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Rationale: The recently discovered meningeal lymphatic vessels (mLVs) have been
proposed to be the missing link between the immune and the central nervous system. The
role of mLVs inmodulating the neuro-immune response following a traumatic brain injury (TBI),
however, has not been analyzed. Parenchymal T lymphocyte infiltration has been previously
reported as part of secondary events after TBI, suggestive of an adaptive neuro-immune
response. The phenotype of these cells has remained mostly uncharacterized. In this study,
we identified subpopulations of T cells infiltrating the perilesional areas 30 days post-injury (an
early-chronic time point). Furthermore, we analyzed how the lack of mLVs affects the
magnitude and the type of T cell response in the brain after TBI.

Methods: TBI was induced in K14-VEGFR3-Ig transgenic (TG) mice or in their littermate
controls (WT; wild type), applying a controlled cortical impact (CCI). One month after TBI,
T cells were isolated from cortical areas ipsilateral or contralateral to the trauma and from
the spleen, then characterized by flow cytometry. Lesion size in each animal was
evaluated by MRI.

Results: In both WT and TG-CCI mice, we found a prominent T cell infiltration in the brain
confined to the perilesional cortex and hippocampus. The majority of infiltrating T cells
were cytotoxic CD8+ expressing a CD44hiCD69+ phenotype, suggesting that these are
effector resident memory T cells. K14-VEGFR3-Ig mice showed a significant reduction of
infiltrating CD4+ T lymphocytes, suggesting that mLVs could be involved in establishing a
proper neuro-immune response. Extension of the lesion (measured as lesion volume from
MRI) did not differ between the genotypes. Finally, TBI did not relate to alterations in
peripheral circulating T cells, as assessed one month after injury.
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Conclusions:Our results are consistent with the hypothesis that mLVs are involved in the
neuro-immune response after TBI. We also defined the resident memory CD8+ T cells as
one of the main population activated within the brain after a traumatic injury.
Keywords: controlled cortical impact (CCI), meningeal lymphatic vessels, CD8+ T lymphocytes, resident memory
T cells, Chronic Traumatic Brain injury
INTRODUCTION

Traumatic brain injury (TBI) is among the top causes of death
and disability in adult life (1, 2). It is estimated that at least 70
million people worldwide incur TBI every year (3). The number
of prevalent cases (as reported for 2016) is above 55 million, with
patients suffering from a wide range of lifelong physical and
psychological invalidities (4).

TBI is defined as an alteration in brain function, or other
evidence of brain pathology, caused by an external force (5),
which results in immediate neuronal cell death, diffuse axonal
injury, ischemia, and hemorrhage (6). These primary insults
initiate a progressive cascade of secondary injuries, which
include macrophage infiltration (7), neuro-inflammation
(microglia and astrocyte activation associated with cytokine
production), edema formation, oxidative stress, neuronal
necrosis and apoptosis, and white matter atrophy (6).
Secondary injuries can progress for years in patients and
rodent models of TBI, and cause neurological and psychiatric
deficits associated with the pathology (8).

Recruitment of peripheral immune cells, including T
lymphocytes, into the brain is among the secondary events that
have been described following TBI (9–12). Two distinct waves of
infiltrating CD3+ T cells have been reported in the injured brain.
First, a massive infiltration immediately commences after trauma
and peaks 3 days post-injury (dpi) (9). After one month, there is
a late adaptive immune response with a second recruitment,
which persists chronically (11). However, the mechanisms and
the consequences of the activation of the adaptive immune
system after TBI are still poorly understood.

A proper immune surveillance of the brain was long disputed
(13), due to the lack of a classical lymphatic system within the
central nervous system (CNS). However, recent studies have
described the presence of anatomically distinct lymphatic vessels
in the meninges surrounding the brain and the spinal cord.
These meningeal lymphatic vessels (mLVs) preferentially drain
the cerebrospinal fluid together with cells and macromolecules
into the deep cervical lymph nodes (dcLNs) (14–17). Within
these secondary lymphoid organs, brain-derived antigens are
presented to resident T lymphocytes, evoking different cellular
fate and immune responses based on the inflammatory milieu. It
has been demonstrated that dcLNs, together with superficial
cervical LNs (scLNs), play a specific role in neuro-immune
interaction, ensuring the protection of brain cells by promoting
a non-cytotoxic immune response (18–20). From this
prospective, mLVs and dcLNs are essential components of a
putative specific CNS lymphatic system, and the mLVs could be
essential in the activation of immune responses to brain insults.
org 2
The aim of our work is to better characterize the late adaptive
immune response and to decipher the mechanisms
underpinning the activation of T lymphocytes after TBI,
focusing on the specific role of mLVs in this process. In this
regard, we induced a cerebral contusion in the cortex of
transgenic K14-VEGFR3-Ig (TG) mice that completely lack
lymphatic vessels in several tissues, including the meninges
(16, 21, 22). One month after brain injury, infiltrating T
lymphocytes and circulating peripheral T cell populations in
the spleen were phenotyped by flow cytometry. MRI was used to
evaluate lesion size by comparing TG animals to their wild type
(WT) littermates. We determined the persistence of putative
resident memory cells mediating a CD8+ cytotoxic immune
response in the perilesional cortical areas after TBI. We further
demonstrate that a functional mLVs are important for the neuro-
immune interaction after TBI, and the lack of mLVs results in the
imbalance of the evoked T cell immune response. Our data also
show that the TBI-elicited response in the CNS is specific, and
that the analysis of the systemic immunity does not reflect the
immune activation observed within the brain. No differences in
MRI cortical lesion were found between the two genotypes. We
suggest that the brain resident memory T cells, presenting an
effector phenotype, are part of the cellular components
characterizing the secondary injuries after TBI.
MATERIAL AND METHODS

Mice
Initial breeding pairs of K14-VEGFR3-Ig mice [C57BL/
6JOlaHsd background (21)] were transferred from the
University of Helsinki, and the colony was further expanded
and maintained at University of Eastern Finland (Kuopio,
Finland). Wild type and transgenic K14-VEGFR3-Ig mice used
in all the experiments were littermates. Genotype screening was
routinely confirmed by polymerase chain reaction analysis of ear
punch samples. Mixed WT and TG mice were housed in
standard laboratory cages (four animals per cage, until surgery)
in a controlled enriched environment (constant temperature,
22 ± 1°C, humidity 50–60%, lights on 07:00–19:00), with food
and water available ad libitum (23). After TBI induction, mice
were kept two per cage, separated individually by a pierced
partition. All animal procedures were approved by the Animal
Ethics Committee of the Provincial Government of Southern
Finland (ESAVI-2018-008787) and performed in accordance
with the guidelines of the European Community Council
Directives 2010/63/EU.
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Controlled Cortical Injury Mouse Model of
Traumatic Brain Injury
All surgical procedures were performed aseptically whenever
possible. Adult, 5 month-old male mice were deeply anesthetized
with isoflurane (5% for induction, 1.0–1.5% for maintenance, in
0.5 L/min air; see Supplementary Table 1), injected with
Carprofen (4 mg/Kg; s.c.) and the heads fixed to a stereotaxic
frame (Kopf, Tujunga, USA). The scalp was shaved and then
scrubbed (3x) with Betadine (povidone-iodine 10%) and 70%
ethanol alternately, then local anesthesia of 2% Xylocain gel was
applied. After skull exposure, a 5 mm circular craniotomy was
manually drilled over the left parieto-temporal cortex, with the
posterior edge of the craniotomy apposed to the lambdoid suture
and the right edge to the sagittal suture. In order to reduce
heating during manual craniotomy, the skull was irrigated with
cold 0.9% saline solution. The carved bone was carefully
removed, without disrupting the underlying dura, and placed
in 1% Betadine solution. Thereafter, the animal was disconnected
from isoflurane anesthesia for 5 min [stage 3 plane 1 according to
Guedel’s classification (24)], and CCI was induced using an
electromagnetic stereotaxic impact actuator (ImpactOne, Leica,
Richmond, VA, USA). The 3 mm blunt tip of the impactor was
adjusted to the center of the exposed dura perpendicular to the
brain surface, and the impact was administered at a depth of
0.5 mm, speed of 5.0 m/s, and dwell time of 100 ms. The total
duration of the craniotomy procedure including anesthesia
induction was 35–40 min (Supplementary Table 1). After the
impact, the mouse was reconnected to the isoflurane system and
the skull secured with bone cement (Selectaplus + Palacos R+G
50/50). The scalp was sutured and treated with Cicatrene
powder (Neomycin + Bacitracin) and Terramycin spray
(Oxytetracycline). The total duration of post-impact surgery
was 10 min. The mice were injected i.p. with 1 ml pre-warmed
sterile saline (35°C) and allowed to fully recover in an incubator
at 32°C. Mice were followed for the subsequent 48 h for any signs
of illness or distress, in which case Carprofen was administered.
Daily examination was performed for general health/mortality
and morbidity for the rest of the study. No mortality
was observed.

