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Immune response in the liver is determined by the spatial organization and cellular
dynamics of hepatic immune cells. The liver vasculature accommodates abundant
tissue-resident innate immune cells, such as Kupffer cells, natural killer cells, and
natural killer T cells, to ensure efficient intravascular immunosurveillance. The fenestrated
sinusoids also allow direct contact between circulating T cells and non-canonical
antigen-presenting cells, such as hepatocytes, to instruct adaptive immune responses.
Distinct cellular behaviors are exploited by liver immune cells to exert proper functions.
Intravital imaging enables real-time visualization of individual immune cell in living
animals, representing a powerful tool in dissecting the spatiotemporal features
of intrahepatic immune cells during steady state and liver diseases. This review
summarizes current advances in liver immunology prompted by in vivo imaging, with
a particular focus on liver-resident innate immune cells and hepatic T cells.
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INTRODUCTION

Receiving blood from the gastrointestinal tract via the portal vein, the liver stands out as one of
the prominent interfaces constitutively exposed to numerous food antigens, environmental toxins,
and commensal-derived microbial products. This unique anatomy of the liver profoundly shapes
its immunological properties (1, 2). In the liver, the sinusoidal blood is actively scanned by a

Abbreviations: α-Galcer, α-galactosylceramide; AhR, aryl hydrocarbon receptor; APC, antigen-presenting cell; BBIB,
blood–bile barrier; Blimp1, B lymphocyte-induced maturation protein 1; C3, complement component 3; CD, cluster of
differentiation; CLEC4f, C-type lectin domain family 4 member f; cNK, conventional natural killer cell; CRIg, complement
receptor of the Ig superfamily; CSF1-R, colony-stimulating factor 1 receptor; CX3CR1, C-X3-C motif chemokine receptor 1;
CXCL, C-X-C motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; DC, dendritic cell; EPEC, enteropathogenic
Escherichia coli; Gata6, GATA-binding factor 6; GFP, green fluorescent protein; HBV, hepatitis B virus; HCV, hepatitis C virus;
Hobit, homolog of Blimp1 in T cells; HSC, hepatic stellate cell; IC, immune complex; ICAM-1, intercellular adhesion molecule
1; IFN, interferon; IgM, immunoglobulin M; IL, interleukin; ILC, innate lymphoid cell; iMATEs, intrahepatic myeloid-cell
aggregates for T cell population expansion; iNKT, invariant natural killer T cell; IVM, intravital microscopy; KC, Kupffer cell;
LCMV, lymphocytic choriomeningitis virus; LFA-1, lymphocyte-function-associated antigen 1; LM, Listeria monocytogenes;
LrNK, liver-resident natural killer cell; LSECs, liver sinusoidal endothelial cell; MHC I, major histocompatibility complex class
I; MRSA, methicillin-resistant Staphylococcus aureus; NASH, non-alcoholic steatohepatitis; NETs, neutrophil extracellular
traps; NFALD, non-alcoholic fatty liver diseases; NK, natural killer cells; OVA, ovalbumin; PLZF, promyelocytic leukemia
zinc finger; SLO, secondary lymphoid organ; T-bet, T-box expressed in T cell; Tem, effector memory T cell; Tim-4, T cell
membrane protein 4; Treg, regulatory T cell; Trm, tissue-resident memory T cell; VAP-1, vascular adhesion protein 1.
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dense network of intravascular macrophages, namely, Kupffer
cells (KCs), which represent the largest population of tissue
macrophages in our body. The liver is also enriched in many
other innate immune cells, including natural killer T (NKT)
cells, natural killer (NK) cells, and γδ-T cells; they are fully
equipped immune effectors with potential to patrol around the
tissue. The predominance of innate immune cells endows the
liver with an ability to rapidly combat foreign invaders (3). By
contrast, to minimize the unwanted immune response against
harmless antigenic stimuli, e.g., food antigens and metabolic
by-products, adaptive immunity in the liver is usually blunted
due to the immunotolerogenic liver-resident antigen-presenting
cells (APCs) (4, 5). With these distinct immunological features,
the liver has long been considered as an immune organ (6,
7). It was proposed as “an immune barrier” (8), “an organ
with predominant innate immunity” (3), “a school to educate
regulatory immune cells” (9), and “a graveyard for T cells”
(10), each points out a specific function of immune cells in
maintaining liver homeostasis or in regulating systemic immune
responses. Intravital microscopy (IVM) has aided in deciphering
the function of liver immune cells at steady state and disease
and, therefore, has greatly improved our understanding of
liver immunology.

The most widely used techniques for immunological
researches, such as multiplex flow cytometry and immunofluore-
scence, have provided fruitful information into the composition,
abundance, and phenotype of hepatic immune cells. Recent
advances in single-cell sequencing have further uncovered the
heterogeneity of liver immune cells via unbiased transcriptomic
analysis (11, 12). However, these ex vivo approaches inevitably
rely on cell isolation or tissue slicing, during which immune
cells undergo enzymatic digestion, vortex, or fixation. These
procedures may have impacts on the viability, phenotype,
activation status, and even function of immune cells (13).
Most importantly, immune cells are highly diverse in terms
of their motility, behavior, and cellular interaction; all of these
properties are of important relevance to immune cell functions
but are usually neglected by the aforementioned ex vivo cell
profiling methods.

IVM is a state-of-the-art technique to visualize cells over
time in living animals through a high-resolution fluorescence
confocal microscope. It enables a single-cell level tracking
of individual cells in situ and in real time, without the
need to isolate the cells. Therefore, IVM becomes a versatile
and powerful tool in many fields of biomedical researches,
such as immunology, tumor biology, and cell biology (14–
16). Intravital imaging of immune cell dynamics in the
mouse liver can be readily performed by externalization of
one liver lobe or by implantation of an optical abdominal
window. Under a spinning disk or laser scanning confocal
microscope, a variety of hepatic immune cell populations
have been visualized by utilizing different fluorescent reporter
mouse strains or dyes (Table 1) (17). The cellular dynamics of
these cells have been recorded in physiological or pathological
conditions, bringing new perspectives into the function of
liver immune cells. In this review, we will describe how
IVM advances our understanding of liver immunology, with

TABLE 1 | Strategies for visualizing hepatic immune cell population by IVM.

