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Early childhood infections have been implicated in the development of immune-mediated
diseases, such as allergies, asthma, and type 1 diabetes. We set out to investigate the
immunomodulatory effects of early viral infections experienced before the age of one year
on the peripheral regulatory T cell population (Treg) and circulating cytokines in a birth-
cohort study of Estonian and Finnish infants. We show here a temporal association of virus
infection with the expression of FOXP3 in regulatory T cells. Infants with rhinovirus infection
during the preceding 30 days had a higher FOXP3 expression in Treg cells and decreased
levels of several cytokines related to Th1 and Th2 responses in comparison to the children
without infections. In contrast, FOXP3 expression was significantly decreased in highly
activated (CD4+CD127−/loCD25+FOXP3high) regulatory T cells (TregFOXP3high) in the
infants who had enterovirus infection during the preceding 30 or 60 days. After enterovirus
infections, the cytokine profile showed an upregulation of Th1- and Th17-related
cytokines and a decreased activation of CCL22, which is a chemokine derived from
dendritic cells and associated with Th2 deviation. Our results reveal that
immunoregulatory mechanisms are up-regulated after rhinovirus infections, while
enterovirus infections are associated with activation of proinflammatory pathways and
decreased immune regulation.
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INTRODUCTION

The immune system maturates rapidly during the first year of
life. The immunological pathways that mediate the pathogenesis
of immune-mediated diseases are also often programmed during
this period. Early infections can influence this maturation
process and either increase or decrease the risk of immune-
mediated diseases. Among the most widely studied questions is
the possible role of enterovirus infections (including rhinoviruses)
in the development of asthma and type 1 diabetes (T1D), but
the exact mechanisms of these associations are not fully
understood (1). One of the most feasible hypothesis is that early
enterovirus infections influence the regulatory elements of the
immune system.

FOXP3-expressing regulatory T cells (Tregs) play crucial
roles in maintaining tolerance to self-antigens and in
regulating excessive inflammation in infectious diseases. They
comprise 1%–10% of thymic and peripheral CD4+ T cells. It is
well established that microbes can induce Tregs (iTregs), which
may play a key role in the regulation of harmful immune
responses. However, iTreg responses are dynamic, and the
factors that determine their nature are complex and are still
being elucidated. Viral infections have potent effects on cytokine
production, influence T cell differentiation, and induce a broad
range of iTreg subsets. Virus-induced Tregs are generally
antigen-specific, inhibit proliferation and cytokine production
of CD4+ and CD8+ T cells, and affect the maturation of dendritic
cells, activation of natural killer cells, and immunoglobulin
production of B cells (2, 3). iTreg cells inhibit T cell responses
either indirectly through the production of regulatory cytokines
such as TGF-b or IL-10 or directly through cell-to-cell contact (4,
5). iTregs form a memory pool after the resolution of the
infection and these memory iTregs can rapidly be activated to
suppress the collateral tissue damage and inflammation caused
by recall activation of effector T cells in the context of re-
infection (6). In addition to CD4+ regulatory T cell subsets,
also CD8+ T cells have been described to inhibit T cell
proliferation and cytokine production (7). The regulatory
effects of CD8+ T cells have mainly been associated with
chronic, persistent infectious diseases such as leprosy, HIV,
Epstein-Barr virus, hepatitis C, and tuberculosis (8–12).

