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Background: Breast cancer heterogeneity is an essential element that plays a role in the
therapy response variability and the patient’s outcome. This highlights the need for more
precise subtyping methods that focus not only on tumor cells but also investigate the
profile of stromal cells as well as immune cells.

Objectives: To mine publicly available transcriptomic breast cancer datasets and reanalyze
their transcriptomic profiling using unsupervised clustering in order to identify novel subsets in
molecular subtypes of breast cancer, then explore the stromal and immune cells profile in
each subset using bioinformatics and systems immunology approaches.

Materials and Methods: Transcriptomic data from 1,084 breast cancer patients obtained
from The Cancer Genome Atlas (TCGA) database were extracted and subjected to
unsupervised clustering using a recently described, multi-step algorithm called Iterative
Clustering and Guide-gene Selection (ICGS). For each cluster, the stromal and immune
profile was investigated using ESTIMATE and CIBERSORT analytical tool. Clinical outcomes
and differentially expressed genes of the characterized clusters were identified and validated in
silico and in vitro in a cohort of 80 breast cancer samples by immunohistochemistry.

Results: Seven unique sub-clusters showed distinct molecular and clinical profiles
between the well-known breast cancer subtypes. Those unsupervised clusters
identified more homogenous subgroups in each of the classical subtypes with a
different prognostic profile. Immune profiling of the identified clusters showed that while
the classically activated macrophages (M1) are correlated with the more aggressive basal-
like breast cancer subtype, the alternatively activated macrophages (M2) showed a higher
level of infiltration in luminal A and luminal B subtypes. Indeed, patients with higher levels of
org November 2020 | Volume 11 | Article 5600741
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M1 expression showed less advanced disease and better patient outcomes presented as
prolonged overall survival. Moreover, the M1 high basal-like breast cancer group showed
a higher expression of interferon-gamma induced chemokines and guanylate-binding
proteins (GBPs) involved in immunity against microbes.

Conclusion: Adding immune profiling using transcriptomic data can add precision for
diagnosis and prognosis and can cluster patients according to the available modalities of
therapy in a more personalized approach.
Keywords: basal like, breast cancer, macrophages, tumor infiltrated immune cells, transcriptomic
INTRODUCTION

Breast cancer is one of the most common malignancies and
accounts for most of the cancer-related deaths in women (1).
Despite the significant advances in the diagnosis and the
management of this disease, 20%–30% of patients with the early
disease might end up with distant metastasis (2–4), which has no
cure and is associated with poor prognosis (5). This is attributed to
the disease heterogeneity and diversity at the molecular level,
which play a role in the variability of clinical presentation and
response to the standard treatment regimens (6).

Recently, technical developments in the transcriptomic and
genomic profiling of tumors have improved our classification
methods of breast cancer from the traditional clinicopathological
classification into better and more distinct biological subtypes
that showed distinct prognostic and therapeutic features (7–9).
This includes luminal A, luminal B, HER-2 enriched, basal-like,
and normal-like breast cancer (10). The adoption of such
classification methods had led to significant improvement in
patients’ stratification, drug selection, and outcome prediction.
However, substantial heterogeneity is still observed within those
groups in both genomic profiles and patient outcomes leading to
unsatisfactory clinical results in many of the clinical trials (11).

One of the reasons proposed for the poor outcome is the fact that
most of the classifications and analyses are focused on the tumor
epithelial cells without deep investigation of the stromal
microenvironment and its interaction with the malignant cells (12).
In the past decades, efforts were made to investigate the molecular
characterization of the tumor microenvironment (TME) and their
role inmodulating breast cancer cells’ behavior (13). Recently, tumor
immune microenvironment (TIME) emerged as an essential factor
that might explain the heterogeneity in breast cancer subtypes and
their effect on prognosis and response to therapy (14).