Cell types Surface markers Labeling methods for IVM

Kupffer cell CD11bloF4/80hiTim4+Clec4f+ Dye-conjugated anti-F4/80 or
anti-TIM-4 antibody*

iNKT cell CD3+NK1.1+α-Galcer/CD1d
tetramer+

CXCR6-GFP reporter

LrNK cell CD3−DX5−NK1.1+CD49a+ Not reported

cNK cell CD3−DX5+NK1.1+CD49a− Ncr1-cre†
× tdTomato reporter‡

CD8+ T cell CD3+NK1.1−CD8+ dye-conjugated anti-CD8 antibody,
transfer of pre-labeled T cells;

CD4+ T cell CD3+ NK1.1−CD4+ Dye-conjugated anti-CD4 antibody;
transfer of prelabeled T cells

Neutrophil CD11b+Ly6G+ Lysm-GFP reporter§,
Ly6G-cre × tdTomato reporter,
dye-conjugated anti-Ly6G antibody

Monocyte CD11b+Ly6Chi or
CD11b+Ly6Clo

CCR2-RFP or CX3CR1-GFP
reporter||

*For labeling cells in vivo using dye-conjugated antibodies, a total of 1–2 µg
antibodies were injected intravenously into mouse about 10 min before imaging.
†Ncr1: natural cytotoxicity triggering receptor 1, specifically expressed on NK cells.
‡tdTomato reporter: Rosa26-Loxp-Stop-Loxp-tdTomato mouse. Cre-mediated
cleavage of Stop causes tdTomato expression in Cre-expressing cells. This
reporter strain can be replaced by Rosa26-LSL-ZsGreen reporter as well. §

GFPhi cells in this reporter are almost exclusively neutrophils; GFPlo cells contain
macrophages and monocytes. ||GFP cells in the subcapsular space of liver are
capsular macrophages. The transition of monocytes can be imaged by using
CCR2-RFP/CX3CR1-GFP double reporters.

a focus on liver-resident innate immune cells and hepatic T
cell responses.

INTRAVITAL IMAGING PROVIDES
SPATIOTEMPORAL INSIGHTS INTO
LIVER-RESIDENT INNATE IMMUNE
CELLS

Tissue-resident immune cells are essential for maintaining tissue
integrity during homeostasis and perturbations (18). Defining
a tissue-resident immune cell subset has been most commonly
achieved by performing parabiosis to check if these cells
recirculate or not. This method, however, is time consuming.
Alternatively, tissue residency of immune cells can be validated
via IVM, which offers essential information on the spatial
organization and dynamic behaviors of tissue-resident immune
cells. With this cutting-edge technique, the liver-resident innate
immune cells, especially macrophages and iNKT cells, have been
extensively studied, shedding new light on their function in liver
inflammation and infection.

Kupffer Cells Are Immune Sentinels in
the Liver Sinusoids With Blood-Filtering
Function
KCs comprise 80–90% of all body macrophages (19). These very
abundant, large, and ramified macrophages fill the thin liver
capillaries, constituting a tremendous intravascular phagocyte
network that ensures efficient immune surveillance over the liver
sinusoidal blood. KCs are not exclusively inside the vasculature;
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FIGURE 1 | Kupffer cell as immune sentinels with blood-filtering function. (A) Time-lapse intravital imaging of a single KC (white pseudocolor) showing the “sampling”
behavior of KCs. Red arrows indicate the extending of cell protrusions. Hepatocytes are shown by green autofluorescence. Liver sinusoids are seen as black space
between hepatocytes. Scale, 10 µm. (B) KCs residing inside the liver vasculature are self-maintained during homeostasis. They capture and phagocytose
blood-borne pathogens (bacteria, virus, parasite, fungi, etc.) via various molecular mechanisms involving scavenger receptor-mediated pattern recognition and
complement or antibody-dependent opsonization. The “open status” of KC niche as a consequence of KC loss results in rapid infiltration of monocytes. The latter
cells adopt a monocyte-derived KC identity by upregulating of transcriptional factors liver X receptor (LXR)-α and inhibitor of DNA binding 3 (ID3). Cellular interactions
with hepatocytes, HSCs, and LSECs orchestrate the differentiation of monocytes into KCs.

a substantial fraction of their cell body were seen in the
perivascular space interacting with hepatic stellate cells (HSCs)
and hepatocytes (20). Concordantly, KCs frequently extend
cell protrusions, forming a lamellipodium-like structure that is
continually scanning back and forth (Figure 1). This prototypical
“sampling” behavior might be a reflection of micropinocytosis
(21), which may occur actively for KCs to engulf toxic solute in
the blood and the space of Disse.

KCs possess an incredible capacity to rapidly clear blood-
borne pathogens. Real-time imaging showed that KCs captured
and subsequently internalized 80% of inoculated bacteria in
<2 min, pinpointing a pivotal function of KCs in preventing
systemic bacterial dissemination (22). Complement receptor
of the Ig superfamily (CRIg), a well-known receptor for the
complement component C3b and iC3b (23), was critical in this
biological process. In addition to catching C3b- and iC3b-coated
bacteria (23, 24), CRIg was able to directly recognize and bind
lipoteichoic acid, a pathogen-associated molecular pattern that is
widely expressed on the surface of Gram-positive bacteria (22).
This pattern recognition role of CRIg enables almost instant
sequestration of Gram-positive bacteria from blood without the
need for complement activation and opsonization (22), thereby
maximizing the ability of KCs in preventing early bacteria
dissemination. CRIg expression was largely restricted to tissue

macrophages, particular in KCs (25, 26). This expression profile
correlates with the indispensable role of CRIg in KC-mediated
immune clearance of various blood-borne microbial species,
including parasites (27), fungi (28), and virus (29), all in a
complement-dependent manner.