Craniotomy-related neuroinflammation has been previously
reported in this model and the craniotomy itself (surgery) can be
considered a form of mild brain trauma (25, 26). Moreover, CCI
is a model of penetrating injury, involving dura damage, which
has a severity that bypasses the possible effect of meningeal
inflammation related to the craniotomy. The aim of our study is
to characterize the adaptive immunity in response to a moderate
TBI. Therefore, we did not analyze how differences in trauma
severity (i.e., CCI vs. sham-surgery) can affect the neuro-immune
response. In compliance to the 3R principle, we excluded the
sham-operated animals and used naïve mice not exposed to the
surgical procedure as proper controls.

In Vivo Magnetic Resonance Imaging and
Lesion Volume Definition
MRI data were acquired 21 days after TBI induction in a 7T
horizontal magnet (Bruker Pharmascan, Ettlingen, Germany).
Frontiers in Immunology | www.frontiersin.org 3
Images were acquired using a four-channel mouse brain surface
coil, a 3D T2-weighted Fast Spin-Echo sequence (RARE,
repetition time 1.5 s, effective echo time 48 ms, 16 echoes per
excitation) with 100 μm isotropic resolution (field of view
25.6 mm x 128.8 mm x 9.6 mm; acquisition matrix 128 x 256
x 96). Scans were performed with the mouse under 1.0–1.5%
maintenance isoflurane anesthesia (70/30 N2O/oxygen gas
mixture, 1 L/min). The average acquisition time was 40 min,
including anesthesia induction. A pressure sensor was used to
monitor the respiratory rate, and respiratory gating was used to
minimize motion artifacts.

T2-weighted images were used to evaluate the extent of the
lesion (Figure 5, and Supplementary Figures 4 and 5). Regions
of interest (ROIs) were outlined for volumetric analysis, avoiding
the brain-skull interface and ventricles, throughout the entire
extension of the brain (excluding olfactory bulbs and
cerebellum). Lesion was defined as cortical/subcortical areas
with hyper-intense signal (cystic lesion) and/or signal void
areas (tissue cavity) from T2-weighted images (27, 28).
Volumes of the lesion and of the ipsilateral and contralateral
hemispheres were measured using Aedes (http://aedes.uef.fi), an
in-house written MatLab program (MathWorks, Natick, MA).
The lesion volume and the volumes of ipsilateral and
contralateral healthy hemispheres were calculated from 80
consecutive slices in the coronal plane and adjusted in the
sagittal plane (66 slices) and in the axial plane (99 slices) with
a volume resolution of 200 x 500 x 100 μm.
Quantification of Brain Contusion Area
and Brain Atrophy
Measured volumes from MRI analysis were used to quantify the
volume of the brain contusion and the brain atrophy, as
previously described (29, 30). The relative percentage of infarct
volume was calculated using the following formula:

contusion volume  %ð Þ =  
Vc  –   Vi  –  Vlð Þ

Vc *100

and brain atrophy was determined as:

brain atrophy  %ð Þ =  
Vi  –  Vcð Þ

Vc *100

where Vc = volume of contralateral hemisphere; Vi = volume
of ipsilateral hemisphere; and Vl = measured lesion volume.

Analysis was performed blinded to the study groups. The
contusion volume was measured from 22 TBI mice from the
following experimental groups: WT–CCI, n = 13; and TG–CCI,
n = 9. Analyses of contusion volume and brain atrophy
progression at day 3 and day 14 has been conducted on ad hoc
prepared mice: WT–CCI, n = 4; and TG–CCI, n = 4.

Cell Isolation of Leukocytes
Thirty days after TBI induction, mice were anesthetized with an
overdose of Avertin (Sigma, St. Louis, MO, USA) then
transcardially perfused with ice-cold heparinized saline (6 min,
6 ml/min). Brains were collected and placed on ice in calcium
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and magnesium-free Hanks Balanced salt solution (HBSS) with
25 mM HEPES (both from Sigma).

Based on the analysis of MRI, we defined a priori the mean
extension of the lesion and of the perilesional areas for all the TBI
mice. Brains were sliced using a 1 mm scored matrix (Zivic
Instruments, Pittsburgh, PA, USA): 6 mm thick coronal cut
encompassing the lesion area was split along the central sagittal
axis into left injured and right uninjured sides. Cortical areas
enclosed between the rhinal and the sagittal sulci, and the
corresponding hippocampi, were further isolated, pooled
together, and placed in HBSS+HEPES. From the injured sides,
penetrated cortical areas were visually identified (lesion area -
Supplementary Figure 1) and carefully excised along the lesion
ridge to pick only the perilesional cortex for further purification
of leukocytes.

Brain samples were minced with scissors and then incubated
at 37°C on a roller for 30 min in digest buffer containing 1.25 mg/
ml Collagenase Type 4 (Worthington, Lakewood, NJ, USA) and
100 U/ml DNAseI (Sigma) in DMEM with GlutaMAX (Gibco
Thermo Fisher Scientific, Waltham, MA, USA). Samples were
filtered through a 100 μm cell strainer (Corning, Weisbaden,
Germany), and centrifuged at 600 x g for 5 min. Myelin debris
was removed using Debris Removal Solution (Miltenyi Biotech,
Bergisch Gladbach, Germany) according to the manufacturer’s
protocol. Briefly, cells were resuspended in ice-cold Dulbecco’s
phosphate buffered saline (D-PBS, Sigma) with Debris Removal
Solution, then overlaid with ice-cold D-PBS and centrifuged at
2,500 x g for 10 min at 4°C. Supernatant including myelin layer
was carefully removed leaving the clear phase and the pellet.
Samples were washed in ice-cold D-PBS, centrifuged at 600 x g
for 10 min at 4°C, and the recovered pellets were stained directly
for flow cytometry.

Spleens and dcLNs were separately collected in ice-cold HBSS+
HEPES and each processed by crushing through a 70 μm cell
strainer (Corning). dcLNS were washed with ice-cold D-PBS
containing 1% bovine serum albumin (BSA) and 2 mM
ethylenediaminetetraacetic acid (EDTA), centrifuged 500 x g for
10 min and resuspended in RPMI-1640 (all from Sigma). Crushed
spleens were washed with ice-cold HBSS+HEPES, centrifuged 500
x g for 5 min before red blood cells were lysed in 1X PharmLyse
(BD Biosciences, San Jose, CA USA) for 8 min at room
temperature (RT). Lysed cells were washed with HBSS+HEPES,
centrifuged as above, resuspended in RPMI-1640 (Sigma), and
counted on a Bürker grid hemocytometer.

Flow Cytometry Staining and Analysis
Spleen cells (500,000 per mouse), and total cells isolated from
dcLNs and brain were each stained separately. Cells were first
washed with D-PBS, and centrifuged at 400 x g for 5 min. The
supernatant was removed, and then Zombie NIR fixable viability
dye (1:1,000 BioLegend, San Diego, CA, USA) was added for
15 min at RT. Without washing, CD16/32 FcR block (5 μg/ml,
BD Biosciences) was added followed by the appropriate antibody
mix. Antibodies used: TCRb PE-Cy7 (1:100 or 1:200 clone H57-
597), CD44 PE (1:300 clone IM7) (both BioLegend); CD8a APC-
R700 (1:150 or 1:200, clone 53-6.7), CD69 BV421 (1:100, clone
H1.2F3), CD25 BB515 (1:150, clone PC61) (BD Biosciences);
Frontiers in Immunology | www.frontiersin.org 4
CD4 FITC (1:500, clone RM4-5), CD4 eFluor506 (1:500,
clone RM4-5), CD8 PerCP eFluor710 (1:300, clone 53-6.7),
CD44 APC (1:300 or 1:400, clone IM7), FoxP3 (1:40, clone
FJK-16s) (eBioscience Thermo Fisher Scientific, Waltham, MA,
USA); CD69 APC (1:20, clone H1.2F3, Miltenyi Biotech). All
antibodies were used at titers determined empirically under
experimental conditions.