The Cancer Genome Atlas (TCGA) Pan-Cancer studies
investigating the immune cell subtypes in many malignancies
revealed the inter and intra-cellular heterogeneity of the immune
profile in breast cancer (15, 16). Similarly, the different breast cancer
molecular subtypes showed a differential immune cell profile
(17). Surprisingly, luminal A breast cancer subtype showed
the most significant heterogeneity in their immune profile
among the different breast cancers subtypes (15). Besides, the
classification of luminal breast cancer according to the expression
of immune-related genes showed better discrimination ability and
prognostic stratification compared to the standard luminal A/B
org 2
classification (18). Moreover, a comprehensive study was done by
Lehmann et al, 2011 to investigate triple-negative breast cancer
(TNBC) heterogeneity to identify clinically relevant subgroups that
might provide the base of preclinical platforms for the development
of more precise targeted therapeutic approaches. This study led to
the discovery of six TNBC subtypes with distinct genomic,
molecular, and biological features. These include two basal-like
subgroups (BL1 and BL2), a luminal androgen receptor (LAR), a
mesenchymal (M), a mesenchymal stem-like (MSL), and an
immunomodulatory (IM) subgroup. Indeed, this report
highlighted that IM subtype was highly enriched with immune
cell signaling raising the querywhether this enrichment is unique to
the malignant cells or attributed to the stromal components
including immune cell infiltrate (19). A subsequent report from
the same group further refines TNBCmolecular subtypes into only
4 tumor-specific subtypes and confirms that the IM and MSL
subtypes were attributed to tumor-associated stromal cells as well
as infiltrating lymphocytes (20).

All these together highlight the need for an integrated approach
to stratify patients, taking into consideration the tumor cells’
characteristics as well as the TME, including the immune profile
and stromal cells.

A recently described multi-step algorithm; Iterative Clustering
and Guide-gene Selection (ICGS) identifies cell clusters through a
five-step process: 1) PageRank-Down-sampling, 2) feature selection-
ICGS2, 3) dimension reduction and clustering, 4) cluster refinement,
and 5) cluster re-assignments using SVM (21) which showed
promising results in resolving hidden cell population in complex
datasets (22).

This study aims to use the publicly available transcriptomic
database to stratify breast cancer into distinct molecular subtypes
using unsupervised clustering, then to investigate the percentage of
infiltrating immune cells and the status of their activation or
polarization from their transcriptomic profile. Here, we used the
unsupervised clustering methodology through ICGS to investigate
breast cancer heterogeneity in 1084 breast cancer samples from
TCGA (Pan-Cancer Atlas).
MATERIALS AND METHODS

Breast Cancer Transcriptomics Data
The RNA seq data of 1,084 invasive breast cancer patients
obtained from TCGA, Pan-Cancer Atlas, were retrieved from
November 2020 | Volume 11 | Article 560074
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the cBioPortal online database “https://www.cbioportal.org/”
(23). Details of the patients are listed in Supplemental Table S1.
Unsupervised Clustering
Our initial approach was to perform unsupervised clustering of
those samples into distinct sub-clusters based on their expression
patterns independent of their clinicopathological features or
intrinsic molecular subtypes. AltAnalyze tool was used for the
unsupervised clustering of samples through ICGS2 (21, 22). The
new clusters were compared with the clinicopathological data or
intrinsic molecular subtypes, and those clusters that matchedmore
than 50% of a given intrinsic molecular subtype were selected
further. Samples that were clustered to the same pathological
subtype were filtered for further analysis. The markers
identification option in AltAnalyze tool listed the top
differentially expressed genes (DEGs) between the groups. Genes
with 2-fold change and adjusted p-value <0.05 were selected as
Frontiers in Immunology | www.frontiersin.org 3
cutoffs. The flow chart that represents the bioinformatics
methodology used is shown in Figure 1.

Gene Expression and Patient Outcome
We investigated the expression levels of each gene and their
association with the patient outcome in TNBC samples using the
publicly available Breast Cancer Gene-Expression Miner v4.0 (bc-
GenExMiner v4.0) database (http://bcgenex.centregauducheau.fr/
BC-GEM/GEM-Accueil.php?js=1) (24).

Estimation of Stromal and Immune Cells
Content in Tumor Tissues
To estimate the microenvironment percentage, ESTIMATE
(Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data) R Bioconductor package was used.
ESTIMATE can predict tumor purity and the presence of infiltrating
stromal/immune cells in tumor tissues using gene expression data (25).
FIGURE 1 | Flow chart of the bioinformatics methodology used.
November 2020 | Volume 11 | Article 560074
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In Silico Prediction of the Immune Cell
Infiltration
The raw mRNA expression of genes that are differentially
expressed between the groups was used for in silico prediction
of the immune cell infiltration using CIBERSORT analytical
tool (26).
PATIENTS AND METHODS