It is believed that KC employs multiple mechanisms other than
CRIg to sequester circulating pathogens. Time-lapse analysis of
bacterial trapping in the liver revealed a sex-biased difference
during enteropathogenic Escherichia coli (EPEC) infection.
Females possessed an abundant level of estrogen-elicited natural
antibodies against EPEC, rendering a faster bacterial capture
by KCs than that in males (30). immunoglobulin M (IgM)
antibodies turned out to be highly efficient in supporting bacterial
capture, although the corresponding receptors remain yet to be
defined (30).

KCs work cooperatively with liver sinusoidal endothelial
cells (LSECs) to efficiently remove particles in circulation,
ranging in size from nanometer to micrometer. This scavenger
function of liver dramatically hinders the delivery of therapeutic
nanoparticles into target tissues. Up to 99% of systemically
administered nanoparticles were trapped and cleared within
the liver, mainly by KCs and LSECs (31). Whereas small
nanoparticles were uptaken by both cell types, large nanoparticles
were cleared preferentially by KCs (31, 32). Similarly, latex beads
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larger than 1 µm were captured predominantly by KCs (33).
The KC’s propensity to phagocytose large particles also held true
for immune complexes (ICs); large ICs generated by a bispecific
antibody were almost exclusively uptaken by KC, but small ICs
preferentially ended up in LSECs (34).

Efferocytosis of unhealthy blood cells emerges as another
important blood filter function of KCs. The liver, in addition
to the spleen and bone marrow, has been proposed as a major
place to clear aged blood cells (35). However, definitive evidence
by real-time visualization of blood cell clearance in the liver
is scarce. Recent imaging-based studies demonstrated that aged
or injured platelets were trapped and removed by KC but
neither hepatocytes nor LSECs. This function of KCs relied on a
collaboration of their macrophage galactose lectin and Ashwell–
Morell receptor to capture desialylated platelets from the blood
(36). Whereas C-type lectin domain family 4 member f (CLEC4f)
as the KC specific receptor was proposed to capture desialylated
platelets in mouse (37), this receptor was absent in human
(38). Transformed cells, including metastatic cancer cells, can be
trapped in the liver at least partly by KCs, which expressed a full
array of scavenger receptors and lectin receptors that elegantly
discriminated the “eat me” and “don’t eat me” signals exposed
on tumor cells (39, 40). Antibody opsonization potentiated KC-
mediated elimination of circulating tumor cells, as seen in vivo
during antibody treatment of B cell lymphoma, melanoma cells,
and colon carcinoma cells (41, 42).

Imaging the Heterogeneity and
Replenishment of Liver Macrophages
The ontogeny and diversity of liver macrophages have recently
drawn substantial attention. KCs originated from embryonic
precursors and are self-maintained. Distinct subsets of KCs at
steady state has been observed based on the differences in
cell size (43, 44), localization (43, 44), surface marker (43,
45), and transcriptome (12, 46). Monocytes also contribute
to liver macrophage pool upon KC loss during infection or
injury (47, 48). Although these monocyte-derived macrophages
appear as transient infiltrating cells that exert on-demand
proinflammatory, reparative, or erythrophagocytic functions
(49–51), some of them may establish long-term tissue residency
with time especially when the KC niche is wide open (52). This
results in a population of liver-resident macrophages that can
be functionally and phenotypically different from embryonically
derived KCs (48, 53–55). Understanding the heterogeneity of
liver macrophages may have important implications for treating
liver diseases (56).

A recent imaging-based study elaborately illustrated
the cellular interactions required for monocyte-mediated
macrophage replenishment in the liver (20). Monocytes
rapidly infiltrated the liver upon KC depletion, increased
cell size, and adopted an elongated shape with big processes,
resembling a prototypical KC morphology. Their pseudopods
protruded through LSECs to interact with HSCs in the
space of Disse and concurrently to reach hepatocytes. These
cell–cell interactions collectively imprinted a KC identity on
differentiating monocytes by providing essential molecular cues

to drive KC development (20, 57). Therefore, the three major
hepatic cell types, including LSECs, HSCs, and hepatocytes,
composed a liver-specific macrophage niche to orchestrate the
differentiation of precursors into KCs.

Intravital imaging helped discover a new liver macrophage
population located right below the liver capsule (55, 58), a
region that was overlooked by the liver immunological studies
in the past. These capsular cells were found to inhabit the
extravascular space under a thin layer of liver mesothelium and
were identified by their uniform expression of C-X3-C motif
chemokine receptor 1 (CX3CR1), a marker that was absent on
KCs. They were first reported as liver dendritic cells (DCs)
(55) but were later recognized as macrophages because a panel
of key macrophage markers were detected, including F4/80,
CD64, CD14, and colony stimulating factor 1 receptor (CSF1-
R) (58). Antibody staining of these capsular cells in vivo took
much longer than expected, which could be the major reason
causing the discrepancy between these two studies in classifying
these cells. CX3CR1+ capsular cells exhibited a “sampling”
behavior and were able to sense and catch bacteria that breached
the liver mesothelium from peritoneum (58), suggesting their
potential to act as immune sentinels in the subcapsular liver
area. The functional importance of capsular macrophages in
liver diseases remains to be uncovered; their crosstalk with
intravascular immune cells or other subcapsular cell populations
merits further investigation.