Cells were incubated for 30 min at 4°C. Afterwards, samples
were washed twice in HBSS with 1% FBS and then run on
FACSAriaIII (BD Biosciences) equipped with 488 and 633 nm
lasers, or on CytoFLEX S (Beckmann Coulter) equipped with
405, 488, 561, and 638 nm lasers, both with standard
configuration. Compensations were made using OneComp and
UltraComp Beads for antibody fluorescence (eBioscience
Thermo Fisher Scientific) and ArC amine reactive beads for
viability dye (Molecular Probes, Eugene, Oregon, USA).
Fluorescent-Minus-One (FMO) controls were made to ensure
gating. These control samples contained all antibodies except one
to display fluorescent spreading error of compensated data in
each channel (31). Data were analyzed using FCSExpress v5
(Denovo Software, Los Angeles, CA, USA) and FlowJo v10.4
(Treestar, Portland, OR, USA). The gating strategy used for the
flow cytometry analysis of brain-isolated immune cells is
reported in Supplementary Figure 1.

CD3 Immunohistochemical Staining
Three mice per genotype were injured and sacrificed 30 days
after TBI for the immunohistochemical (IHC) estimation of T
lymphocyte localization in the brain. Mice were transcardially
perfused with ice-cold NaCl 0.9% followed by 4% PFA. Brains
were dissected and post-fixed in 4% PFA by immersion for 24 h
at 4°C. Thereafter, specimens were cryoprotected by incubation
in 20% glycerol [in 0.02 M potassium phosphate-buffered saline
(KPBS), pH 7.4] for 48 h, frozen in N-pentane (3 min at -60°C),
and stored at -70°C until sectioning. Frozen coronal sections
were cut 25 μm with a sliding microtome, and collected in
solution containing 30% ethylene glycol, 25% glycerol in 0.05
M phosphate buffer (PB) and stored at -20°C until further
processing. Three sections per brain (approx. 700 μm apart,
encompassing the antero-posterior extension of the lesion), were
used to estimate the localization of CD3+ infiltrating T
lymphocytes by IHC. Floating sections were washed in three
changes of 1X PBS before being incubated for 1 h at RT in
blocking solution [2% normal goat serum, 1% bovine serum
albumin (BSA) 0.1% Triton X-100 and 0.05% Tween20 in PBS].
Sections were incubated overnight at 4°C with rat anti-mouse
CD3ϵ (1:500, clone 17A2, eBioscience Thermo Fisher Scientific)
and mouse anti-GFAP (1:500, Sigma) in staining buffer PBS with
1% BSA and 0.05% Triton X-100. After washing 3x with PBS,
sections were incubated with conjugated goat secondary
antibody anti-rat Alexa Fluor 647 and anti-mouse Alexa Fluor
546- in above staining buffer for 1 h at RT (Respectively 1:500
and 1:250, both Thermo Fisher Scientific). Finally, the sections
were washed 3x in PBS and 10 min in 1X PB and mounted on
Superfrost Plus slides (Thermo Scientific) with Vectashield
containing DAPI (Vector Laboratories, Burlingame, CA, USA).
Panoramic photomicrographs of the stained sections were
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captured using 20X objective with a fluorescence microscope
(Zeiss Observer.Z1), and high-resolution Z-stack images were
captured using 20X objective with a confocal microscope (Zeiss
LSM710). ZEN 2012 software (Carl Zeiss GmbH) was used for
image processing.

Microtubule-Associated Protein 2, NeuN,
and Glial Fibrillary Acidic Protein Staining
and Analysis
Three sections located at bregma level +0,02, -2,06, and -4,04
mm (corresponding to the anterior and posterior edges and to
the center of the lesion site) were selected from the previously
sliced brains and stained for the Microtubule-Associated Protein
2 (MAP2; neuronal dendrites), the neuronal antigen NeuN, and
the Glial Fibrillary Acidic Protein (GFAP; Type III intermediate
filaments in astrocyte). For immunofluorescence procedure,
sections were washed in blocking solution (4% BSA, 0,2%
Triton X-100 in PBS) for 1 h at RT, followed by overnight
incubation at 4°C with the following primary antibodies diluted
in blocking solution: mouse anti-GFAP (1:500, Sigma G3893),
guinea pig anti-NeuN (1:500, Millipore ABN90), rabbit anti-
MAP2 (1:300, Abcam ab32454). After washing in PBS, sections
were incubated for 2 h at RT with secondary fluorescent
antibodies in blocking solution: Alexa Fluor 546-conjugated
goat anti mouse (1:250), Alexa Fluor 488-conjugated goat anti
rabbit (1:250), Alexa Fluor 633-conjugated goat anti guinea pig
(1:200 all from Invitrogen, Thermo Fisher Scientific). Next,
sections were washed in PBS before being mounted onto glass
slides and coverslipped using Fluoromount-G (Thermo
Fisher Scientific).

Image acquisition was performed using Zeiss Axio Observer
Z1 microscope, equipped with a Zeiss AxioCam MR R3 camera,
mounting a 10x lens to obtain images from whole-brain sections.
Magnification images of infiltrating T cells (Figure 1) were
acquired using a Zeiss LSM710 confocal microscope, mounting
a 25x LCI plan objective (340 x 340 μm, 21 Z-stack slices/image,
20 μm total thickness).

Image analysis was performed using ImageJ software. ROIs
were manually selected on images taken from each stained
section. After background subtraction, the mean gray value
was measured within each ROI (32).

Statistical Analysis
Data Exclusion Criteria
We conducted eight independent experiments, where a total of
n = 16 “WT CCI”; n = 12 “WT naïve”; n = 13 “TG CCI” and n =
10 “TG naïve” mice have been analyzed.

Before statistical analysis, brain-derived samples were
checked for their quality, based on total T cell recovery. Each
sample has been considered independently, and we evaluated the
T cell viability and the total number of T cells recovered. Brain
samples where T cell viability was below 75% or the total number
of live T cells was below 100 counts were a priori excluded from
the analyses.

Considering two genotypes (WT and TG) and three
experimental conditions (T cells infiltrating the brain tissue
Frontiers in Immunology | www.frontiersin.org 5
ipsilateral to the lesion – “ipsi”; T cells infiltrating the tissue
contralateral to the lesion – “contra”, and T cells from naïve
brain tissue – “naïve”), a total of n = 12 “WT ipsi”; n = 7 “WT
contra”; n = 5 “WT naïve”; and n = 10 “TG ipsi”; n = 7
“TG contra”; n = 9 “TG naïve” were finally used for
statistical analyses.

T cell viability >90% was used for the quality requirement of
spleen and dcLN samples. Moreover, we excluded spleen samples
presenting more than 50% of necrotic tissue (defined as dark red
non-perfused area in the spleen). Considering two genotypes
(WT and TG) and two experimental conditions (CCI and naïve),
a total of n = 13 “WT CCI”; n = 12 “WT naïve”; and n = 11 “TG
CCI”, n = 9 “TG naïve” spleens were used for subsequent
statistical analyses. Deep cervical lymph nodes have been
analyzed in n = 4 “WT CCI” and n = 6 “TG CCI” mice.