Accumulating evidence shows that bacterial microbiota may
regulate the activation of iTregs, but less is known about the
possible effects of viral infections in young children. To shed light
on this important question, the current study investigates the
immunomodulatory effects of early viral infections experienced
before the age of one year on the peripheral Treg cell population
and circulating cytokines.
MATERIALS AND METHODS

Study Subjects
The study cohort included altogether 136 children from Estonia
(EST, N = 71; 36 male) and Finland (FIN, N = 65; 36 male) who
were prospectively followed from birth. Blood samples were
Frontiers in Immunology | www.frontiersin.org 2
collected for the flow cytometry analyses of regulatory T cells
from 136 infants (71 EST) at the age of 3 months (111 children; 56
EST), 6 months (45 children; 18 EST), and 12 months of age (100
children; 43 EST). Serum samples for cytokine analysis were
collected from 136 children (75 EST) at the same time points as
Treg samples (103/56; 100/51; and 101/45 samples/EST,
respectively). Stool samples for virus analyses were collected
every month during the first year of life starting at the age of 1
month [altogether 1,063 samples from 116 children, 54 EST, (29/34
male, EST/FIN, respectively), on an average eight samples/child].
Stool samples were frozen immediately after sample collection at
home at −20°C and transported to the study center frozen as soon
as possible, where the samples were stored at −80°C until analyzed.

Children were recruited during the years 2009–2010 in
Estonia and Finland for the DIABIMMUNE (Pathogenesis of
T1D: testing the hygiene hypothesis) study (13). All children
carried T1D associated HLA risk genotypes (HLA-DQA1*05-
DQB1*02/*0302, *0302/x genotypes [x≠*02, *0301 or *0602] or
HLA-DQA1*05-DQB1*02/x genotypes). Local ethics
committees approved the study protocols, and the study was
carried out in accordance with the Declaration of Helsinki. The
parents of the infants gave their informed written consent to
the study.

PCR Analyses of Stool Samples
From Children
RT-PCR was used for screening of stool samples (N = 1,063) for
enterovirus, rotavirus, norovirus, parechovirus, and rhinovirus,
as previously described. First, a 10% stool suspension was
prepared from the original stool sample, and viral RNA was
extracted using the modified Qiagen RNeasy96 kit (QIAGEN,
Germany). Viral RNA from stool samples was analyzed with
previously described PCR methods (14–18). The primers and
probes and the concentration of the oligonucleotides in the
qPCR reactions are listed in Supplementary Table 1.

Cytokine/Chemokine Analysis of
Serum Samples
Unthawed serum samples were used for the cytokine/chemokine
analysis, as repeated freezing and thawing of the samples decreases
the concentrations of detected analytes. Cytokines/chemokines
detected were: EGF, Eotaxin, FGF-2, Flt-3L, Fractalkine, G-CSF,
GM-CSF, GRO, IFNa2, IFNg, IL-1RA, IL-1a, IL-1b, IL-2, IL-3,
IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12P40, IL-12P70, IL-13,
IL-15, IL-17A, IP-10 (CXCL10), MCP-1, MCP-3, MDC (CCL22),
MIP-1a, MIP-1b (CCL4), TGF-a, TNFa, TNFb, sCD40L, and
VEGF. Cytokine concentrations were assessed as pg/ml using
multiplex ELISA (MILLIPLEX MAP Human Cytokine/
Chemokine Magnetic bead 38-plex Panel, Millipore, Billerica,
MA) according to the manufacturer’s instructions, except for
adding a third wash with washing buffer to the plates and
replacing sheath fluid with phosphate-buffered saline (PBS) to
the samples for Luminex reading. The Bio-Rad Bio-Plex 200
System (Bio-Rad Laboratories, Hercules, CA) instrument was
used with the Bio-Plex Manager 5.0 program to run plates and
generate quantitative data.
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Analyses of Regulatory T Cells
We used Flow cytometry for samples obtained at the age of 3, 6,
and 12 months. For flow cytometry, 200 µl of fresh heparinized
blood was added to monoclonal antibodies for 20 min, and
erythrocytes were then lysed with BD-FACS Lysing Solution.
After two washes with washing buffer consisting of 5% fetal bovine
serum and 0.02% (w/v) sodium azide in phosphate-buffered saline,
cells were suspended in 1% (w/v) paraformaldehyde in PBS and
stored overnight at 4°C. At least 1 × 106 events were acquired from
each sample on a FACSCalibur™ and analyzed with the FlowJo™