Liver Resident iNKT Cells Patrol the Liver
Sinusoids
Invariant NKT (iNKT) cells can acquire long-term tissue
residency in a non-lymphoid organ (18, 59), particularly in
the liver. Up to 30% of total intrahepatic lymphocytes in mice
and 10% of that in human are iNKT cells (3). A C-X-C
motif chemokine receptor 6-green fluorescent protein C-X-C
motif chemokine receptor 6–green fluorescent protein (CXCR6-
GFP) reporter mouse strain has been widely used to image
iNKT cells in vivo. More than three quarters of GFPhi cells
in the liver of these mice are CD1d-restricted iNKT cells (60).
Hepatic iNKT cells were seen to slowly crawl along the liver
sinusoids without a directional bias, representing an intravascular
patrolling behavior that was distinguishable from leukocyte
rolling along vascular endothelium (33, 60). The molecular basis
underlying iNKT cell patrolling remains unclear. CXCR6 and
its ligand C-X-C motif chemokine ligand 16 (CXCL16) played
no role despite their abundant and constitutive expression on
iNKT cells and liver endothelium respectively (60). Instead,
this chemokine signaling functioned to maintain the survival
of hepatic iNKT cells (60) and to attract circulating iNKT
cells into the inflamed liver during injury (61) and cancer
(62). Recent findings suggested an essential role of integrin-
mediated cell adhesion for iNKT cells to retain in liver sinusoids.
Blockade of lymphocyte function-associated antigen 1 (LFA-1)
and its ligand intercellular adhesion molecule 1 (ICAM-1) in
tandem abolished hepatic retention of iNKT cells, causing their
redistribution from the liver into blood (63). Transcriptional
factors, including promyelocytic leukemia zinc finger (PLZF)
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FIGURE 2 | The cellular dynamics of iNKT and NK cells in the liver. A large number of iNKT and NK cells retain in the liver under the control of Hobit and Blimp1.
LFA-1/ICAM-1 interaction is critical for iNKT cells to retain in the liver. Hepatic iNKT cells show an intravascular patrolling behavior along the endothelium, but the
underlying molecular mechanisms are unknown. Patrolling iNKT cells quickly arrest their movement and become activated in response to cognate antigens and
innate cytokine (IL-12, IL-18, etc.). During blood-borne B. burgdorferi infection, KCs capture the bacteria and attract iNKT cell via CXCL9-CXCR3 chemokine
signaling. iNKT cells then form clusters surrounding KCs and get activated by CD1d-presented lipid antigens. In turn, activated iNKT cells prevent bacteria from
escaping possibly by enhancing bacterial killing via IFN-γ production. In liver sterile injury, endogenous lipid antigens from necrotic hepatocytes and inflammatory
cytokines from macrophages orchestrate a multistep response of hepatic iNKT cells, including repulsion, retention, and infiltration. iNKT cells are activated during this
process and produce IL-4 to promote wound healing at the injured site. The spatiotemporal features of LrNK cells are much less understood. It remains unclear how
LrNK cells are retained in the liver and whether LrNK cells patrol in the sinusolids. Moreover, during LrNK cell-mediated memory response, the cellular dynamics of
LrNK cell priming and egress merit further investigation.

(63), B-lymphocyte-induced maturation protein 1 (Blimp1), and
homolog of Blimp1 in T cells (Hobit) (64) were indispensable
for the tissue residency of iNKT cells, possibly by upregulating
integrins and by suppressing lymphocyte egress genes.

Patrolling iNKT cells underwent rapid change of cellular
behavior upon encountering cognate antigens; they stopped
crawling and became stationary within 1 h after iNKT cell agonist
α-galactosylceramide (α-Galcer) administration (60). A similar
response was induced by inflammatory cytokines, indicating that
the arrest of iNKT cell movement was a general result of cell
activation. This was confirmed by the upregulation of CD69 and
the production of effector cytokines by arrested iNKT cells (65).

Characterizing the spatiotemporal features of iNKT cells has
provided novel insights into the activation and function of
these cells (Figure 2). During bloodstream Borrelia burgdorferi
infection, iNKT cells gradually decreased their crawling velocity
and became completely immotile by 24 h postinfection. Arrested
iNKT cells were closely abutted to bacteria-containing KCs and
formed stable clusters. This iNKT cell clustering maybe a strategy
to enhance the killing of intracellular bacteria via augmenting the
local concentration of interferon-γ (IFN-γ), which was released

by activated iNKT cells (33). The response of iNKT cells to sterile
injury can be categorized into three phases in a well-studied
focal liver burn injury model (66). In the early repulsion phase,
patrolling iNKT cells approached the lesion but made a U-turn
at the border and then retreated. In the mid-retention phase,
iNKT cells were arrested and accumulated as a ring structure
around the injured area. In the late infiltration phase, iNKT
cells finally migrated across the boundary and infiltrated the
injury site, where they promoted wound healing by producing
interleukin-4 (IL-4) (67). Local signals, including endogenous
glycolipids from necrotic cells and the inflammatory cytokines
produced by KCs, coordinately instructed this multistep iNKT
cell response (67). Interestingly, perturbations at a distant organ
were also able to remotely modulate the behavior of hepatic
iNKT cells (68). Stroke-associated brain injury induced arrest of
iNKT cell crawling in the liver. These cells then started sending
out pseudopods to scan around their cell bodies, showing a
“pirouetting” behavior that was not observed during cytokine or
antigenic stimulations but was mediated by neurotransmitters.
This unique behavior of iNKT cells was associated with their IL-
10 production upon innervation (68). It is thus inferred from

Frontiers in Immunology | www.frontiersin.org 5 September 2020 | Volume 11 | Article 564768

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-564768 September 15, 2020 Time: 19:15 # 6

Li and Zeng Intravital Imaging of Liver Immunity

these studies that the multifaceted function of hepatic iNKT cells
may be determined by their cellular behaviors.

Liver-Resident NK Cell—More Than
Killers With the Need for Visualization
NK cell represents another liver-enriched lymphocyte
population, accounting for up to 50% of total intrahepatic
lymphocytes in humans and 10% of that in mice (69). Flow
cytometric analysis of mouse liver revealed two phenotypically
distinct populations of NK cells, based on their mutually
exclusive expression of DX5 and CD49a (70). The DX5+CD49a−
subsets appeared as circulating conventional NK (cNK) cells that
were transiently passing through the liver. On the contrary, the
DX5−CD49a+ subset showed unique features that defined them
as a liver-resident NK (LrNK) cell population (70). Importantly,
LrNK cells are developmentally separated from cNK cells. They
originated from hematopoietic progenitor cells that persistently
seed in the adult liver but not from bone marrow where the cNK
cells arise (70, 71). Transcriptional factors that instruct LrNK
cell development and maintenance include T-box expressed
in T cells (T-bet) (71, 72), Hobit (64), and aryl hydrocarbon
receptor (AhR) (73).