Statistical Analysis of Brain- and dcLNs-Related
Data
Due to the small amount of T lymphocytes in naïve brains, brain
samples were fully acquired on the flow cytometer, and for each
population we analyzed both the absolute counts and the
percentage referred to the respective parent population.
Statistic models were applied considering the nature of our
data (counts or percentages) and the experimental groups
analyzed. A binomial negative regression was applied to assess
statistical differences in the counts of total T cells, of CD4+, and
of CD8+ cells between the two genotypes or within the same
genotype between independent data. The binomial negative
regression considered both genotype and treatment and their
interaction. Because data from ipsi and contralateral brain sides
are dependent within the same genotype, a linear mixed model
was used to evaluate the differences in the total number of CD4+
and CD8+ T lymphocytes between “WT ipsi” vs. “WT contra” or
“TG ipsi” vs. “TG contra”. As the data were not normally
distributed (Shapiro-Wilk test p-value < 0.05), statistical
differences between independent data in CD4+ and CD8+ T
cell populations (expressed as percentage of T cells), as well as in
the percentages of respective subpopulations expressing CD44
and/or CD69 antigens, were analyzed performing the Kruskal
Wallis test. Dependent data within the same genotype (ipsi vs.
contra) were analyzed performing the paired samples Wilcoxon
signed ranked test. In all tests, Bonferroni correction was used to
adjust p-values in multiple comparison.

Statistical Analysis of Data From Spleen
All data from spleen are expressed as percentage of the parent
population. After establishing the normal distribution of the data
(as well as skewness and kurtosis by D’Agostino K-squared test),
statistical differences were analyzed performing the Kruskal
Wallis test or the paired samples Wilcoxon signed ranked test,
depending on the nature of the data (independent or dependent),
followed by Bonferroni adjustment.

Statistical Analysis of Magnetic Resonance
Imaging Data
The differences in contusion volume and in brain atrophy were
analyzed performing the Kruskal Wallis test (21 dpi) or using a
January 2021 | Volume 11 | Article 559810
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linear mixed model to evaluate the differences between day 3 and
day 14 post-TBI. Correlation between TBI-related tissue loss and
infarct volume was analyzed by Pearson linear regression, after
checking for normal distribution of data as described above.

Statistical analyses were performed using R v3.5.3 software/
computing environment (The R foundation for statistical
computing). All software packages (MASS, psych, agricolae,
multcomp, and lme4) (33–37) were taken from the
Comprehensive R Archive Network mirror sites (CRAN;
http://CRAN.R-project.org/package=boot). Significance was
accepted at the level of p <0.05.
RESULTS

T Cells Preferentially Infiltrate the Cortical
Areas Ipsilateral to the Lesion
The presence of infiltrating T lymphocytes in the parenchyma is
a signature of brain lesion. At a chronic time point after TBI, we
localized the T cell presence in the area of injury and in other
Frontiers in Immunology | www.frontiersin.org 6
brain areas not directly affected by the penetrating injury. For
this purpose, we stained brain sections of both WT and TG mice
at 30 days post-injury (dpi) for the presence of CD3, a specific
marker of T lymphocytes. As expected, T cells are present within
the boundaries of the injured area (Figures 1A, B). CD3+ cells
are also spread throughout the cortical parenchyma, both in
proximity to the lesion core (Figure 1C) and in more distal areas
ipsilateral to the lesion along the cortical layers. Positive
immunostaining was also found along the corpus callosum
(Figures 1A, B and magnification in D), the striatum, the
hippocampus, and the thalamus ipsilateral to the lesion
(Figure 1A). Dim CD3+ signal was present in the contralateral
hemisphere, indistinguishable from non-injured mice (data not
shown). There was no evident difference in T cell distribution
between WT and TG mice: unevenly scattered T cells (Figures
1C, E) and T cell clusters (Figure 1D) were both observed within
the parenchyma, in the perilesional areas.

Next, we quantified and characterized the populations of
infiltrating T lymphocytes using flow cytometry, focusing on
the neo-cortical areas (cortices and hippocampi), excluding the
FIGURE 1 | Localization of CD3+ T cells in the perilesional cortices. Representative images of brain sections from CCI mice stained for anti-CD3e (T lymphocytes;
white) and anti-GFAP (astrocytes; red), 30 dpi (A, B). The lesion edges in each section are marked with a segmented yellow line. T cells are present within the lesion
(star in A and B), in the perilesional cortex (box in A and B, and panel C) and in the corpus callosum (yellow arrow heads in A). CD3+ cells were also observed in the
striatum (white arrow in A) and in the thalamus (white arrow head in A). Both scattered cells and presumably-encephalitogenic clusters of T cells (panel D) were
found within the parenchyma. Panels (C) represent a magnification of the area depicted within the white boxes in A. Panels (D, E) represent a magnification of the
areas depicted within the white box in B. CD3e: white; GFAP: red; DAPI: blue. (A and B, scale bar = 500 µm; C-E, scale bar = 50 µm).
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lesion area, which is characterized by a dysregulated entrance of
immune cells (38).

Thirty days after brain trauma induction in TG and littermate
WT mice, leukocytes were purified separately from the
perilesional and the contralateral cortices (or from the cortex
of both WT and TG naïve mice). T cells were identified by
staining for T cell receptor (TCRb) and the presence of the co-
receptors CD4 and CD8. Live T cell counts per experimental
condition is reported in Figure 2. A significant ~10-fold increase
of infiltrating T cells was found in bothWT (median = 1,449; Q3-
Q1 = 1,692) and TG (median = 1,741; Q3-Q1 = 892) mouse
brains in the perilesional cortices, compared to corresponding
naïve non-injured mice (WT naïve: median = 242; Q3-Q1 = 105;
TG naïve: median = 197; Q3-Q1 = 66; for statistical analysis, see
Figure 2C). In the cortices contralateral to the lesion, the number
of TCRb+ cells did not different from naïve brains (WT contra:
Frontiers in Immunology | www.frontiersin.org 7
median = 201; Q3-Q1 = 84; TG naïve: median = 239; Q3-Q1 =
155; for statistical analysis, see Figure 2C). No genotype-related
differences were observed (Figure 2A).

Perilesional-Infiltrating T Cells Have a
Predominant CD8+ Phenotype, and the
Constitutive Lack of mLVs Is Associated
with a Depressed CD4-Mediated T Cell
Response
We next analyzed the CD4:CD8 ratio within the infiltrating T
cells (Figure 2B) and found a prevalence of CD8+ T cells in all
the experimental conditions, regardless of the presence of brain
injury. However, limited to the perilesional cortex of TG mice,
we detected a significant skew of the CD4:CD8 ratio towards
CD8+ cells (CD4:CD8 ratio TG ipsi = 0.097 ± 0.053; WT ipsi =
0.350 ± 0.197; ChiSq: 8.836, mean ranks: 5.50/13.27, p = 8e-04),
A B