software. The samples were compensated post-acquisition with
FlowJo™ software. To assess the number of circulating CD4+
CD25highFOXP3+ T cells in the samples, we gated first CD4+
cells, and then the CD25+CD127−/lo population. The expression
of FOXP3 protein was analyzed in these cell populations. CD4+
CD25highFOXP3+ expression was quantified as median
fluorescence intensity (MFI) in arbitrary units (AU) after
subtraction of the negative-control antibody intensity. Intensity
values over the 97.5 percentile of the negative-control antibody
were regarded as positive. Intensities were calibrated to a set of
particles containing known amounts of fluorescein isothiocyanate
(see gating in Supplementary Figure 1A).

All products used in this study are listed in Supplementary
Table 2.

Statistical Methods
The association of virus infections with Tregs and serum
cytokines were analyzed separately for respiratory infections
(rhinovirus) and enteral infections (norovirus, rotavirus,
parechovirus, and enterovirus combined). The analyses were
performed by categorizing children into virus-positive and
-negative groups and by comparing Treg activity between these
two groups. In addition, time-dependent effects were evaluated
by analyzing infections in different time-windows in relation to
the collection of the Treg sample, including infections within 14
days, 30 days, and 60 days before Treg analyses. Wilcoxon rank-
sum test (R-version 3.6.2) was used for statistical analysis of the
data. A p < 0.05 was considered statistically significant. The p
values of each independent analysis were corrected for the
number of multiple comparisons (N = 5 in the analysis of
virus-Treg associations; N = 30 in the analysis of virus-
cytokine/chemokine associations, since a majority of the
samples had undetectable concentrations of eight cytokines
and these cytokines were excluded from the statistical analysis).
RESULTS

Viruses Detected in Stool Samples During
the First Year of Life
The presence of viruses was analyzed from all stool samples
collected during the first 12 months of life. Of the altogether
1,063 samples, 433 (40.7%) were positive for at least one of the
tested viruses. Among the 116 children, 108 (93.1%) were virus-
positive at least once, and eight (6.9%) were virus-negative in all
samples. The most frequently detected virus was rhinovirus in
Frontiers in Immunology | www.frontiersin.org 3
280 of the samples (26.3%), followed by norovirus G1 and G2 (71
samples/6.7%), enterovirus (59/5.6%), parechovirus (46/4.3%),
and rotavirus (42/4.0%; Figure 1). Rhinoviruses were most
frequently detected during the first 6 months of life, while
positivity for enteroviruses, noroviruses, and parechoviruses
was highest at the age of 6–12 months (Table 1). Rotavirus
was most frequently seen at the age of 2 and 3 months in Finland,
while there was only one rotavirus positive sample in Estonia.
This is likely due to the introduction of a live attenuated rotavirus
vaccine in Finland at the age of 2, 3, and 5 months while rotavirus
vaccination was not used in Estonia during the study.
Enterovirus, parechovirus, and rotavirus were most frequently
detected during autumn months, while norovirus was most
frequent from February to March. Rhinovirus was most
frequent in May-June and September-October (Figure 2).

FOXP3 Expression in Treg Cells Decreases
and Stays Lower Up to 60 Days After
Enterovirus Infection
To address the possible role of virus infections in the modulation
of FOXP3 in Tregs, we analyzed the temporal association of virus
infection with the expression of FOXP3 in Tregs. The children
who had had at least one virus infection during the preceding 30
or 60 days showed increased expression of FOXP3 in Tregs in
comparison to the children without virus infections in the same
time period (p = 0.005 and p = 0.124). When the data were
analyzed separately for various virus infections, the children with
rhinovirus infection had higher FOXP3 expression in Treg cells
than children without rhinovirus infection [p = 0.036 for the 30-
day, and p = 0.001 for the 60-day period (p = 0.18 and p = 0.005
after correction for multiple comparisons); Figure 3A]. In
contrast, the infants with enterovirus positivity within 30 days
FIGURE 1 | Proportion (%) of stool samples positive for either enteral or
respiratory viruses (433 samples) tested, from all 1,063 stool samples
collected during the first 12 months of life. The most frequently detected virus
was rhinovirus (Rhino) in 280 of the virus-positive samples, followed by
norovirus G1/G2 (Noro) (71), enterovirus (Entero) (59), parechovirus (Par) (46),
and rotavirus (Rota) (42 samples), respectively.
February 2021 | Volume 11 | Article 567046
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before Treg analyses showed a clear but statistically non-
significant decrease in FOXP3 intensity in the total Treg
population (Figure 3B).