Patients
We used a tissue microarray of a patient cohort that consisted of
80 formalin-fixed paraffin-embedded breast cancer samples
obtained from the Pathology Department, Faculty of Medicine,
Alexandria University, Egypt. The clinicopathological data
retrieved from the patients’ records, included age, grade, stage,
therapeutic modalities, follow-up, and patient outcome. The cases
were classified into thedifferentmolecular subtypesaccording to the
hormonal receptors (ER, PR), HER-2, and Ki-67 status, in addition
to CK5/6 expression, as previously described (27). Accordingly, 50
cases were classified as luminal B subtype, 20 cases as luminal A
subtype, 7 cases as a basal-like triple-negative subtype, and only 3
cases as HER-2 enriched breast cancer subtype. The study was
approved by the Research Ethics Committee of the Faculty of
Medicine, Alexandria University, Alexandria, Egypt (approval
number: 0103003).

Immunohistochemistry
The slides were initially baked for 30min in the oven at 55°C, this was
followed by immersion in xylene for deparaffinization. The slides were
then immersed in a serial dilution of alcohol for rehydration.
Afterward, they were incubated with hydrogen peroxide block and
were stained using two primary antibodies: Anti-Frizzled 9 antibody
(ab61430) and Anti-NR2E1 (ab86276) (Abcam, Cambridge, United
Kingdom). The UltraVision LP Detection System HRP Polymer &
DAP Plus Chromogen (Thermo Fisher Scientific, Fremont CA) was
used for visualization. The immunoreactivity of FZD9 was classified
according to the intensity of four categories. Cases with no
immunoreactivity were scored as 0, weak intensity cases were scored
as +1, moderate-intensity as +2, and strong immunoreactivity was
scoredas+3.For statisticalpurposes,0and+1stainingwereconsidered
negative, while +2 and +3 were considered positive. For NR2E1, the
cases were classified as negative if there was no evidence of
immunoreactivity and positive when a positive staining pattern
was interpreted.
RESULTS

Unsupervised Clustering of Breast Cancer
Samples Revealed the Presence of Seven
Breast Cancer Sub-Clusters With Distinct
Clinicopathological Features
Our in-silico approach revealed the presence of seven breast
cancer sub-clusters that showed distinct molecular and genetic
profiles (Figure 2A). Next, we investigated their association with
the well-known intrinsic breast cancer subtypes. Interestingly,
Frontiers in Immunology | www.frontiersin.org 4
our analysis revealed a variable distribution of those sub-clusters
within each breast cancer subtype (Figures 2A, B). At least one
cluster represents the majority of cases from each molecular
subtype. For example, cluster 4 was the dominant cluster in
luminal A breast cancer samples. Similarly, cluster 2 was
dominant in HER-2 tumors. Interestingly, the same cluster was
the dominant cluster in luminal B tumors. In contrast, cluster 7
was the predominant cluster in the basal-like breast cancer
subtype. The luminal A subgroup was the most heterogeneous
with 45% of cases falling into cluster 4, 19.8% in cluster 3, 18.2%
in cluster 5, and 8.8% falling into cluster 6. In comparison, the
basal-like subgroup showed the least heterogeneity with samples
falling mainly in cluster 7 (59.6%) and cluster 1 (36.8%). Further
analysis revealed that different sub-clusters within each intrinsic
subtype showed distinct clinical and survival features compared
to other sub-clusters (Figure 3).

Breast Cancer Sub-Clusters
Representative of Intrinsic Breast Cancer
Molecular Subtypes Showed a Distinct
Genetic and Molecular Profile
Havingproved that each intrinsicbreast cancer subtype represents a
group of distinct sub-clusters, further in-silico analysis with the aim
of investigating the genetic and molecular profile of the main sub-
clusters that represent each molecular subtype was performed.
Indeed, cluster 4 was selected as representative for luminal A
tumors (n=225, 45%), cluster 2 for luminal B (n=127, 64%) and
cluster 7 for basal-like subtypes (n=102, 60%) (Figure 2B).
Interestingly, our approach revealed a group of novel genes that
can differentiate basal-like breast cancer from other breast cancer
subtypes (Table S2), including the POU5F1 gene (OCT4), which
was previously found to be associated with TNBC and linked to
cancer stem cells and worse patient outcome. Most of the other
genes were not fully investigated and their role in TNBC cancer is
not yet known. Similarly, a seven-gene signature was found to be
able todifferentiate luminalA tumors from luminal B andbasal-like
breast cancer subtypes. For luminal B, two genes were found to be
able to differentiate the luminal B breast cancer subtype from both
luminal A and basal-like breast cancer subtype. Our results here
identified novel top differential genes that can clearly differentiate
between the different breast cancer subtypes.