As an emergent liver-resident innate immune cell population,
LrNK cells serve multiple tissue-specific functions. They were
shown to confer T- and B-cell-independent innate memory
responses (74). In hapten-induced contact hypersensitivity, LrNK
but not cNK cells was sufficient to elicit a recall response upon
hapten rechallenge (70). LrNK cell-mediated memory response
was also observed during viral infections and was dependent on
CXCR6, a chemokine receptor that was highly expressed by LrNK
but absent on cNK cells (75, 76). LrNK cells expressed an array
of immune regulatory molecules. They significantly inhibited the
antiviral T cell responses during acute and chronic lymphocytic
choriomeningitis virus (LCMV) infections (77) and suppressed
the proliferation of autoimmune CD4+T cells in cholangitis (78),
highlighting a role of LrNK cells in maintaining liver tolerance.
LrNK cell-derived IFN-γ, in addition to exerting cytotoxicity
against viral infected cells (79), showed hepatoprotective function
by upregulating antiapoptotic signals during acute liver injury
(80), although the LrNK cells in these two studies were defined as
liver innate lymphoid cell 1 (ILC1), a cell category that embodied
LrNK and others (81).

While much can be learned from these studies, there is a
paucity of description regarding the subtissular localization and
dynamic behaviors of LrNK cells. Intravital imaging of LrNK cells
is promising in addressing these questions although challenges
remain, largely due to their infrequency in mice and the lack of
an LrNK cell-specific fluorescent reporter mouse. Nevertheless,
by exploiting the cellular dynamics of LrNK cells in vivo, our
knowledge about their function and ontogeny will be greatly
expanded (Figure 2). For example, it would be interesting to
image how LrNK cells are primed in an antigen-specific way and
how memory LrNK cells are mobilized to a peripheral organ
where the cognate antigen is re-encountered. Furthermore, it was
recently reported that CD8+T cells drove LrNK cell maturation
in a cell-contact-dependent manner (82). Dynamic imaging of

cellular interactions between these two cell types would provide
key insights into the “LrNK cell niche” that is indispensable for
their development and education.

INTRAVITAL IMAGING UNRAVELS THE
MYSTERIES OF INTRAHEPATIC T CELL
RESPONSES

The liver has been historically considered as an immune privilege
organ favoring immune tolerance induction (83). Liver-induced
immune tolerance was considered as a major reason for viral
persistence during chronic hepatitis B and C virus (HBV and
HCV) infection (5, 7). Nonetheless, the liver was also shown as
fully competent in mounting robust T cell responses particularly
in acute infections (84). This is not a paradox but rather reflecting
the complex outcomes of a T cell response in the liver. It is
becoming clearer now that the nature of intrahepatic T cell
response can be shaped by various factors, including but not
limited to the route of antigen exposure, antigen load (85), type of
APCs (86), the extent of inflammation (87), and cytokine milieu
(88). In this section, we will discuss some key findings that were
uncovered by IVM, which shed new light in T cell priming and
surveillance in the liver.

T Cell Priming in the Liver—How Does a
Naive T Cell Become Activated in the
Liver?
With the presence of fenestration and the absence of basal
membranes, the highly permeable liver sinusoids not only
enable a direct priming of circulating naive T cells by infected
hepatocytes but also open the door for other hepatic APCs, e.g.,
LSEC, KCs, and DCs, to grab antigens from the parenchyma. T
cell priming by these very different APCs can result in various
outcomes in terms of T cell activation, behavior, and function
(Figure 3A). A recent study elegantly elucidated the dynamics of
CD8+T cells primed by different hepatic APCs (89). When the
HBV antigens were strictly expressed by hepatocytes, antigen-
specific CD8+T cells form loose, long-lasting, and intravascular
clusters surrounding the portal tracts. These hepatocyte-primed
CD8+T cells were transcriptionally and epigenetically different
from effector T cells. As a consequence, they were dysfunctional
and gradually became exhausted if the antigen persisted (89).
By contrast, when the antigens were delivered to KCs, CD8+T
cells fully differentiated into functional competent effector T
cells. They formed dense, temporal, and extravascular clusters
scattered throughout liver lobules. The depletion of KCs but not
DCs completely abolished this T cell priming effect (89), even
though the approach used to deplete DCs also eliminated half of
KCs (55), suggesting a pivotal and powerful function of KCs in
priming CD8+T cells. Importantly, these observations revealed a
bona fide effect of hepatic APCs in CD8+T cell priming, as the
role of secondary lymphoid organs (SLOs) was experimentally
precluded (89).

The priming of CD4+T cell in the liver was also visualized.
Latex beads covalently coupled with model antigen ovalbumin
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FIGURE 3 | T cell priming and surveillance in the liver. (A) Naive T (Tn) cells extend cell protrusions across the fenestrated liver sinusoids to reach infected
hepatocytes and sense cognate antigens. Antigen recognition in the absence of inflammation leads to the formation of loose, intravascular T cell clusters. These T
cells show moderate proliferative capacity and are dysfunctional. Prolonged antigen stimulation by hepatocytes induces T cell exhaustion. By contrast, KCs
phagocytose dead hepatocytes and cross-present cognate antigens, leading to the formation of dense, extravascular T cell clusters. T cells primed by KCs show
robust proliferation and are functionally competent. Furthermore, CD4+T cell primed by KCs generates regulatory T cells in the absence of inflammation. LFA-1 and
ICAM-1-mediated hepatic adhesion of naive T cells is required for T cell priming in the liver. (B) Effector T (Teff) cells generated in SLOs dock onto adherent platelets
and then crawl along the liver sinusoids to probe the parenchymal via fenestrated LSECs. Once cognate antigens are recognized, Teff cells quickly release IFN-γ to
eradicate infections. Some of these effector T cells are retained in the liver vasculature through LFA-1-ICAM-1-mediated adhesion. They differentiate into
tissue-resident memory T cells in an IL-15-dependent manner. Liver Trm cells then crawl along the sinusoids via as-yet-unidentified molecular mechanisms where
chemokines may play a role. Some other effector T cells differentiate into Tem cells and are freely circulating in the blood.