In the analyses of the highly activated Treg cells (CD4+
CD127−/loCD25+FOXP3high Tregs), the FOXP3 expression
level was decreased in the infants who had enterovirus infection
during the preceding 30 or 60 days period [p = 0.008 and p <
0.001 (p = 0.04 and p < 0.005 after correction for multiple
comparisons); Figure 3D]. Again, the infants with preceding
rhinovirus infection showed some increased expression of
FOXP3 in TregFOXP3high cells [p = 0.173 and p = 0.026 for
30 and 60 days (non-significant after correction for multiple
comparisons), Figure 3C].

Our results suggest that rhinovirus and enterovirus infections
modulate FOXP3 expression and Treg maturation differently
during the first year of life: enterovirus decreases the FOXP3
expression while rhinovirus may increase FOXP3 expression. In
Frontiers in Immunology | www.frontiersin.org 4
the analyses of the other viruses, no such changes were seen (data
not shown).

Association Between Virus Infections and
Serum Cytokines
Next, we analyzed the levels of circulating cytokines, which could
reflect the immunomodulatory effects of viral infections in the
children. We found that the infants with preceding rhinovirus
infection showed lower levels of several cytokines in comparison
to those without preceding viral infections. The levels of T-helper 2
(Th2) phenotype related cytokines, IL-5 and IL-13 (Figures 4A,
B), as well as Th1 hallmark cytokine IFNg and IL-2 (Figures 4C,
F) and Th17 cytokine IL-17 (Figure 4D) and GM-CSF (Figure
4E), were significantly decreased after rhinovirus infection. Also,
IL-1beta, and soluble IL-1R (Figures 4G, H), which are related to
the inflammasome activation were significantly reduced after
rhinovirus infection. These associations were seen both when
TABLE 1 | Summary of virus positivity in stool samples at different ages.

Age month No of samples Rhino Entero Noro Parecho Rota Total

1 46 13 (28.3) 0 (0.0 1 (2.2) 0 (0.0) 0 (0.0) 14 (30.4)
2 92 32 (34.8) 0 (0.0) 3 (3.3) 2 (2.2) 14 (15.2) 51 (55.4)
3 106 37 (34.9) 2 (1.9) 3 (2.8) 2 (1.9) 17 (16) 61 (57.5)
4 99 41 (41.4) 0 (0.0) 3 (3.0 1 (1.0) 5 (5.1) 50 (50.5)
5 100 34 (34.0) 3 (3.0) 4 (4.0) 2 (2.0) 3 (3.0) 46 (46.0)
6 104 37 (35.6) 8 (7.7) 7 (6.7) 7 (6.7) 1 (1.0) 60 (57.7)
7 86 17 (19.8) 6 (7.0) 7 (8.1) 5 (5.8) 0 (0.0) 35 (40.7)
8 87 13 (14.9) 11 (12.6) 7 (8.0) (11.5) 0 (0.0) 41 (47.1)
9 88 20 (22.7) 6 (6.8) 7 (8.0) 4 (4.5) 1 (1.1) 38 (43.2)
10 85 11 (12.9) 8 (9.4) 5 (5.9) 5 (5.9) 1 (1.2) 30 (35.3)
11 84 12 (14.3) 8 (9.5) 10 (11.9) 3 (3.6) 0 (0.0) 33 (39.3)
12 86 13 (15.1) 7 (8.1) 14 (16.3) 5 (5.8) 0 (0.0) 39 (45.3)
February 2021
 | Volume 11 | Articl
FIGURE 2 | Seasonality of virus detection in stool samples. Enterovirus (Entero), parechovirus (Parecho), and rotavirus (Rota) were most frequently detected during
autumn months, while norovirus (Noro) was most frequent from February to March. Rhinovirus (Rhino) was most frequent in May-June and September-October.
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the cytokines were measured from samples taken soon (within 14
days) and long (within 60 days) after the infection.