Eight of Our Identified Top Differential
Genes From the Basal-Like Breast Cancer
Were Confirmed to Be Upregulated in
Samples From TNBC Patients and Their
Expression to Be Associated With Worse
Outcome
Next,we focussedon thegene signature thatwas able todifferentiate
between TNBC and non-TNBC subtypes. For that reason, we used
another in-silico tool to investigate the expression levels of each of
those genes and their associationwith thepatientoutcome inTNBC
samples in the publicly available Breast Cancer Gene-Expression
Miner v4.0 (bc-GenExMiner v4.0) database. Out of the 25 gene
signature, eight genes were shown to be upregulated in TNBC
samples compared to othermolecular subtypes and to be associated
November 2020 | Volume 11 | Article 560074
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with poor prognosis in those patients. The genes included
NR2E1, INGX, C1QL2, POU5F1, A2ML1, ROPN1, VGLL1, FZD9
(Figure 4, Supplemental Figure 1).

NR2E1 and FZD9 Were Confirmed to Be
Upregulated in Basal-Like TNBC Samples
From Our Patient Cohort Consisting of 80
Breast Cancer Specimens
As a proof of concept, and to confirm the accuracy of our
shortlisted TNBC gene signature, we investigated the protein
expression levels of two genes (NR2E1 and FZD9) using
immunohistochemistry (IHC) in our patient cohort (Figure 5).
The cohort consisted of 80 breast cancer samples from different
molecular subtypes, 50 cases of luminal B, 20 cases of luminal A,
7 cases of basal-like triple-negative, and only 3 cases of HER-
2 enriched.
Frontiers in Immunology | www.frontiersin.org 5
The overall expression ofFZD9 in the cohort was limited to only
27.5%ofall samples (Table1) (Figure5A).This canbeexplainedby
the fact that around 70% of the tumor samples in our cohort were
confined to either luminal A or B breast cancer subtypes. Besides,
our results showed no association between FZD9 IHC expression
and tumor size, LN status, or tumor stage (Table 1). While it does
not reach a statistical significance, a significant trend was observed
betweenFZD9expression and tumor grade. Tumorswithmoderate
to poor differentiation (grade II & III) showed around three times
FZD9 levels (29.82% and 27.27%, respectively) compared to well-
differentiated tumors that showed positivity in only 9% of the cases
(Table 1). Interestingly, the classification of samples according to
their molecular subtypes revealed a significantly higher expression
of FZD9 levels in the basal-like TNBC subtype (71.42%) compared
to samples from other non-TNBC samples (23.28%) (P=0.0224).
Finally, our results showed that patients withworse outcomes and a
A

B

FIGURE 2 | Unsupervised clustering of breast cancer subtypes revealed the presence of seven distinct sub-clusters. (A) Unsupervised clustering of the 1,084 breast
cancer samples obtained from TCGA using ICGS2 option in the AltAnalyze tool. It showed the hierarchical cosine Euclidean option. (B) The distribution of the severe clusters
in luminal A, luminal B, and basal-like subtypes and showing the representative groups that match more than 50% of the total patients in that molecular subtype.
November 2020 | Volume 11 | Article 560074
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FIGURE 3 | The association between the dominant sub-cluster within each molecular subtype and patient outcome.
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decline in the survival expressed higher levels of FZD9 (35.7%)
compared to patients who had a better outcome with prolonged
survival (FZD9 positivity in only 21.5% of the samples) (Table 1).

Similarly, the NR2E1 showed the same trend with no significant
associationwithmost of the clinicopathological parameters (Table 1)
(Figure 5B). However, basal-like TNBC samples showed
significantly higher levels of NR2E1 (57.14%) compared to the
non-TNBC samples (%16.67) (P=0.04). Also, while it was not
significant, patients with higher grade (grade III) showed higher
levels of NR2E1 expression compared to grade II (19.29%) and
grade I (18.18%). Moreover, patients with poor overall survival
showed a higher level of NR2E1 (25%) compared to patients with
better overall survival (18%) (Table 1). The results obtained from
Frontiers in Immunology | www.frontiersin.org 8
our IHC panel for both FZD9 and NR2E1 demonstrated the
sensitivity of our shortlisted genes in discriminating between
basal-likeTNBCsamplesandotherbreast cancermolecular subtypes.