C

FIGURE 2 | T cell brain infiltration is confined to the perilesional cortices, 30 dpi. Box plot representing the number of infiltrating T cells, defined by expression of
TCRb (A) and stacked bargram representing the percentage of CD4+ and CD8+ T cells (B) in the brain of WT and TG mice, as analyzed in the perilesional and
contralateral cortices (ipsi and contra, respectively; WT ipsi, n = 12; WT contra, n = 7; TG ipsi, n = 10; TG contra, n = 7), or in intact cortices from respective naïve
mice (WT naïve, n = 5, TG naïve, n = 9). Independently from the genotype, a significant infiltration of TCRb+ T cells was observed in the perilesional areas but not in
the contralateral hemispheres (comparable to naïve non-injured brains). The majority of brain-infiltrating T cells presented a CD8 phenotype. In the TG CCI mice,
there was a significant skew of CD4/CD8 ratio towards CD8+ T cells. Table (C) summarizes the results of the statistical analysis in T cell counts between the
experimental groups. In (A) boxes represent the 25–75% value range, including the median value, indicated with the line. Whiskers represent 1.5x standard deviation
(SD). □ indicates the mean value. In the stacked bargram, data are presented as mean ± standard error of the mean (s.e.m.). A binomial negative regression or a
linear mixed model was applied to assess statistical differences in the counts of total T cells. The Kruskal Wallis test or the paired samples Wilcoxon signed ranked
test was used for the analysis of CD4 and CD8 frequency distribution. jp < 0.05 and jjjp < 0.001 vs. TG ipsi. *p < 0.05 and ***p < 0.001 vs. WT ipsi. In all tests,
Bonferroni correction was used to adjust p-values in multiple comparisons.
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while the ratio in the contralateral cortex did not differ between
the two genotypes (CD4:CD8 ratio TG contra = 0.221 ± 0.247;
WT contra = 0.456 ± 0.212; ChiSq: 2.469, mean ranks: 5.43/8.83,
p = 0.120). To better understand how the lack of mLVs affects the
T cell-mediated neuro-immune response, we analyzed both the
absolute numbers of CD4 and CD8 subpopulations and their
relative frequency. Data analysis shows a reduction of the total
number of CD4+ T cells infiltrating the perilesional cortices of
TG (median = 106; Q3-Q1 = 156) compared to WT mice
(median = 245; Q3-Q1 = 218; ex. coef.: -0.82, p = 0.033 TG
ipsi vs. WT ipsi) (Figure 3A). No differences were observed in
the absolute number of infiltrating CD8+ T cells between the
Frontiers in Immunology | www.frontiersin.org 8
genotypes (Figure 3B). Despite no differences in absolute
numbers of both CD4 and CD8 populations in the
contralateral cortices of injured WT and TG mice, we found a
significant reduction in the frequency of CD4+ T cells in
transgenic mice (TG contra = 12.04 ± 8.47%; WT contra =
23.59 ± 9.52% of T cells; ChiSq: 3.931, mean ranks: 5.29/9.71, p =
0.042) and a relative increase in the frequency of CD8+ T cells
(Figures 3C, D), indicating a specific impairment in the CD4-
mediated neuro-immune response. As mLVs are involved in the
drainage of solutes from the interstitial and cerebro-spinal fluids
mainly to the dcLNs (15, 16), we hypothesized that mLVs
absence in TG mice can affect the priming of the evoked
A B

DC

FIGURE 3 | The number of CD4+ but not of CD8+ T cells is reduced in the brain of K14-VEGFR3-Ig mice after TBI. Box plots representing the number and
frequency of CD4+ T cells (A, C, respectively) and CD8+ T cells (B, D, respectively), in the brain of WT and TG mice, as analyzed in the perilesional and contralateral
cortices (WT ipsi, n = 12; WT contra, n = 7; TG ipsi, n = 10; TG contra, n = 7), or in intact cortices from naïve mice (WT naïve, n = 5, TG naïve, n = 9). A drastic
reduction in the number of CD4+ T cells was found in TG mice after injury. A binomial negative regression or a linear mixed model was applied to assess statistical
differences in the counts of CD4+ and CD8+ T cells. The Kruskal Wallis test or the paired samples Wilcoxon signed ranked test was used for the analysis of
frequency distribution. *p < 0.05; **p < 0.01 and ***p < 0.001 vs. WT ipsi. jp < 0.05; jjp < 0.01 and jjjp < 0.001 vs. TG ipsi. #p < 0.05 vs. WT contra. In all tests,
Bonferroni correction was used to adjust p-values in multiple comparisons.
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neuro-immune response. The analysis of the T cell
subpopulations in the dcLNs indeed revealed a marked
difference between the two genotypes. As expected, we found a
significantly lower number of T cells in the dcLNs of the TG-CCI
mice (median = 73,542; Q3-Q1 = 21,342) compared to their WT-
CCI littermates (median = 220,434; Q3-Q1 = 88,745; p = 0.006).
However, TG-CCI mice had a higher frequency of CD4+ T cells
(TG CCI = 63.98 ± 5.67%; WT CCI = 51.40 ± 1.93% of T cells;
ChiSq: 6.545, mean ranks : 7 .50/2 .50 , p = 0.0017)
(Supplementary Figure 3). Within the CD4+ T cell
subpopulation in the TG mice, cells have predominantly a
CD44hiCD69+ phenotype, while in the WT mice the
predominant population is CD44intCD69- (Supplementary
Figure 3). No differences were found in the frequency of Tregs.

Different subpopulations of CD8+ and CD4+ T cells exist,
with specific and opposing functions: we characterized both the
CD8+ and CD4+ subpopulations in the brain for the surface
expression of the antigens CD44 (a memory and activation
marker) (39, 40) and CD69 (an activation and tissue retention
marker) (41). In the perilesional cortex of bothWT and TGmice,
CD8+ T cells had a predominant CD44hiCD69+ phenotype
(69.78 ± 22.85% and 72.05 ± 19.95% of CD8+ T cells, in WT
ipsi and TG ipsi, respectively) (Figures 4A, C, D). In the mouse,
the expression of CD69 together with high levels of CD44 define
a specific subpopulation of T cells called mature resident
memory T cells (TRM) (42–44), which are generated and
persist in the tissue at the site of a primary infection (43, 45)
and provide a first and powerful line of adaptive cellular defense.

The second-highest expressed CD8+ subpopulation
(representing 27.07 ± 26.10% in WT and 25.24 ± 18.85% in
TG mice) presented a CD44hiCD69- phenotype, characteristic of
effector memory T cells (43). The presence of other CD8+
subpopulations among perilesional infiltrating T cells was
negligible. No genotype-related difference was found (Figures
4C, D and Supplementary Table 2).

Among CD4+ perilesional infiltrating T cells, we found a
similar frequency of CD44 and CD69 expressions, with a slight
prevalence of CD44hiCD69+ over CD44hiCD69- T lymphocytes
(Figures 4B, E, F) in both genotypes. The overall frequency
distribution of the different subpopulations was identical
between the two genotypes (Figures 4E, F and Supplementary
Table 2).

K14-VEGFR3-Ig Mice Present a Different
Temporal Profile of the T Cell-Mediated
Neuroimmune Response After Traumatic
Brain Injury
To confirm that the elicited neuro-immune response is
specifically affected in the K14-VEGFR3-Ig mice, we analyzed
in two different cohort of mice the phenotype of the brain-
infiltrating T cells at 3 and 60 dpi. As previously reported (7, 9–
11, 46), T cell infiltration peaks at 3 dpi: however, this time frame
is not compatible with the priming of the adaptive immune
response, and the infiltration of T cells is function of the
circulating compartment. At this time point, in our
experimental preparations, we did not observe a significant
Frontiers in Immunology | www.frontiersin.org 9
increase in the number of TCRb+ cells infiltrating the
perilesional areas in either of the genotypes (WT ipsi median =
331.5, Q3-Q1 = 409; WT contra median = 99, Q3-Q1 = 53.5; TG
ipsi median = 397, Q3-Q1 = 302; and TG contra median = 72,
Q3-Q1 = 27) (Figure 5A). This could be explained by the fact
that, at 3 dpi, T cells mainly enter the brain and accumulate in
the area of lesion (removed in our preparation), where the blood-
brain barrier (BBB) is damaged. Moreover, analysis of the CD4:
CD8 ratio within the infiltrating T cells (Figure 5B), did not
reveal any difference between WT and TG mice (CD4:CD8 ratio
TG ipsi = 1.032 ± 0.323; WT ipsi = 0.964 ± 0.198; ChiSq: 0.5,
mean ranks: 4.66/3.50, p = 0.530), thus suggesting that T cells at 3
dpi are recruited independently of the mLVs-dcLNs circuit
activation. Next, we characterized the T cell infiltration at 60
dpi chronic time point, to evaluate the progression of the neuro-
immune response in the two genotypes. Presence of TCRb+ T
cells in both the genotypes was higher in the perilesional areas
(WT ipsi median = 625; Q3-Q1 = 291; TG-ipsi median = 642.5;
Q3-Q1 = 497.5), compared to the contralateral cortices (WT-
contra median = 227; Q3-Q1 = 77, p = 0.014 vs. WT-ipsi; TG-
contra median = 163; Q3-Q1 = 69.5, p = 0.062 vs. TG-ipsi). As
observed at 30 dpi, we found a prevalence of CD8+ T cells among
the infiltrating lymphocytes, however no genotype or lesion
effect was observed from the analysis of CD4:CD8 ratio (CD4:
CD8 ratio TG ipsi = 0.220 ± 0.184 WT ipsi = 0.379 ± 0.254; TG
contra = 0.218 ± 0.058; WT contra = 0.443 ± 0.162). Analyses of
CD4+ and CD8+ subpopulations, revealed fundamental changes
in subpopulation frequencies between the two genotypes. Among
CD8+ T cells, CD44hiCD69+ phenotype was prevalent in WT
ipsi, while the CD44negCD69+ phenotype was prevalent in
TG ipsi (CD44hiCD69+: 60.58 ± 11.26% and 34.75 ± 8.00% in
WT ipsi and TG ipsi respectively, p = 0.009; CD44negCD69+:
28.53 ± 14.01% and 53.10 ± 7.27% in WT ipsi and TG ipsi
respectively, p = 0.004). These data suggest an activation of CD8-
mediated neuro-immune response in the perilesional area of
K14-VEGFR3-Ig mice, while cytotoxic cells resident in the
injured brain of WT mice conserve a memory phenotype.
Within CD4+ population, most of the cells in both the
genotypes presented a CD44negCD69- phenotype. However, in
TG mice we observed a tendency towards a frequency increase
in the CD44negCD69+ subpopulation (6.44 ± 11.91% and
23.98 ± 10.90% in WT ipsi and TG ipsi respectively, p =
0.052), supporting the hypothesis of a specific activation of
the neuro-immune response in the K14-VEGFR3-Ig mice at
60 dpi.