In contrast, in the infants with enterovirus infection increased
levels of CXCL10 (IP-10, Figure 5A), which is related to Th1
immunity and IL-17 (Figure 5B) were found after the infection,
while CCL4 (MIP-1b) and CCL22 (MDC, Figures 5C, D),
remained decreased after enterovirus infection. Also, these
associations were seen both in samples taken soon and long
after the infection. IL-10 was not associated with rhinovirus or
enterovirus infections but was increased after parechovirus
infection (p = 0.009; p = 0.27 after correction for multiple
comparisons). Norovirus infection was associated with a
subsequent decrease in CXCL1 (GRO) (p = 0.006; p = 0.18
after correction), a chemoattractant for neutrophil infiltration.
Rotavirus positivity was associated with a subsequently increased
level of TNFalpha (p = 0.001; p = 0.03 after correction), data
not shown.
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

In this prospective study, we set out to investigate the relationship
between virus infections, the activation of iTreg cells, and
circulating cytokines in young children. We focused on
infections that occurred during the first year of life, as this
period is critical for the maturation of the immune system. Viral
infections are frequent during the first year of life, and their role as
a risk factor for allergies, asthma, and autoimmune diseases, such
as T1D, has gained attention during recent years (19–22). Treg
cells are major regulators of immune homeostasis (23–26), but the
possible short- and long-term effects of acute virus infections on
the activation of iTreg cells are poorly understood.

According to the original hygiene hypothesis, infections
during infancy could protect from allergies (27, 28), but the
evidence supporting this has not been convincing (29). Actually,
rhinoviruses and infection associated wheezing have been linked
A B

D
C

FIGURE 3 | The intensity of FOXP3 expression, as median fluorescence intensity (MFI), in Treg cells (A, B) and activated Treg cells TregFOXP3high (C, D) during
the first year of life according to the detection of viruses in stool samples within three different time windows, 14, 30, and 60 days, before the collection of a blood
sample for Treg analyses. Neg, no viruses detected; Pos, at least one virus detected; HRV, human rhinovirus; HEV, human enterovirus. Medians are marked with a
horizontal line, and whiskers show 5–95 percentiles. Correction for multiple comparisons (N = 5) retain statistical significance for p values ≤ 0.01.
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to the development of respiratory allergies or asthma later in life
(25, 26, 29), particularly in infants with atopic immune deviation
(30). On the other hand, we have recently observed that early
exposure to rhinoviruses is inversely associated with later
development of IgE sensitization, particularly in boys
suggesting that rhinovirus infections may protect against IgE-
mediated sensitization (31).

