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Mesenchymal stromal cells (MSCs) are rare precursors in all organs of the body. MSCs

have profound anti-inflammatory effects and reduce alloreactivity in vitro and in vivo. In

pediatric allogeneic hematopoietic cell transplantation (HCT), MSCs have mainly been

used to treat acute graft-versus-host disease (GVHD). MSCs are commercially available

for this indication in Canada, Japan, and New Zeeland. More rare indications for MSCs

in pediatric patients include graft failure and chronic GVHD. MSCs from bone marrow,

adipose tissue, umbilical cord, Wharton’s jelly, placenta tissue, and decidua have been

used, but the optimal clinical stromal cell source has not been compared in clinical trials.

More experimental clinical indications using MSCs, such as sepsis, acute respiratory

distress syndrome, hemorrhages, pneumo-mediastinum, and neuroinflammation have

primarily been explored in animal models or adult HCT patients. MSCs have almost no

if any side-effects. In this pilot study we report the outcome of six children treated with

decidua stromal cells (DSCs) for steroid refractory acute GVHD. At 6 months, complete

response was seen in four patients and partial response in two patients. One child with

high-risk ALL died from relapse and a boy with sickle cell disease died from a cerebral

hemorrhage. Five-year survival was 67% and all survivors showed a Lansky score of

100%. To conclude, MSCs from various organs are well-tolerated and have shown an

encouraging outcome for acute GVHD in pediatric patients.

Keywords: graft-versus-host disease (GVHD), mesenchymal stromal cell (MSC), pediatric haematopoietic stem

cell transplantation, cell theraphy, decidua stromal cells (DSCs)

INTRODUCTION

Hematopoietic cell transplantation (HCT) is an established treatment for children with both
malignant and non-malignant hematopoietic diseases and inborn errors of metabolism (1–4). The
main obstacles to success are relapse of the disease, infections, graft failure, toxicity of various
organs, hemorrhagic cystitis, and graft-versus-host disease (GVHD). To prevent GVHD, patients
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are treated with immunosuppressive drugs, most commonly,
calcineurin inhibitor combined with Methotrexate (5). Despite
this, a majority of the patients developed acute GVHD, with
a considerable mortality, even if this was significantly lower in
children compared to adults (6). To confirm the gastrointestinal
GVHD histopathological biopsies is recommended, since e.g.,
viruses could cause gastrointestinal symptoms (7–9). Cortisone
is first-line therapy for acute GVHD (10) and almost all
immunosuppressive therapies are used as a secondary treatment
with varying degrees of success (11). Friedenstein et al. were
the first to describe MSCs (12). We introduced mesenchymal
stromal cells (MSCs) as a new therapy for acute GVHD (13, 14).
MSCs are rare in all tissues in the body and can differentiate into
several cells of mesenchymal cell lineages, such as bone, cartilage,
tendon, cardiomyocytes, muscles, and fat (15, 16). There is no
specific CD marker for MSCs. However, they stain positive for
CD29, CD73, CD90, CD105, and CD166. They are negative for
hematopoietic markers, CD34, CD45, and CD14. They are not
true stem cells because they cannot regenerate and maintain a
whole tissue compartment. MSCs express HLA class I molecules
and contain intracellular HLA class II that is expressed on the
cell surface after interferon-γ stimulation (17). After injection,
MSCs do not appear to be long lived and have been demonstrated
in the circulation only shortly after infusion into patients who
underwent autologous HCT for breast cancer (18).

IMMUNOSUPPRESSION

MSCs have potent immunomodulatory effects and inhibit
phytohemagglutinin induced T cell proliferation and
alloreactivity in mixed lymphocyte cultures (MLC) (17, 19, 20).
MSCs’ inhibition of alloreactivity in vitro is independent of
the major histocompatibility system (21). Furthermore, after
differentiation into osteocytes, chondrocytes and adipocytes,
immunosuppression was still induced (17). MSCs also
prolonged skin allograft survival in baboons (19). Several
factors and mechanisms are involved in MSC-mediated
immune modulation.

Bone marrow MSCs (BM-MSCs) are susceptible to
complement activation after contact with human blood
(22). This results in cell dysfunction or cell death (23). When in
contact with blood, BM-MSCs also elicit activation of clotting
factors (24).