Cortical Lesion is Similar in K14-VEGFR3-
Ig Mice and in Their Wild Type Littermates
Analyses of MRI images acquired 21 days after TBI induction
revealed a T2 intensity increase in the ipsilateral hemisphere. The
increase of T2 intensity was observed in parietal-temporal
cortices, mainly involving the somatosensory and visual
cortices (Figure 6A), expanding in a few cases to the
underlying hippocampus (Supplementary Figures 5C, D). No
significant change of T2 intensity was found between the two
genotypes. In the WT CCI group the contusion volume was
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4.53 ± 1.33%, and 4.09 ± 2.00% in the TG CCI animals (ChiSq:
0.579, mean ranks: 8.71/10.75, p = 0.463) (Figure 6B). Relative
brain atrophy was 2.42 ± 1.09% in WT CCI mice and 2.00 ±
1.26% in TG CCI mice (ChiSq: 1.400, mean ranks: 8.00/11.17,
p = 0.248) (Figure 6C). Correlation between contusion volume
and relative brain swelling was compared in transformed data
analyzed by linear regression. When considering the individual
values independent of the genotype, the contusion volume values
significantly correlated with the values of relative brain atrophy
Frontiers in Immunology | www.frontiersin.org 10
(r = 0.57; p = 0.023) (Figure 6D). No significant correlation was
found between the contusion volume and the mean value of the
brain atrophy in both the TG CCI group (r = 0.74; p = 0.064),
and in the WT CCI mice (r = 0.37; p = 0.331). No differences in
lesion progression between WT-CCI and TG-CCI mice have
been found from the analysis of T2 MR Images acquired at 3 and
14 days post-injury (Supplementary Figures 5A, B).

It must be noted that we have identified the lesion size as the
hyper-intense signal in the cortical area observed in the T2
A B

D

E F

C

FIGURE 4 | Analysis of CD69 and CD44 T cell activation and memory markers in CD4+ and CD8+ subpopulations. Pseudocolor dot plots (A, B) represent gated
subpopulations CD69 vs. CD44 of CD8+ and CD4+, respectively. Bargrams in (C, D) show respectively the counts and frequencies of CD8+ T cell subpopulations,
as analyzed in the perilesional cortices of WT and TG mice. No significant differences in CD8+ subpopulations were found between genotypes. In CD4+
subpopulation, instead, we observed a significant reduction in the counts of CD44hiCD69+ and CD44hiCD69- subpopulations (E), in K14-VEGFR3-Ig compared to
WT mice. However, no differences were observed in the different subpopulation frequencies (F). Data are presented as median ± SD. A binomial negative regression
was applied to assess statistical differences in the counts of total T cells between WT ipsi and TG ipsi. The Kruskal Wallis test was used for the analysis of frequency
distribution. #p < 0.05; *p < 0.05 vs. WT ipsi.
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weighted images. Our analysis, albeit clinically relevant, suffers
from a lack of spatial definition and is affected mostly by the
formation of the cyst at the site of injury (27, 47). Therefore,
subtle although significant differences in the lesion size can be
Frontiers in Immunology | www.frontiersin.org 11
underestimated. However, the analysis of MAP-2 staining in the
brain of the WT CCI and TG CCI animals confirmed the MRI
results and did not show any genotype-related differences
(Figure 6E).
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FIGURE 5 | T cell immune response after TBI progress differently in K14-VEGFR3-Ig and WT littermate mice. Panels (A, B) represent the number and frequency of
TCRb+ T cells (A) and the CD4/CD8 ratio (B) in the brain of WT and TG mice, as analyzed in the perilesional and contralateral cortices 3 days post injury (WT ipsi,
n = 4; WT contra, n = 4; TG ipsi, n = 3; TG contra, n = 3). No differences between the genotypes have been observed. (C–F) Analysis of T cells infiltration in the
brain of K14-VEGFR3-Ig and WT littermate mice 60 days post-injury (WT ipsi, n = 5; WT contra, n = 5; TG ipsi, n = 4; TG contra, n = 4). Box plot represents the
number of infiltrating T cells, defined by expression of TCRb (C) and stacked bargram represents the percentage of CD4+ and CD8+ T cells (D) in the perilesional
areas (ipsi) and correspondent contralateral areas (contra) of WT and TG mice. Bargrams in (C, D) show respectively the frequencies of CD8+ and CD4+ T cell
subpopulations, as analyzed in the perilesional cortices of WT and TG mice. In CD8+ subpopulation we observed a significant reduction in the frequency of the
CD44hiCD69+ subpopulation in K14-VEGFR3-Ig compared to WT mice, which corresponded to the increase in the frequency of CD44negCD69+ phenotype.
In CD4+ subpopulation, instead, we did not observed differences in distribution between the two genotypes. Data are presented as median ± SD. A binomial negative
regression or a linear mixed model was applied to assess statistical differences in the counts of TCRb + T cells. The Kruskal Wallis test was used for the analysis of
frequency distribution. **p < 0.01 vs. WT ipsi. #p < 0.05 vs. respective contra. In all tests, Bonferroni correction was used to adjust p-values in multiple comparisons.
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K14-VEGFR3-Ig Mice Present a Peripheral
Lymphopenia, Which is Exacerbated After
Traumatic Brain Injury
Alterations of systemic immunity are frequent in TBI patients. We
analyzed the levels and the frequency of different T cell
subpopulations in the spleen of WT and TG mice, one month
after TBI induction. As previously described (48), K14-VEGFR3-Ig
mice show a moderate lymphopenia compared to littermate WT
mice (percentage of T cells over live cells in WT naïve: 37.26 ±
7.67%; vs. TG naïve: 19.69 ± 4.96%; ChiSq: 14.746, mean ranks:
5.00/15.50, p = 1e-04) (Figure 7A). In TG mice, but not in WT
mice, we found a significant reduction in the total T cell frequency
after TBI (WT CCI: 33.68 ± 6.99%; TG CCI: 14.23 ± 2.87% of live
cells; ChiSq: 7.695, mean ranks: 7.18/14.55, p = 0.003 TG CCI vs.
Frontiers in Immunology | www.frontiersin.org 12
TG naïve) (Figure 7A), confirming that TG mice present an
impaired immune response, which relates to the alterations in the
lymphatic system. Contrary to what was observed in the brain, the
systemic lymphopenia in the K14-VEGFR3-Ig genotype
corresponds to a relative frequency reduction in peripheral CD8+
T cells (TG naïve = 25.75 ± 3.61%; WT naïve = 42.70 ± 4.17% of T
cells; ChiSq: 14.727, mean ranks: 5.00/15.50, p = 1e-04) (Figure 7B).
Analysis of the activation markers show a different expression in
both CD4+ (Figures 7C, E) and CD8+ (Figures 7D, F)
subpopulations between WT and TG mice, which is trauma
independent. Both TG naïve and TG CCI mice, indeed, showed
an increased frequency of memory T cells (CD4+CD44hiCD69+,
CD4+CD44hiCD69- and CD8+CD44hiCD69+, CD8+
CD44hiCD69-; for statistical analysis, see Supplementary Table 3).
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FIGURE 6 | TBI-induced lesions does not differ between the two genotypes, as inferred by the analysis of MRI at 21 dpi. (A) Representative MR images of WT
naïve, WT CCI, TG naïve and TG CCI brains. Perilesional cortices in WT CCI and TG CCI brains are marked with stars. Box plots in (B, C) illustrate the genotype
effect on the percentage of contusion volume and of brain atrophy, respectively, over the volume of the hemisphere ipsilateral to the lesion. No significant differences
were observed between TG K14-VEGFR3-Ig and WT mice. For the definitions of the contusion volume and of brain atrophy see the main text. (D) When considering
the contusion volume and the brain atrophy independently from the genotype, we found a direct correlation between the two parameters. (E) Representative images
of WT CCI and TG CCI brains stained for MAP2, NeuN, and GFAP at 30 dpi. No differences in neuronal damage or in neuroinflammation were visible between the
two genotypes, supporting the MRI in vivo data. The Kruskal Wallis test was used for the analysis of infarct volume and of tissue loss between the two genotypes.
CI: 95% confidence interval. For box plot explanation, refer to the legend of Figure 2.
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FIGURE 7 | Peripheral immune response in the spleen. The percentages of T cells in the spleen of WT naïve and CCI mice and of TG naïve and CCI mice are
presented in the box plot in panel (A). Stacked bargrams in (B) represent the relative percentages of CD4 and CD8 in T cell population, in WT and K14-VEGFR3-Ig
mice. K14-VEGFR3-Ig mice present a drastic reduction of T cells compared to WT littermates, due to a decrease in CD8+ T cell frequency. (C, D) Representative
pseudocolor dot plots and gating strategies for CD4+ and CD8+ T cell subpopulation analysis, respectively. Bargrams in (E, F) show respectively the frequencies of
CD4+ and CD8+ T cell subpopulations, as analyzed in WT and TG mice. Significant differences in the frequencies of both CD4+ and CD8+ subpopulations have
been observed. The Kruskal Wallis test or the paired samples Wilcoxon signed ranked test was used for the analysis of frequency distribution. ¤¤p < 0.01 and
¤¤¤p <0.001 vs. TG CCI. **p < 0.01 and ***p < 0.001 vs. WT naïve. In all tests, Bonferroni correction was used to adjust p-values in multiple comparison. For box
plot and stacked bargram explanation, refer to the legend of Figure 3.
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DISCUSSION