Here, we show that rhinovirus infections are associated with
the up-regulation of FOXP3 expression in Treg cells and
simultaneous down-regulation of a broad range of circulating
cytokines, including Th1, Th2, and Th17 cytokines. These changes
were seen in the children with rhinovirus positivity in the stool
samples taken up to 60 days after virus positivity, suggesting that
rhinovirus infections during the first year of life cause long-term
immunomodulatory effects, which are characterized by an
immunoregulatory phenotype. Our findings of rhinovirus-
induced relative immunosuppression could explain the earlier
observations of delayed induction of humoral immune response
to rhinovirus, which may take 5 to 6 weeks, while protective
antibodies are induced in 2 to 3 weeks after other viral infections.
Frontiers in Immunology | www.frontiersin.org 6
Many rhinoviruses use ICAM-1 as a receptor, and it has been
speculated that this could result in the impaired induction of T cell
responses (32). Our findings suggest that the up-regulation of
regulatory mechanisms is pronounced after rhinovirus infection
compared to other infections. This gives one possible mechanistic
explanation for our finding of a protective association between
early rhinovirus infections and later development of IgE-mediated
sensitization (31), and this may also have implications in the
persistence and spreading of rhinovirus infections in general.

Our findings do not have a direct link to the association of
wheezing with rhinovirus infections, which is an acute event,
while we here measured long-term immunomodulatory effects of
rhinovirus infection. As the levels of circulating cytokines are
known to increase with age during the first year of life (33) (see
Supplementary Figure 2), the down-regulation of circulating
cytokines after rhinovirus infections could be interpreted as a
possible delay in the maturation of the immune system. Further,
in vitro studies to assess whether rhinoviruses deviate from other
viruses would be pertinent. In atopic children with IgE
sensitization, rhinovirus infection has been considered as a risk
A B

D E F

G H

C

FIGURE 4 | Rhinovirus infection-related changes in circulating cytokines (pg/ml) in serum in a window of 60, 30, and 14 days after infection. IL-5 (A), IL-13 (B), IFNg
(C), Th17 (D), GM-CSF (E), IL-2 (F), and Th1 cytokines IL-1b and sIL-1R (G, H). Medians are marked with a horizontal line in the boxes, and whiskers show 5–95
percentiles. Correction for multiple comparisons (N = 30) retain statistical significance for p values ≤ 0.0016.
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factor of later asthma. Earlier studies have shown that delayed
maturation of the gut bacteriome and related immunological
changes have been associated with the risk of atopic diseases,
such as asthma (34, 35).

Our finding of the up-regulation of FOXP3 expression in Treg
cells after rhinovirus infections is in line with studies showing
activation of Treg cells in the context of virus infection (36–40).
The activation of Treg cells in acute infection is associated with
the resolution of viral immunopathology and thus can be
considered beneficial, as demonstrated in animal models (6).
In a recent study of H7N9 Influenza A infections in adults, a
tendency to a decrease in Treg cells was seen during the disease
progression and an increase during recovery (24). In regard to
the risk of atopic diseases associated with Th2 deviation, it is of
interest that Treg cells may acquire GATA-3 expression and
show plasticity toward Th2 cells (41–43).

In contrast to rhinovirus infections, enterovirus infections were
followed by a decreased FOXP3 expression in Tregs, particularly
in the population of TregFOXP3high cells, which represent highly
activated Tregs. The cytokine profile after enterovirus infections
was also different, showing an upregulation of Th1 and Th17
responses, and decreased activation of CCL22, which is a
chemokine derived from dendritic cells and associated with Th2
deviation. Up-regulation of Th1 and IL-17 and down-regulation of
Th2 immunity after enterovirus infections could explain our
earlier findings of an inverse association of certain enterovirus
infections, namely, echo- and coxsackie-B-viruses, with low risk of
IgE-mediated sensitization (28).
Frontiers in Immunology | www.frontiersin.org 7
The present findings of the decreased FOXP3 expression in
Tregs after enterovirus infections suggest impaired regulation of
inflammation after enterovirus infections and are particularly
interesting in the light of the enterovirus infections associated
risk of complications, such as myocarditis, encephalitis,
autonomous nervous dysregulation, and pulmonary edema. A
low frequency of Treg cells was associated with the severity of
EV71-associated pulmonary edema (44–46). Also, an increase in
regulatory T cells alleviated Coxsackievirus B3 (CVB3) induced
myocarditis in an animal model (47). Valproic acid, a histone
deacetylase inhibitor that has anti-inflammatory effects,
alleviated myocarditis in a mouse model by upregulating IL-10
in serum and heart tissues and promoting both the
differentiation and suppressive function of Treg cells (48).
Furthermore, the activation of Treg cells and M2 alternatively
activated macrophages in the CVB3 H310A1 virus variant
infection of C57Bl/6 mice protects them from myocarditis (49).