(OVA) were injected to induce a selective antigen presentation
by KCs (87). OVA-specific CD4+T cells (OT-II) reduced their
cell motility until being completely arrested by antigen-loaded
KCs. The antigen-dependent interactions between KCs and
OT-II cells can last for hours, resulting in T cell activation
and proliferation. However, these OT-II cells differentiated into
Foxp3+ regulatory T (Treg) cells over time (87), indicating
a tolerogenic role of KCs during CD4+T cell priming. Liver
inflammation induced by carbon tetrachloride treatment strongly
dissociated the contacts between KCs and CD4+T cells, leading
to impaired induction of Treg cells (87). How inflammation
fine tunes the KC-primed T cell response is unclear; one could
speculate that KCs harbor an array of inhibitory receptors,

e.g., CRIg (25) and Clec4g (90) to safeguard the induction of
immune inhibitory cells at steady state. Concordantly, LSECs
were shown to induce T cell tolerance and dysfunction in various
situations (4, 86, 91).

Not only tissue-resident APCs but also emigrant APCs can
prime T cells in the liver. Plasmodium infection induced a rapid
hepatic influx of CD11c+ monocyte-derived cells (92). These
cells were seen to ingest parasites from dying hepatocytes as
early as 40 h postinfection, when the parasites were initially
thought to be restricted in hepatocytes (92). After acquiring
antigens, these APCs migrated into the liver-draining lymph
nodes, where a protective CD8+T cell response was induced as
reported elsewhere (93, 94).
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Hepatic T cell priming can be drastically changed when
the liver lobular structure is disrupted. This often happens
in chronic infections and is usually coupled with de novo
formation of structures that restrain the pathogens by heavily
populated immune cells. Mycobacterial granuloma in the liver
was primarily composed of KCs and inflammatory macrophages.
These immotile cells formed dense macrophage clusters to
cover the lesion area of the liver (95). KCs were the only
cell type containing pathogens in a granuloma. However,
uninfected KCs were also observed in the core of granulomas,
with a corresponding reduction in these cells in adjacent
areas, implying the migration of KCs into granuloma (95,
96). IVM revealed that cognate T cells displayed reduced cell
motility and exhibited sustained contact with antigen-presenting
macrophages within granulomas (96, 97). However, this resulted
in inefficient T cell activation, as CD4+T cells showed a
low-level and polarized production of effector cytokines. The
intrinsic defect of mycobacterial granuloma in priming T cells
was due to the limited antigen availability to T cells, likely
because antigen-loaded KCs were outnumbered and shielded
by antigen-unloaded macrophages (97). A similar structure
was reported during chronic viral infections in the liver,
namely, intrahepatic myeloid-cell aggregates for T cell population
expansion (iMATEs) (98). The iMATEs were mainly constituted
by CD11b+ monocytes and monocyte-derived inflammatory
DCs. In contrast to mycobacterial granuloma, the iMATEs were
highly efficient in T cell priming, thereby representing the major
venue of a chronically infected liver to drive robust antiviral
CD8+T cell proliferation (98).

T Cell Surveillance in the Liver—How
Does a T Cell Find Its Target in the Liver?
In most cases of liver infections, effector T cells can be
differentiated in the SLOs, from where they migrate into the
liver to destroy infected cells (Figure 3B). Using exquisite
imaging methods, Iannacone’s group depicted an unappreciated
intravascular immunosurveillance program of effector T cells
in the liver (99); activated HBV-specific CD8+T cells rapidly
adhered in the liver independent of integrins and chemokines.
Alternatively, attached platelets in liver sinusoids acted as the
primary docking sites for these effector T cells (99). CD44–
hyaluronan interaction that was critical for hepatic sequestration
of leukocytes (100) was involved in platelet adherence (99,
101). After initial binding to platelets, effector T cells started
crawling along the liver sinusoids. They concurrently extended
cell protrusions traversing the fenestrated endothelium to
scan subsinusoidal space. Once reaching an HBV-expressing
hepatocyte, the effector T cells were quickly arrested to produce
IFN-γ and ultimately extravasated into the parenchyma (99).
Noteworthily, interacting with hepatocyte through fenestrations
was also observed in naive T cells upon antigen recognition (102).
This led to T cell retention via LFA-1/ICAM-1 mediated adhesion
(103). The expression of major histocompatibility complex class I
(MHC-I) and ICAM-I was not evenly distributed on hepatocytes
but was polarized to their perisinusoidal membrane, maximizing
the ability of hepatocytes to retain circulating T cells. Hepatic

retention of T cells resulted in immune tolerance in the absence
of inflammation (103–105). However, a recent study showed
that intrahepatic Treg cells were preferentially detained and
engulfed by hepatocytes as compared to non-Treg T cells.
This phenomenon, termed as enclysis, may represent a novel
immunomodulating function for hepatocytes to overcome liver
tolerance by deleting Treg cells (106).

Effector memory T (Tem) cells and tissue-resident memory
T (Trm) cells exhibited distinct migration patterns in the liver.
CD8+ Tem cells were rounded and moved freely in blood
vessels with occasional and transient interactions with LSECs
(107). In sharp contrast, CD8+ Trm cells showed an amoeboid
shape with high polarity; they crawled along liver sinusoids
with a migration speed much slower than that of Tem cells
(107). This patrolling behavior of Trm cells could be an ideal
pattern to survey reinfected hepatocytes. Interleukin-15 (IL-15),
but not cognate antigens in the liver, was pivotal for hepatic
Trm cell differentiation (108). Liver CD8+ Trm cells do not
express CD103, which is a key integrin for Trm to establish tissue
residency in many other organs, but alternatively, LFA-1-ICAM-1
interaction was essential for Trm cells to reside in the liver (109).

Intravascular crawling endows T cells with the ability to
scan their targets, but how do T cells behave to destroy these
targets after finding them? Activated CD8+T cells were seen
to swarm toward parasites, forming large clusters with up
to 25 antigen-specific CD8+T cells surrounding one infected
hepatocyte (110). Comparing to the “move and search” behavior
during intravascular patrolling (99), the swarming behavior of
effector T cells may represent a “marshal, break-in and destroy”
mission to eliminate infected cells. Indeed, prolonged interaction
of CD8+T cells with hepatocytes was correlated with apparent
death of parasites. Various death phenotypes of parasites were
identified by imaging, implying different killing mechanisms by T
cells (110), either by direct cytotoxicity or by cytokines (111, 112).