This study analyzes the progression of T cell-mediated neuro-
immune response as a result of a single moderate TBI, in a mouse
model characterized by a developmental deficiency in the CNS
lymphatic system.

Mounting evidence implicates a sustained modulation of T
lymphocyte-mediated immune response following TBI, both in
patients (49–51) and in animal models of brain injuries (7, 9–
11, 46).

A recent publication from Daglas and colleagues characterized
for the first time the T cell-mediated immune response in a chronic
animalmodel ofTBI, highlighting the role of cytotoxicCD8+Tcells
in the progression of TBI pathology (12).

Our data confirm the previous findings, showing a sustained
accumulation of CD8+ T lymphocytes, restricted to the non-
damaged cortical areas surrounding the lesion and to the
underlying corpus callosum, already at 30 dpi (i.e., the early
chronic phases after TBI). Moreover, we expand the current
knowledge characterizing the phenotype of the accumulating
lymphocytes as putative resident memory T cells. Our data
suggest a direct in-situ activation of the T cell-mediated
immune response, which could play a role in the progression
of TBI pathology, as previously indicated (12).

We also found that the congenital lack of the meningeal
lymphatic system affects the polarization of the TBI-elicited T
cell immune response, and its progression over time. Finally, we
found that the adaptive neuro-immune response is prompted
even in the absence of a systemic immune reaction.

Specifically, our findings suggest that at early chronic time
points after TBI: 1) the immune response in the brain is
principally mediated by putative TRM CD8+ cells; 2) the CNS
lymphatic system modulates the specific neuro-immune
response; 3) the systemic T lymphocyte response does not
correlate with the neuro-immunological state of the brain.

Brain trauma results in two phases of tissue injury. The
primary injury which is a direct result of the mechanical
impact to the brain, is characterized by the activation of the
innate immune response and the release of excitotoxic agents.
During this acute phase, a massive and dysregulated brain-
infiltration of T cells has been reported (52, 53). This
infiltration is presumably confined to the area of the lesion,
since we observed a limited number of infiltrating T cells in the
perilesional non-injured areas, 3 days after TBI induction
(Figure 5A). A secondary tissue damage, resulting in a diffuse
and long-lasting injury, usually develops after months/years
from the primary injury (54–56). This is characterized by
additional neurodegeneration developing independently from
the mechanical trauma and by the formation of a fibrotic scar
tissue in the injured area (57) (Figure 6E). It has been recently
suggested that the development of secondary injuries is sustained
by activated memory CD8+ T cells (12). In CCI mouse model
(similar to the one used in this study), the authors observed that
the modulation of the cytotoxic lymphocytes resulted in the
reduction of the lesion size and in the improvement of the
neurological outcomes analyzed 32 weeks after injury.
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In similar experimental conditions, we observed that CD8+ T
lymphocytes with a CD44hiCD69+ phenotype are already
present in the perilesional areas (but not in the correspondent
contralateral cortices) one month after TBI. Since CD69 is an
early marker of T cell activation (41) and inhibits tissue egression
(45), our data suggest a localized activation of the resident
memory CD8+ subpopulation (42–44) restricted to the areas
surrounding the primary lesion. In the case of TBI, CD44hiCD69+
TRM cells may represent the population designated to defend the
non-injured brain from possible infective agents penetrating
through the lesion. However, within the chronic neuro-
inflammatory environment observed in the perilesional areas
(Figure 6E), we propose that TRM can activate in a dysregulated
way. Indeed, our data indicate that, 2 months after TBI, CD8+ T
cells present around the lesion shift towards a CD44negCD69+
phenotype, typical of functional differentiated tissue-resident T
cells. This may contribute to the cytotoxic immune response,
which characterizes the chronic phases of TBI pathology. Our
hypothesis is supported by the data reported by Daglas and
colleagues (12), indicating that brain infiltrating CD8+ T cells
express and release effector cytokines (Granzyme B and IFNg).
Further studies are required to determine if this adaptive response
is antigen specific, and if secondary lesions are the result of an
autoimmune-like sequelae of events.

Neuro-immune responses are mainly elicited in the dc- and
scLNs (18–20, 58, 59), which are the main receivers of the mLVs.
Therefore, the meningeal lymphatics represent an integrated
component in the neuro-immune response (15), and we
hypothesize that mLV functional impairment can affect the
priming of the T cell-mediated neuro-immune response
following TBI.

We addressed this hypothesis by inducing TBI in a transgenic
mouse, modelling a congenital lymphedema. K14-VEGFR3-Ig
mice, expressing soluble VEGFR-3-Ig (21), present alterations in
the development of the lymphatic system, resulting in defective
growth of mLVs and in sclerotic dcLNs (16, 17). This phenotype
has been confirmed in our experimental animals.

We found that the neuro-immune response in the K14-
VEGFR3-Ig mice significantly differs from the response observed
inWTmice after TBI, suggesting that a developmental defect in the
CNS lymphatic system directly affects the CNS regional immune
regulation and modulates its chronic activation in the TBI
pathology. This hypothesis is supported by the observation that
the initial BBB damage-associated T cell infiltration in the
perilesional areas was similar in the two genotypes (Figures 5A,
B), whereas at 30 dpi (and partially at 60 dpi) we found a marked
decrease in the CD4+ T cell frequency in the TGmice (Figures 2A,
B and Figures 5C, D). This results in the polarization of the neuro-
immune response towards CD8+ cytotoxicity, possibly aggravating
TBI outcomes as recently suggested (12). Moreover, at the most
chronic time point analyzed in this study (60 dpi), we also observed
a different evolution of the CD8-mediated response, with T cells
from the brain of TG mice shifted towards a CD44negCD69+
phenotype, and the one from WT littermates still presenting
mainly a TRM phenotype (Figure 5E). It is important to note,
however, that K14-VEGFR3-Ig mice have a compromised
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peripheral immune response (22, 48, 60, 61), which could affect the
local immune response observed in the brain.