MSC immunosuppression has been studied extensively
(25–28). Stromal cells from various organs such as BM,
Wharton’s jelly, placenta tissues and cord blood have
varying immunosuppressive effects in the MLC (17, 19–
21, 29, 30). The MLC is also inhibited by skin fibroblasts
(31). Immunosuppressive factors produced by MSCs include
prostaglandin E2 (32), HLA-G5 (33), and galectins (34). MSCs
also produce indoleamine-2,3, dioxygenase (IDO), which
inhibits T cells by converting of tryptophan to kynurenine [(35),
Figure 1]. IDO is involved in the induction of regulatory T cells
and the inhibition of Th17 differentiation (36). IDO produced
by MSCs also promotes differentiation of macrophages toward
M2 phenotypes (37). MSCs also induce contact-dependent

immunosuppression. Among these are activation of the PD-1
pathway (38), by activation of VCAM-1 and ICAM-1 (39),
purification of CD39 and increased adenosine production (40),
and Fas-mediated T-cell apoptosis (41). There are differences
in various species and, in mice, several models failed to
reduce alloreactivity and GVHD (42). To inhibit GVHD in
mice, MSCs need to be licensed by IFN-γ, nitric oxide, or
transduced with IL10 to prevent GVHD. In a colitis model
in mice, it was shown that prevention of colitis by MSCs
requires CD11b+ macrophages (43). In a murine model of
GVHD, it was demonstrated that MSCs are actively induced to
undergo perforin-dependent apoptosis by recipient cytotoxic
T-cells, and that this process is essential to initiate MSC-
induced immunosuppression (44). After IV infusion, recipient
phagocytes engulf apoptotic MSCs and produce IDO, which is
necessary for immune suppression. MSCs produce exosomes
and microparticles, some of which are small complexed entities
that contain both immunomodulatory proteins, micro RNA and
mediators for homing abilities (45). Exosomes were also used to
reverse acute GVHD (46).

MESENCHYMAL STROMAL CELLS FOR
TREATMENT OF ACUTE GVHD

We introduced MSCs, as a therapy for acute GVHD, by treating
a 9-year-old boy with life-threatening grade IV acute GVHD,
as well as a phase-I study in GVHD patients whom were
resistant to several immunosuppressive therapies (13, 14). We
also performed a multi-center phase II study, including 55
patients with severe steroid resistant GVHD (47). Complete
responders had lower transplantation-related mortality 1 year
after infusion than patients with partial or no response (11 [37%]
of 30 vs. 18 [72%] of 25; p = 0.002). Patients with complete
response toMSCs had a 2-year survival of 53% as opposed to 16%
in partial and non-responders. Children had a trend for better
response (64%) as opposed to adults (47%). Subsequently, several
single-center studies were performed with varying results using
various sources of stromal cells, for instance, adipose tissue (48).
Lucchini et al. gave platelet lysate expanded MSCs to children
with severe steroid refractory acute or chronic GVHD with
varying responses (49). Commercial MSCs (prochymal) were
given to 12 children with therapy-resistant grade III and IV acute
GVHD (50). A complete response was seen in seven children
(58%), a partial response in two (17%), andmixed responses were
recorded in three (25%) of the children. The 100-day survival
was 58%. Osiris performed a double-blind placebo controlled
phase 2/3 study using prochymal for severe acute GVHD (51).
The children were given 8 × 106 MSCs/kg twice a week or
placebo. Among 260 patients, including children and adults, who
were randomized in this trial, a complete response at 28 days
was 74% in the MSCs group and 30% in the placebo group
(52). However, the 180-day durable response of liver GVHD
was 29% in the MSC group compared to 5% in the placebo
group (p = 0.047%). Among patients with acute GVHD grades
III–IV, Remestemcell-L demonstrated significantly higher overall
response, 65%, as opposed to 23% in the placebo arm (p =
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FIGURE 1 | The multiple effects of MSCs on immune cells. (A) MSCs increase the proportion of CD4+CD25+ cells and IL-10 production. (B) MSCs decrease

markers for activated T cells, CD25, CD69, and CD38. MSCs delayed maturation of APC and decreased expression of HLA-DR. (C) Dendritic cell type 1 when

stimulated had decreased TNF-α and IL-12, when co-cultured with MSCs. (D) MSCs increased IL-10 secretion by LPS-stimulated dendritic cells type 2, CD4+ cell

had decreased IL5-secretion. (E) T-helper cell type 1 IFN-γ production was significantly decreased by MSCs. (F) T-helper cell type 2 increased IL-4 secretion in the

presence of MSCs. (G) MSCs inhibit mixed lymphocyte cultures and subsequent development of cytotoxic T cells by a soluble factor. (H) Several soluble factors are

produced by MSCs, amongst them are IL-6, IL-8, stem-cell derived factor 1 (SDF1), vascular endothelial growth factor (VEGF). Soluble factors that have been

suggested to inhibit T-cell activation are prostaglandin E2, which induces regulatory T-cells, indoleamine 2,3-dioxygenase (IDO), which is induced by IFN-γ which

catalyzes the conversion from tryptophan to kynurenine and inhibits T-cell responses. Other soluble factors that have been suggested to inhibit T-cell responses are

TGFβ1, hepatocyte growth factor and IL-2. (I) MSC induce macrophage differentiation from M1 to M2. (References are mentioned in the text).