The spatiotemporal features of CD4+ effector T cells in the
liver are much less understood. Imaging the trafficking of in vitro
polarized Th1 and Th2 cells revealed a vigorous adhesion of
these CD4+T cells in inflamed liver sinusoids and postsinusoidal
venules. Hepatic adhesion of Th1 and Th2 cells was guided by
distinct molecular cues, involving α4β1-integrin and vascular
adhesion protein 1 (VAP-1), respectively (113). Since CD4+T cell
subsets have been discovered with remarkable plasticity (114),
whether and how the functional transition of CD4+T cells is
adapted to their cellular behaviors remains an open question.

APPLICATION OF INTRAVITAL IMAGING
IN STUDYING LIVER DISEASES

With the many advantages of IVM in recoding the wild lives
of immune cells (16), it has been widely used to investigate
the immunopathogenesis of various liver diseases, ranging from
infection, inflammation, to cancer. Immune cell dynamics during
liver infection and acute liver injury have been extensively studied
in the past decade and has been reviewed elsewhere (1, 17).
We will briefly outline some of these researches that we have
not mentioned in previous sections. We will also discuss the
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current applications of intravital imaging in studying chronic
liver diseases including cancers.

Liver Infections
The liver is the major organ in clearing bloodstream bacterial
infections. Circulating methicillin-resistant Staphylococcus
aureus (MRSA) were quickly captured by KCs, culminating
in up to 90% of the total inoculum sequestered inside KCs
(22). The majority of captured bacteria was then killed in the
phagolysosome by reactive oxygen species, but a small part of
them survived and replicated intracellularly (115). Hence, KCs
can act as a shelter for surviving bacteria to avoid elimination
by host immunity. This was reminiscent of intracellular
bacterial infections, such as Listeria monocytogenes (LM), which
eventually killed the host KCs through listeriolysin O-induced
necroptosis (49). Similarly, some MRSA managed to lyse KCs
and translocated into the peritoneum, a place where they
were phagocytosed by GATA-binding factor 6 (Gata6+) cavity
macrophages and then shuttered to the kidneys to establish renal
infection (116). Platelets were quickly docked onto the surface of
KCs, forming large platelet aggregates that encase macrophages
to prevent attached bacteria from escaping (117). A recent report
suggested a role of staphylococcal α-toxin in initiating platelet
nucleation on KCs. Persistent release of α-toxin thereafter
from intracellular MRSA exacerbated the platelet aggregation,
resulting in intravascular thrombosis and tissue injury (118).

The intracellular localization prevented bacteria from killing
by neutrophils (115). As such, neutrophils were dispensable
for the early control of bloodstream bacterial infections (119).
Alternatively, neutrophils produced neutrophil extracellular
traps (NETs) during infections (120, 121). These DNA-composed
sticky structures were decorated with histones and proteinases,
endowing them with the ability to ensnare and kill bacteria in the
liver sinusoids (120). Thereby, NETs can consolidate the immune
barrier function of liver by diminishing the dissemination of
bacteria, though usually at a cost of causing collateral tissue
damages (121, 122). Taking advantage of IVM in studying the
very dynamic response of platelets in vivo, NETs were found
to induce intravascular coagulation, which exacerbate tissue
damages during sepsis (122, 123).

Unlike bacteria, parasites were not immediately caught by
KCs. A part of circulating Plasmodium sporozoites were seen
to abruptly adhere to the liver endothelium and glided along
the sinusoids toward a KC. Instead of being phagocytosed,
these parasites penetrated the KC and then squeezed into the
parenchyma, where they traversed several hepatocytes before
finally invading one (124). Since parasite-crossing permanently
damaged the membrane integrity of the traversed cells, KC
traversal maybe an immune evasion strategy for parasites
to survive during liver-stage infection (125). How blood-
borne hepatotropic virus, such as HBV and HCV, cross the
liver vessels and establish infections in hepatocytes remains
unknown; imaging this process in vivo could provide important
implications for blocking viral transmission. As a clue, it was
shown that visualizing and tracking of tiny viral particles in the
bloodstream was feasible, which revealed a preferential uptake
of oncolytic virus by KCs over other liver cell populations

(126). Noteworthily, current studies are mostly focused on
infections that are induced by a single type of pathogen.
Polymicrobial infections are on the rise but often neglected, in
which the disease outcome can be dramatically complicated and
exacerbated by simultaneous or sequential infection with two or
more different microorganisms (127). It would be intriguing to
image these different microbes during a polymicrobial infection
to see how they affect the colonization and clearance of each
other in vivo.

Acute Liver Injury
The hepatic immune responses to sterile injury are thoroughly
characterized by IVM using a focal liver injury model. Burning
a tiny area of the liver surface resulted in necrotic cell death
and swarming of neutrophils toward the lesion. This directional
neutrophil movement was guided by a coordinated effect of many
chemoattractants and intracellular signaling molecules (66),
including DAMPs, chemokines, and Btk signalosomes (128). The
recruited neutrophils performed a critical tissue-repairing task by
accelerating angiogenesis (129). Platelets rapidly accumulated at
the edge of the lesion and facilitated the entry of neutrophils into
the injured tissue (130). CCR2+ inflammatory monocytes arrived
a little later than neutrophils, but they stopped migrating at the
boundary to encompass the lesion (131). iNKT cell-derived IL-
4 at this stage instructed a functional transition of monocytes
from inflammatory to reparative (67). Reparative monocytes
gradually lost CCR2 but obtained CX3CR1 expression, with a
concurrently increased ability to infiltrate into the core of injury
to ensure proper wound healing (131). Peritoneal macrophages
were shown to traverse the liver mesothelium and cover onto the
lesion area, facilitating the tissue repair by dismantling DNA from
necrotic cells (132).