Breast Cancer Sub-Clusters
Representative of Intrinsic Breast Cancer
Molecular Subtypes Showed a Distinct
Stromal and Immune Cell Profile Including
Macrophages 0, 1, and 2
Due to the increasing importance of the microenvironment in
breast cancer heterogeneity and determining cancer cells’
behavior, we next investigated whether our identified clusters
A

B

FIGURE 5 | FZD9 and NR2E1 immunoreactivity in our patient cohort that
consists of 80 breast cancer patients (A) Representative images of strong,
moderate, weak as well as negative FZD9 immunoreactivity. (B) Representative
images of positive and negative NR2E1 immunoreactivity.
TABLE 1 | The association between FZD9 and NR2E1 immunoreactivity in
different clinicopathological parameters in our patient cohort that consists of 80
breast cancer patients.

Clinicopathological Parameters FZD expression P

Positive Negative % P value

Grade
Grade 1 1 10 9.09% P=0.36
Grade 2 17 40 29.82%
Grade 3 3 8 27.27%
Tumor size
<5 13 31 32.5% P=0.74
>5 7 20 26.92%
LN status
LN negative 4 10 28.57% P=0.97
LN positive 16 41 28.57%
Stage
Stage 1,2 9 21 30% P=0.72
Stage 3, 4 11 30 26.82%
Molecular subtype
Non-TNBC 17 56 23.28% P=0.0224
TNBC 5 2 71.42%
Patient outcome
Alive 11 40 21.56% P=0.17
Died 10 18 35.71%

Clinicopathological Parameters NR2E1 expression P value

Positive Negative % P value

Grade
Grade 1 2 9 18.18% P= 0.81
Grade 2 11 46 19.29%
Grade 3 3 8 27.27%
Tumor size
<5 10 34 22.72% P= 0.96
>5 6 21 22.22%
LN status
LN negative 4 11 26.67% P=0.97
LN positive 12 43 22.22%
Stage
Stage 1,2 7 23 23.33% P= 0.89
Stage 3, 4 9 32 21.95%
Molecular subtype
Non-TNBC 12 60 16.67% P=0.04
TNBC 4 3 57.14%
Patient outcome
Alive 9 41 18% P= 0.46
Died 7 21 25%
No
vember 2020 | Volume 11 | Artic
The bold values mean significant. p < 0.05.
le 560074

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hachim et al. Basal-Like Breast Cancer With Infiltrating Macrophages
have distinct infiltrating stromal cells in addition to immune cells
profile. To achieve this we used a different in-silico tool; the
Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data’ (ESTIMATE) tool, which is a
method that depends on the analysis of gene expression
signature to identify the stromal and immune cells fractions in
a given tumor sample (Figure 6A). Our results showed a
statistically significant difference in tumor purity in terms of
the immune and stromal score. The immune score of the basal-
like subtype (863.3 ± 91.24) was statistically higher compared to
luminal A (290.5 ± 42.09) and luminal B (169 ± 61.29) subtypes
(P<0.001) (Figure 6A). Also, investigating the percentage of
immune cell infiltration in our clusters representing basal
versus luminal A and B breast cancer as predicted by
CIBERSORT analytical tool (Figure 6B) revealed macrophages
M0 and M1 to be significantly higher in the basal-like subtype
compared to luminal A and luminal B (p<0.001). In contrast,
macrophages M2 was significantly higher in the luminal A
(p<0.001) and luminal B (p<0.001) subtypes compared to the
basal-like subtype. Details of CIBERSORT results are listed in
Supplementary Table S3.

