral strains that make up the vaccine as it continuously
changes over the years. It was noted by Nakaya et al. that
transcriptional differences differed between the Live Attenuated
Influenza Vaccine and the TIV with respect to both classes of
genes and cell subsets orchestrating the early immune response
(40). Indeed, in a targeted microarray confirmatory analysis on
sorted subsets, B cells showed higher DEGs in TIV vaccinee
compared to LAIV with a peculiar enrichment in Antibody
secreting cells genes (39, 40). Additional studies will be needed
to cross validate the score in yearly vaccinated patients and in
a vaccine-type/year specific manner. The overfitting caused by
the model may represent another limit of the study (41). To

Frontiers in Immunology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 559590

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cotugno et al. IVIGET to Predict Flu-vaccination Immunogenicity

FIGURE 5 | Enrichment analysis performed for REM med-stim and TFH med-stim genes on GO terms and pathways. (A) Bar plots with the top 10 terms sorted by

p-value. (B) Cytokine-cytokine receptor Kegg map that shows in red the REM med-stim genes and in blue the DN stim gene.

reduce this potential problem, we adopted the Adaptive Boosting
algorithm which is less susceptible to overfitting through implicit
regularization and attempts to combine rules to create a more
accurate prediction (http://rob.schapire.net/papers/explaining-
adaboost.pdf). Moreover, we have implemented a robust feature
selection based on four different methods and we used a dataset
balanced between responders and non-responders. To further
reduce the risk of overfitting and to increase the accuracy of the
models, it would be necessary to increase the sample size and
possibly use two independent datasets for the testing and training
phases (42).

As previously discussed, the score applies on a relatively
limited and curated panel of genes that cannot provide a
complete mechanistic insight on the biology orchestrating the
immune response upon TIV. However, the genes selected by
the score confirm the accumulating evidence on B and T
lymphocytes functional data which have been produced in the
last few years in patients differentially responding to TIV. Indeed,
previous results in pTFH after in vitro stimulation highlight the
importance of IL21, found upregulated in R (43), confirming
previous report in children, adults and elderly able to respond to
TIV (44). Also the IL2 pathway, in line with previous evidence
(42, 43), seems negatively correlated to the ability to respond
to the vaccination when over expressed by pTFH. Overall, these
data suggest how IL2 expression triggers a Th1 oriented immune

response, rather than long term memory, which was confirmed
in another study investigating the correlation between circulating
TfH and immunogenicity upon Ebola virus vaccination (44).
Our data further add information about the IL2 pathway in the
B cell compartment as it was noted that IL2RA was included
by the gene selection of DN after in vitro stimulation. The
IL2 effect on human naïve B cells was recently investigated
for the ability to induce plasmacell differentiation through
ERK signaling after BACH2 silencing (25). For the first time,
we showed that in TIV non responders, IL2RA receptor was
upregulated in the so called “double negative” B-cell subset
(expressing neither CD27 nor IgD), recently reported to be
accumulated in aging populations (45). Overall, these data may
suggest how the lack of downregulation in the B cell counterpart
after IL2 production from the circulating TFH may interfere
with an adequate memory response. Additional studies on this
subset will be needed in order to define whether a manipulation
or an adjuvanted vaccination specifically targeting the IL21/IL2
molecule production and receptors expression may increase
vaccine immunogenicity.

Also Resting memory after in vitro stimulation were selected
by the score as an informative subset of TIV response. BATF,
a transcription factor which was recently showed to induce
plasmacell differentiation of memory B cells after CD40L/CD40
signaling (46) was upregulated after H1N1 peptides in vitro
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stimulation of TIV responders. Also CD69 and CCR2 genes
emerging from the score in the Resting memory subset confirm
the importance of a T cell mediated response.

Although this analysis cannot provide a full mechanistic
insight of the molecular mechanisms underlying the immune
response since it is performed on a curated and limited panel
of genes rather than the full transcriptome, it is promising in
providing functional correlates to be used in a prediction score.
Additional mechanistic analysis with deeper transcriptional
analysis should confirm findings from these data.

In conclusion our analysis suggest that the in vitro stimulation
and gene expression analysis on purified cell subsets that are
involved in the immune responses upon vaccination, may
represent valuable information to build a predictive score of
immunogenicity. These analyses should be supported by future
studies with larger sample size in order to validate this score
in HIV infected children. These results may inform novel and
more effective immunization strategies in HIV infected children
and in other vulnerable population presenting with suboptimal
immune responses.

Future studies, beyond the current approach, to evaluate
protective immune responses remains an important goal to
facilitate the interpretation of response to existing and emerging
vaccines, particularly in VPs.
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