Indeed, in chronic TBI animals, the analysis of the T cell
subpopulation in the CNS-draining dcLNs also showed a marked
difference between the two genotypes. CD4+CD44hiCD69+ T
cells were the predominant subpopulation in TGmice, and CD4+
CD44intCD69neg T cells were predominant in WT mice
(Supplementary Figures 3D, E). It has been suggested that
CD4+CD44int T cells could represent the fraction of central
memory T helper cells expressing IFN-g, while CD4+CD44hi

would preferably be effector memory cells with a Th17
phenotype (62, 63). A polarized Th1/Th17 response has been
reported in CNS autoimmune diseases (64) and can enhance the
cytotoxicity of CD8+ T cells (7, 12). This would support the
differences in the neuro-immune response observed in our TG
animals and partially explain the direct correlation we found in
these mice between the frequency of CD4+ T cells and the brain
atrophy (Supplementary Figure 3). However, the panel of
antibodies we used for T cell characterization does not allow us
to distinguish between the different CD4+ T helper populations
(i.e., Th1, Th2, or Th17) without speculation.

Our data suggest that the developmental impairment of
mLVs observed in K14-VEGFR3-Ig mice is associated with a
different modulation of the adaptive neuro-immunity in
response to TBI. We here conjecture on the possibility that in
both WT and K14-VEGFR3-Ig mice, as the result of trauma, the
brain-derived antigens escape directly into the blood, activating a
CD8-mediated immune response in secondary lymphoid organs,
with T cells freely accessing the lesion site due to the damage in
the BBB. This results in a similar activation of the primary
adaptive immune response which eventually generates the brain
resident memory T cells. In WTmice, however, our hypothesis is
that antigens are partially drained through the mLVs to the
dcLNs, eliciting a Th2-mediated response as previously proposed
(18, 20). In K14-VEGFR3-Ig mice, where the functional mLVs-
dcLNs connection is absent, this specific response however is
restrained, as suggested by our data.

Other mechanisms linked to mLV dysfunction can contribute
to the modulation of the neuro-immune response. For instance,
lymphatic vessels play a direct role in the maturation of T cells
(65, 66), and dysfunction of the lymphatics leads to the
persistence of immune cells and mediators in tissues, resulting
in a chronic inflammation and tissue damage (67). Moreover,
recent papers reported that the VEGFR-3 signaling, promoting
lymphangiogenesis, is also important to both initiate the acute
innate and adaptive immune responses and to regulate the
chronic T cell-mediated response (by changing the Treg/Th2
balance), suggesting an immunomodulatory role for this
signaling (68, 69).

It is conceivable, therefore, that the inhibition of the VEGFR-
3 signaling in K14-VEGFR3-Ig TG mice, and their congenital
lack of mLVs, can affect both the type of the elicited neuro-
immune response and its progression.

Interestingly, in a recent paper it has been demonstrated that
TBI leads to the temporary impairment in meningeal lymphatic
drainage, by increasing intracranial pressure (70). These data
Frontiers in Immunology | www.frontiersin.org 15
suggest that, independently from the pre-existing mLV deficit,
drainage of the antigens to the dcLNs should be inhibited during
the acute phases following brain trauma. In addition, the same
authors demonstrated that prior lymphatic defects are related to
the increase in the TBI-induced innate and adaptive immune
responses (enrichment gene analysis), and to a more pronounced
cognitive deficit, when acutely tested after brain injury (3 dpi)
(70). However, in their work Bolte and colleagues used the
photosensitizer verteporfin to induce the photodynamic
ablation of mLVs, a treatment well known to induce the
release of free radicals and the increase of local inflammation
after verteporfin activation. Therefore, although these recent
observations, together with our data, suggest that pre-existing
mLV conditions can promote the neuro-immune response and
worsen TBI pathology, more unbiased studies need to be
provided to confirm this hypothesis.

Our data, indicating a role of TRM cells in the TBI pathology,
could also have important clinical implications. TBI patients
generally present a delayed secondary immunodeficiency (CNS
injury-induced immunodepression, CIDS) (71, 72), which is
accompanied by an increased susceptibility to systemic
infections and is associated with declining neurological
outcome and increased mortality.

Analysis of our data suggest that neuro-immune reaction can
be elicited in the CNS even in the presence of a systemic
congenital lymphopenia (as observed in K14-VEGFR3-Ig
mice), excluding a correlation between the extent of brain
infiltration and the level of T cells in the periphery
(Supplementary Figure 4C). This observation suggests that
patients with CIDS could at the same time present a sustained
adaptive immune response local ized in the brain.
Immunomodulatory therapies directly targeting the brain-
resident memory T cells could benefit TBI patients without
affecting their already compromised systemic immune system.

Therapeutic approaches aimed at downregulating the
adaptive immune response after TBI have been tested before
(73) with no improvement on the neurological outcome, leading
to the hypothesis that the adaptive immune response after brain
injuries can have a beneficial activity (74, 75). However, it is
important to note that these studies focused on the manipulation
of the early wave of T cell infiltration after TBI. Our findings,
together with recently published data, indicate that the chronic
immune response is the target for the development of specific
therapies for the treatment of TBI patients. This includes
modulating the progression of the secondary injuries and
opening the way to new studies in this direction.
LIMITATION OF THE STUDY

This work represents a proof of concept for the involvement of
adaptive neuro-immunity in TBI pathology and for the role of
mLVs in modulating this response.

We are aware that this study presents several limitations and
further studies are needed to understand how mLVs regulates the
kinetics of activation and brain recruitment of CD8+ T cells after
January 2021 | Volume 11 | Article 559810
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TBI, and the specific role of these cells in the progression of the
pathology. Amajor limitation stems from the use ofK14-VEGFR3-
Ig mice with a congenital and global deficiency in the mLVs. This
results in a compromised peripheral immune response, as
previously demonstrated (22, 48, 60, 61) and confirmed by our
spleen data. In their paper, however, Thomas and colleagues
reported a delayed but robust CD8-mediated response to
peripheral immunization and impaired tolerance. In a similar
fashion, we have found an increase in the CD8+ T cell response
to putative brain-derived antigens. These data confirm the
contribution of lymphatic vessels in the modulation of the
adaptive immune response and support the hypothesis that
the elicited cytotoxic response can escape the intrinsic brain
tolerance. Nevertheless, this hypothesis needs to be confirmed in
different models that would study the effects of local partial
depletion of the mLVs on the activation of the neuro-immune
response (e.g., ligation of the dcLNs at themoment of brain injury).

Another limitation of our study is the lack of difference in lesion
size between K14-VEGFR3-Ig mice and their WT littermates
despite the increase in the number of cytotoxic T cells. As
discussed previously, this could be due to limitations in our
analytical approach. However, it is also possible that although
triggered by cytotoxic T cells, secondary neurodegeneration and
associated behavioral correlates may appear at a later time point
than the one analyzed in this study. Specific analyses should be
conducted in the K14-VEGFR3-Ig mice (and other models of
meningeal lymphatic depletion) to assess the long-term effects of
mLV deficits on the progression of TBI pathology.

Finally, our analyses focused onTCRb+T cells, which represent
themain population of T cells responsible for the adaptive immune
response. Other immune cells (not analyzed in our study) could
play an important role in TBI pathology, representing a possible
target for future immunomodulatory strategies. Further studies are
needed to fully characterize the contribution of the humoral and
cellular neuro-immune response in TBI pathology.
CONCLUSIONS

Our study investigated the phenotype of T lymphocytes
infiltrating and persisting in the brain after TBI, pointing to
the activation of the CD8+ resident memory T cells in the early
chronic response. Our findings also support the importance of
mLVs and dcLNs in maintaining brain immuno tolerance. We,
therefore, propose that the modulation of the neuro-immune
response via the CNS-lymphatic system, or by directly targeting
the brain-resident memory T cells, could offer therapeutic
strategies for the treatment of TBI patients.
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