This clearly demonstrated that our unsupervised clustering
was not only able to distinguish cancer cells in different breast
cancer subtypes but also differentiate the microenvironment
profile within those molecular subtypes.
M1 and M2 Showed Different Correlation
With Other Immune Infiltrating Cells
Next, and for a better understanding of the role of distinct M1 and
M2 infiltrate on modulating the immune response and its possible
effect on patient outcome, we investigated the non-parametric
Pearson correlation matrix between M1 and M2 and its
association with a large panel of other immune cells (Figure 6C).
Interestingly, while our results revealed a negative correlation
between M2 expression and most of the other immune cells, M1
expression showed a positive correlation with most of the other
immune cells, including CD8+ T cells as well as NK cells, known to
have a pivotal role in the host anti-tumor response.
Macrophage 1 Level Can Identify Two
Basal-Like Subgroups That Showed
Distinct Genomic as Well as
Clinicopathological Features With M1 High
Subgroup to Be Associated With a Better
Overall and Disease-Free Survival
Next, we investigated if our observed distinct immune profile,
including the tumoricidal classically activated M1, affects the
clinical course and outcome of the basal-like breast cancer
patients. To achieve this, the basal-like breast cancer samples
were divided according to their macrophage percentage as per the
CIBERSORT immune cells prediction using a transcriptome
profile. M1-M0 to M2-M0 ratio was used to define two basal-like
breast cancer groups:M1 high (M1H) if the ratio is above 0 andM1
low (M1L) if the ratio is less than 0 (Table S3). Comparing all the
Frontiers in Immunology | www.frontiersin.org 9
clinical data of theM1H andM1L basal-like breast cancer patients,
the only significant difference shownwas in the overall and disease-
free survival. The M1H basal-like overall (q-value=0.0317) and
disease-free survival (q-value=0.0445) are significantly better than
M1L basal-like group (Figure 7A).
M1H Basal-Like Group Showed a Distinct
Antibacterial Immune-Related
Transcriptomic Profile Than the M1L
Group
Indeed, there was no significant difference in the rate of
mutations between the two groups, and no gene copy number
changes; however, there was a significant difference in the gene
expression as measured by RNAseq. Our results showed clearly
that basal-like breast cancer with M1H and M1L subgroups
represent two different entities in their genomic characteristics.
Besides, our results also revealed that the M1H subgroup to be
enriched with 1. specific cytokines and chemokines (CXCL9,
CXCL13, CXCR2P1), 2. the guanylate-binding protein family
GTPases which is induced by interferon-gamma (IFN-g) to
protect against microbial and viral pathogens (GBP1P1, GBP4,
and GBP5I) and 3. indoleamine 2,3-dioxygenase 1 (IDO1) which
is an immune modulator enzyme and has a bactericidal activity
through direct anti-pathogen mechanisms via depletion
of tryptophan. All of these showed a 2-fold change with a
p-value <0.05 (Figure 7B).

The identified genes were enriched in antibacterial immune
responses related pathways including response to the bacterium,
positive response regulation to an external stimulus, response to
lipopolysaccharide, and defense response to other organisms
(Figure 7C).

All these together highlight the importance of our unsupervised
clustering in the identification ofmore precise breast cancer subtypes
with distinct malignant cells and microenvironment profile.
DISCUSSION

In this study, we tried to use a comprehensive in silico approach
to dissect the inter and intra-tumoral heterogeneity of different
breast cancer subtypes and their impact on cancer cells’ behavior
and patient outcome. We pooled data of 1,084 breast cancer
patients from different breast cancer subtypes using TCGA
cohorts. Our analysis was done through an unsupervised
single-cell population identification method that revealed a
unique list of genes that were able to clearly differentiate
between different breast cancer molecular subtypes.

Due to its poor prognosis and lack of targeted therapy, we
further investigated the top differential genes in the overly
aggressive TNBC subtypes. Our analysis using different
independent, publicly available databases confirm that eight of
our shortlisted top differential genes were upregulated in TNBC
and their expression to be associated with worse patient outcome.
Except for the POU5F1 gene (OCT4), which is a cancer stem cell
marker and its expression was found to be associated with worse
outcome (28), the role of the other seven genes in TNBC
November 2020 | Volume 11 | Article 560074
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A B

C

FIGURE 6 | The cellular and stromal profile of clusters representative of luminal A, B, and basal-like breast cancer subtypes. (A) Estimation of Stromal and Immune
cells profile in clusters representative of luminal A, B, and basal-like breast cancer subtypes using Expression data (ESTIMATE) tool. (B) The percentage of immune
cell infiltration in basal versus luminal A and B breast cancer cells as predicted by CIBERSORT analytical tool. (C) Non-parametric Pearson correlation matrix for
immune cells showing different correlation of M1 and M2 to other infiltrating immune cells.
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FIGURE 7 | The genetic and molecular profile of M1H basal-like breast cancer subtype compared to the M1L group (A) The association between M1H and M1L
basal-like breast cancer subtypes and patient outcome presented as overall survival (OV) and disease-free survival (DFS). (B) The expression levels of key M1
phenotype markers including specific cytokines and chemokines (CXCL9, IDO1, CXCL13, CXCR2P1, GBP1P1, GBP4and) in M1H and M1L basal-like breast cancer
subtypes. (C) Top pathways enriched in M1H basal-like breast cancer subtype. ****p < 0.01.
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tumorigenesis, as well as their prognostic significance, is not yet
well identified.