The cell dynamics and functions of inflammatory cells
unraveled using the burn injury model have been extensively
confirmed in more clinical-relevant acute liver injury models.
During acetaminophen overdose-induced hepatotoxicity,
CCR2+ monocytes were arrested by necrotic hepatocytes
to form dense clusters around the lesion areas. These cells
were proinflammatory and aggravated liver injury at the early
stage until a functional transition toward anti-inflammatory
occurred (133). Neutrophils crawled to the heavily DNA-
deposited necrotic area and patrolled inside the lesion (134),
exhibiting behaviors that resembled what was found in the
burn injury model. Neutrophil recruitment in both models
depended on chemoattractants such as N-formyl-methionyl-
leucyl-phenylalanine (fMLP) and CXCL2 (134), but the signaling
pathways in initiating and amplifying neutrophil infiltration
were divergent (135). Similar migration patterns of neutrophils
were also reported during hepatic ischemia–reperfusion-induced
liver injury (136, 137). The timely clearance of recruited
neutrophils and monocytes from the injured site is crucial
for tissue repair. Although this is generally considered as a
result of macrophage efferocytosis, it was not apparently seen
in vivo (129). Further studies are required to record the fate
of these presumably short-lived cells during the resolution of
inflammation, despite the possibility of reverse transmigration
was proposed (129).
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Chronic Liver Diseases
We are at the beginning of using IVM to study chronic liver
diseases. A major obstacle for intravital imaging of a chronically
inflamed liver is the strong autofluorescence that overrides the
fluorescent signal of labeled immune cells (138). By optimizing
optical modules to minimize autofluorescence, visualization
of the immune cell dynamics in non-alcoholic fatty liver
diseases (NFALDs) was recently achieved (138). By exploiting
this new method and the well-established abdominal imaging
window, in vivo imaging the chronic inflammatory responses that
contribute to the transformation from NFALD to non-alcoholic
steatohepatitis (NASH) is possible and could be promising for
early diagnosis and prevention. Interestingly, platelet recruitment
to the fatty liver preceded leukocyte infiltration during NFALD.
Adherent platelets were primarily attracted by and interacted
with KCs to stimulate the releases of proinflammatory cytokines
and chemokines, by which platelets promoted the progression of
NFALD to NASH (101).

The application of IVM during chronic liver diseases can be
expanded beyond characterizing immune cell dynamics. This
technique enables direct visualization of blood and bile flow
in living animals, both of which are notoriously difficult to
measure in vitro, thereby becoming a powerful tool to evaluate
the blood–bile barrier (BBIB) integrity. Blood flow in the
sinusoids can be routinely monitored using fluorophore-labeled
dextran (139). Bile flow can be visualized by injection of 6-
carboxyfluorescein diacetate, a probe that is selectively taken
up by hepatocytes, hydrolyzed to fluorescent carboxyfluorescein
(green fluorescence), and secreted into the biliary canaliculi as
early as 2 min after injection (140). With this method, the BBIB
integrity has been elegantly examined in multiple settings of
chronic liver diseases, especially during cholestasis (141–143).

Liver Cancer
IVM has been well exploited in studying liver metastasis (144,
145). Circulating tumor cells can easily traverse the highly
permeable liver sinusoids to establish colonization, making the
liver as a metastasis-prone organ. A large part of circulating
tumor cells were seen to quickly adhere to the liver sinusoids
without being efficiently ingested by KCs (146). The molecular
mechanism for these cancer cells to evade KC phagocytosis
remained to be identified; lack of efficient opsonization may be
a clue (42). Neutrophils fostered liver metastasis by different
mechanisms. They acted as a docking site for cancer cells to
adhere in liver sinusoids before breaching the parenchymal. NETs
induction either by primary tumors (147) or infections (148) can
further enhance the intravascular arrest and seeding of metastatic
cancer cells. An abdominal imaging window was developed for
long-term visualization of liver metastasis over 14 days (149).
It revealed an unappreciated premicrometastasis stage that was
resulted from a massive proliferation of a single extravasated
tumor cell. Tumor cells at this stage were highly mobile and
proliferative and avoided interacting with each other, but they lost
these characteristics as the metastatic tumor grew (149). In most
cases, liver intravital imaging is an end-point experiment with a
short time window for observation, making it difficult to study
primary liver cancer that usually takes at least months to occur in

mouse models. The abdominal imaging window will offer a great
opportunity to interrogate the immune cell dynamics during the
initiation and progression of primary liver cancers. Moreover,
taking advantage of IVM as an important tool to visualize the
in vivo distribution of drugs (150) and adoptively transferred
cells (15), it could provide valuable information for optimizing
cancer immunotherapy against liver cancers, such as immune
checkpoint blockade and adoptive cell therapy.

CONCLUDING REMARKS

Intravital imaging opens a new window in the area of liver
immunology. By examining the spatial organization, dynamic
behavior, and cellular interactions of liver immune cells, great
advances have been made in unraveling the function of liver-
resident innate immune cells and in dissecting the kinetics
of hepatic T cell responses, as discussed above. However,
many questions remained to be explored by this cutting-
edge technique. Some key liver cell populations demand for
visualization, not only including immune cells that are abundant
in the liver, such as B cells, NK cells, and γδT cells, but
also for non-immune liver-resident cells, such as HSCs. The
space of Disse is inhabited by HSCs at a density much greater
than previously thought (20). Inspired by observations that
these cells intimately contacted with monocytes and KCs (20),
dynamically visualizing HSC and immune cell interactions
during liver diseases has warranted further investigation.
Moreover, multireporter systems need to be developed for better
characterizing cellular crosstalk in the liver. Liver sinusoids are
crowded with many cell types during infection and inflammation.
An immune cell may have to simultaneously or sequentially
contact with multiple cell types in such a narrow space to exert
a proper function. Characterizing these cellular interactions may
be fundamental for therapeutically targeting immune cells in
liver diseases. Lastly, unprecedented methods can be created
by integrating IVM with other techniques to fulfill a special
research purpose. For instance, the “NICHE-seq” (151), which
combines photoactivable reporters, single-cell sequencing, and
IVM, can be useful to illustrate the spatial heterogeneity of liver
cells, a phenomenon well-known as liver zonation (152). With
an in-depth understanding of liver immune response by in vivo
imaging, our chance to conquer liver disease will be improved.
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