Enterovirus infections have also been linked to the initiation
of islet autoimmunity and an increased risk of T1D (44–49). A
recent report from the prospective TEDDY study, including the
largest cohort of infants at genetic risk of T1D studied until now,
found an association between prolonged enterovirus infections
(long shedding of the virus into stools) and later appearance of
islet autoantibodies (50). In the same cohort, enterovirus
infection between age 1 and 2 years was associated with celiac
disease-related autoimmunity (51). Also, in a recent Norwegian
nested case-control study, enterovirus infection was associated
with celiac disease (52).
A B

DC

FIGURE 5 | Enterovirus infection-related changes in circulating cytokines. Enterovirus infected infants had a different cytokine profile after the infection showing
increased activation of Th1 and Th17, CXCL10 (IP-10) (A), and Il-17 (B) cytokines but reduced activation of CCL4 (MIP-1b, C) and CCL22 (MDC, D). CCL22 is a
chemokine derived from dendritic cells and associated with Th2 deviation. Medians are marked with a horizontal line, and whiskers show 5–95 percentiles.
Correction for multiple comparisons (N = 30) retain statistical significance for p values ≤ 0.0016.
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Our findings of enterovirus infection associated down-
regulation of FOXP3 in Treg cells combined with a deviation to
an increased Th1 immunity provides evidence of a potential
mechanism supporting the induction of autoimmune responses
by an enterovirus. Among the different virus infections studied in
our cohort, only enterovirus infection was associated with this
kind of suppression of regulatory mechanisms. It is tempting to
speculate that a lower expression of FOXP3 in Treg cells after
enterovirus infections might lead to impaired suppression of anti-
viral responses and tissue inflammation, which could contribute to
the induction of autoimmunity. The mechanisms behind the
immunomodulatory effects on the host immune system induced
by enterovirus infection remains to be elucidated.

Due to the blood volume restrictions and the number of
PBMCs available from these young infants, we could not study
the memory Treg or memory Th17 cell populations. To our
knowledge, there are no previous studies, which would have
evaluated memory Tregs in enterovirus or rhinovirus infections.
However, an earlier study has shown that children infected with
enterovirus EV71 have higher frequencies of Th17 cells and serum
IL-17 concentrations, suggesting that such cells are induced during
the infections (53). In addition, IL-17 production has also been
shown to be associated with a more severe course of enterovirus
infection (54, 55). Altogether, the results of the present study
emphasize the need for further studies on the Treg/IL-17 axis,
including cells with the memory phenotype, to understand the
long-term effects of enterovirus and rhinovirus infections on the
regulation of the immune system in young infants.

One of the limitations of the present study is that due to
ethical reasons, the Treg cells studied are from peripheral blood,
while the detection of viruses was done in stool samples. Another
limitation is that our viral analyses covered only certain viruses.
Therefore, further studies are needed to get an overall picture of
the ability of different viruses to modulate Treg activation and
the immune system in early life.

In conclusion, our results reveal that immunoregulatory
mechanisms are up-regulated after rhinovirus infections, while
enterovirus infections are associated with activation of
proinflammatory pathways and decreased immune regulation.
Further studies are needed to evaluate the significance of these
phenomena in the development of virus-induced immune
pathologies and possible role in the development of autoimmune
and/or allergic diseases. The results suggest that early virus
infections may affect the function of immunoregulatory cells and
that this effect may last long after the infection. To our best
knowledge, this is the first study showing such an effect during
longitudinal follow up of young children.
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