As a proof of concept, we confirmed the clinical significance and
prognostic value of two of the eight shortlisted genes (NR2E1,
FZD9) belonging to this gene signature in our patient cohort
consisting of 80 breast cancer patients. Both genes were able to
discriminate TNBC samples from other non-TNBC subtypes
independent of their clinicopathological parameters. This
indicates the accuracy and sensitivity of our filtration method and
bioinformatic approach. However, further studies with a larger
number of patients are still needed in the future to confirm the
clinical benefits of using those genes as predictive and
prognostic markers.

Interestingly, NR2E1 was recently found to be upregulated in
ERa-negative breast cancer and to play a role in breast cancer cell
growth and invasion and was suggested as a possible candidate for
therapeutic targeting (29). Similarly, FZD9, which belongs to
frizzled receptors (FZDs) family that are G protein-coupled
receptors essential for WNT signaling pathway, was also found
recently to beupregulated in a groupof cancers including the highly
aggressive astrocytoma aswell as osteosarcoma, and its knockdown
was shown to reduce cell proliferationandmotility inhepatocellular
as well as hepatoblastoma cell lines (30, 31).

While our results clearly demonstrated the clinical significance
of our gene signature, further studies should be performed to
investigate the other candidates before its implementation in the
clinical practice.

Another important finding in our study is the ability of our
stratificationmethod not only to detect the cancer cells heterogeneity
but also to detect heterogeneity in the microenvironment profile,
including the stroma as well as the immune cell profile. This was
evident in our findings; the immune score was statistically higher in
the basal-like subtype compared to both luminal A & B subtypes.
Indeed, our results provide evidence that the enrichment of tissues
from IM subtype of TNBC patients with immune cell signaling and
pathways observed by Lehmann et al, 2011 was not only due to
epithelial tumor cells but also due to the difference in the tumor
microenvironment including the immune cells as well as the stromal
components surrounding the tumor (19). Moreover, our findings
go with the previous report that showed a significant association
between poor classical clinicopathological parameters, including ER,
PRnegativity, LN involvement, poorly differentiated tumors, and the
absolute Immunoscore, which reflects the total tumor-infiltrating
immune cells (32). The same report also showed tumor-infiltrating
lymphocytes (TILs) tobehigher in themore aggressiveHER-2aswell
as basal-like breast cancer types compared to the less aggressive
luminal A & B subtypes (32).

Interestingly, our signature was also able to identify a distinct
immune cell profile, including macrophages (M0, M1, and M2) in
the different breast cancer subtypes. Our findings revealed that
stratification of basal-like TNBC samples according to
macrophage M1 level was able to identify two basal-like
subgroups with distinct genomic as well as clinicopathological
features in addition to distinct patient outcomes. This highlighted
the need for such a signature that not only detect cancer cell
heterogeneity but also able to identify TME variation, including
Frontiers in Immunology | www.frontiersin.org 12
the immune cells that recently became an important candidate for
new therapeutic options, including immunotherapy.

Besides, our results also showed preliminary evidence on the
molecular basis of the beneficial effect and favorable outcome of
high M1 expression in basal-like TNBC. Indeed, we have found
that the M1H subgroup is enriched with M1 phenotype markers
that were enriched in antibacterial immune responses related
pathways. Some of those pro-inflammatory markers were
previously found to be involved in leukocyte trafficking, including
integrin activation and chemotacticmigration, and their expression
was found to promote M1 polarization and predict response to
therapy as well as favorable patients outcome (33, 34). This goes
with the anti-tumorigenic and pro-inflammatory effects proposed
for M1-like macrophages. This was reflected in the prolonged
overall survival observed in this subgroup compared with the
M1L subgroup.

As shown inFigure 8, we proposed threemechanisms thatmight
explain the favorable outcome of theM1H subgroup; all of which are
mediated through IFN-g. The first mechanism is mediated through
IFN-g induced chemokines (CXCL9 and CXCL13). Indeed,
chemokine CXCL9 is induced by IFN-g to mediate lymphocytic
infiltration to the focal sites thus suppressing tumor growth (35), in
addition, CXCL9 was found to be significantly associated with
increased pathologic complete response rate (pCR) in breast cancer
(36) and prolonged disease-free and overall survival in patients with
the triple-negative disease (37).

Moreover, the response rates to the immune checkpoint
blockade (ICB); anti-PD-1/anti-CTLA-4 in breast cancer was
found to have a direct correlation with the extent of tumor
immune infiltrate, which is correlated with upregulated
macrophages derived CXCR3 ligands, CXCL9, and CXCL10 (38).
This CXCL9/10/11-CXCR3 axis activation can lead to upregulated
expression of the immunosuppressor programmed death-ligand 1
(PD-L1) by activating the STAT and PI3K-Akt signaling pathways
that play an important role in cancer treatment (39).

On the other hand, chemokine C-X-C motif ligand 13
(CXCL13) plays a fundamental role through CXCL13: CXCR5
axis during inflammatory, infectious and immune responses by
orchestrating lymphocyte infiltration within the TME (40). As in
the case of CXCL9, IRF5 (interferon regulatory factor 5) can bind
to the promoter of CXCL13 and directly regulate its expression in
mammary epithelial tumor cells leading to the infiltration of
CD19+CXCR5+ B-cell and CD4+CXCR5+ T-cell to the tumor
(41). But opposite to CXCL9, high CXCL13 was associated with
improved outcomes in the luminal-human epidermal growth
factor receptor two subtypes (37).

Another mechanism that might explain the M1H subgroup
favorable outcome is through the other top DEGs between M1H
andM1L subgroups, including the IFN-g induced GTPases, known
toprotect againstmicrobial and viral pathogens (GBP4 andGBP5I).
GBP genes could act as protective factors in host defense by
controlling infection and autoimmunity (42). Infection-driven
IFN maintains GBP expression in murine and human
macrophages needed to restrict intracellular pathogens (43)
through the activation of caspase‐1 containing inflammasome
complexes or caspase‐4, which triggers pyroptosis (44).
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Mechanistically, recruited neutrophils mediate bacterial clearance
through the Gbp4 inflammasome-dependent biosynthesis of
prostaglandin D2 (45). In breast cancer, inflammasome was
linked to myeloid-derived suppressor cells (MDSCs) and tumor-
associated macrophages (TAMs) infiltration providing an
inflammatory microenvironment (46).

Our results also identified a major bactericidal activity and
immune modulator enzyme: IDO1, which was specifically
upregulated in M1H group. Indeed, IDO1 was found to be one of
the immune checkpointproteins involved incancer immuneescape
(47). However, and similar to our findings, a recent report with
comprehensive genomic analysis identifying novel TNBC subtypes,
also recognizes IDO1 as one of the most highly expressed genes in
an immune-activated basal-like TNBC subtype with high TILs
density, suggestive of active immune reaction (47, 48). Moreover,
it was also found to be significantly up‐regulated in basal-like breast
cancer subtype than the other subtypes and showed better survival
prognosis as it is involved in interferon-gamma response and PD‐
L1 positivity (49).

Overall, our results highlight the importance of using a
combined approach that consists of high-throughput genomic
technologies and unsupervised single-cell clustering methods in
exploring breast cancer heterogeneity. This approach might be
essential not only to understand the intratumoral heterogeneity
Frontiers in Immunology | www.frontiersin.org 13
but also for the discovery of more clinically relevant patients’
subpopulations and the discovery of new potential biomarkers
and therapeutic targets that are not restricted to parenchymal
cells but extend to the stromal and immune cell infiltrate. Such
an approach might help in a more personalized and better
patients response to different therapeutic options, including
chemotherapy, radiotherapy, as well as targeted therapy.
CONCLUSION

Our approach was able to identify discrete sub-clusters within
breast cancer subtypes with a distinct molecular and clinical
profile. Those sub-clusters not only identified heterogeneity
between the different breast cancer subtypes but also highlighted
intra-subtype heterogeneity. Moreover, our clustering methods
were able to differentiate breast cancer samples not only
according to the cancer cells profile but also according to the
TME, including both stromal as well as immune cell profiles.
Adding immune profiling through transcriptomic data can
increase precision for diagnosis and prognosis of breast cancer
patients and can categorize patients according to the available
therapeutic modalities in a more personalized approach.
FIGURE 8 | Possible mechanisms through which M1 might mediate the favorable outcome in basal-like triple-negative breast cancer (TNBC) patients.
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