0.05). Children had a better outcome of treatment with MSCs
for acute GVHD as compared to adults. These pediatric patients
were also reported separately (53). Ball and coworkers reported
on 37 children treated with MSCs for steroid-refractory grade
III–IV acute GVHD (54). A response was observed in 65%
of the children. The 3-year survival was 37%. Kurtzberg et al.
reported on 241 children with steroid refractory acute GVHD
who were treated for 4 weeks with infusion of 2 × 106 MSCs/kg
(Remestemcel-L) twice weekly (55). The overall response rate
at day +28 was 65%. Survival at 100 days was 82% among the
responders and 39% among the non-responders (p≤ 0.001). In a
Brazilian multicenter study, involving 16 children and 30 adults
with steroid refractory GVHD, half of the patients responded
and 1-year survival was 20% (56). A study using platelet-lysate-
expandedMSC for steroid refractory acute GVHD included eight
children and 22 adults. The overall response rate at day +28
was 50% in the adults and 88% in the children (p = 0.099). The
survival was 88% in the children as opposed to 25% in the adults
(p= 0.003) (57).

A study used BM-MSCs pooled from multiple third-party
donors (58). The study included 92 adult and pediatric patients
with steroid refractory acute GVHD. The patients received a
median of three doses of pooled MSCs without toxicity. The
overall response was 82% and 6-month survival was 64%. In a

previous separate analysis of children, the overall response at
day 28 was 77% and the 2-year survival was 77% (59). At our
unit, long-term follow up of patients treated with BM-MSCs with
steroid refractory GVHD included nine children and 22 adults
(60). Two-year survival was only 26%. Patients receiving MSCs
from passage 1–2 had significantly better survival than those
receiving MSCs from passage 3–4 (p < 0.01). A meta-analysis
reported that children had a better response to MSCs therapy
for steroid refractory acute GVHD, with an overall response rate
of 82%, as opposed to 70% in adults (p = 0.04) (61). A more
recent meta-analysis included children and adults given MSCs
for prophylaxis (n= 651) and for treatment of acute GVHD (n=
149) and chronic GVHD (n= 76) (62).

MESENCHYMAL STROMAL CELLS FOR
TREATMENT OF CHRONIC
GRAFT-VERSUS-HOST DISEASE

Chronic GVHD is a great burden for many patients after HCT
(63, 64). It seems logical to use MSCs to treat chronic GVHD,
which resembles auto-immune disorders. MSCs were reported to
be successful in many models of autoimmune diseases (65, 66).
There are only a few reports on MSCs for chronic GVHD and
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most are about adults (14, 67, 68). Lucchini et al. used platelets-
lysate expandedMSCs in four children with chronic GVHD (49).
Transient benefits were noted. One child had a complete response
that subsequently re-flared.

DSCs appear to have a stronger immunosuppressive effect
than MSCs from bone marrow (30, 69). Thus, we used DSCs
to treat chronic GVHD in three pediatric patients with severe
grade 3 chronic GVHD (Based on National Institute of Health,
NIH) (70). The three pediatric patients were affected in several
organs such as the skin, mouth, eyes, gastrointestinal tract, liver,
lungs and joints, fascia. Two patients received two doses of DSC
and one patient received one dose. Two patients had a partial
response in the liver, normalization of elevated liver enzymes
and, in one patient, esophageal varices disappeared. However,
the overall grading of chronic GVHD remained very severe (3)
according to NIH grading (71). A meta-analysis of 76 children
and adults with chronic GVHD suggested improved survival
using MSCs (62).

PREVENTION OF GVHD AND GRAFT
FAILURE

In mice, MSCs were shown to prevent the development of
lethal GVHD (72). Lazarus et al. performed co-transplantation
of HLA-identical sibling bone marrow and donor MSCs in 46
patients (73). No patient had graft failure and grades III–IV
acute GVHD were seen in 15% of the patients. We performed
co-transplantation of HCT and MSCs to enhance engraftment
(74). All patients had engraftment and full donor chimerism. A
prospective randomized study of HCT and with co-infusion of
MSCs or placebo reported decreased risk of acute GVHD and
increased likelihood of relapse (75). Engraftment of neutrophils
and platelets was similar in the two groups. Most studies of
co-transplantation of HCT and MSCs are performed in adult
patients or in a combination of pediatric and adult patients
(76, 77). In a pediatric study, parental haplo-identical MSCs
were used to promote engraftment in unrelated donor umbilical
cord blood transplantation (78). In another pediatric study,
MSCs were given to recipients of haplo-identical grafts (79). No
patient had graft failure as opposed to 10% of the retrospective
controls. A meta-analysis, which included 651 children and
adults, showed improved survival in patients treated with MSCs
as prophylaxis (62). MSCs may also be used to treat graft
failure (80, 81).

MSCs FOR METABOLIC DISORDERS

Hurler’s disease is deficiency of the enzyme alfa-L-iduronidase.
HCT may partially prevent disease progression if performed
before the patient is 2 years of age (82, 83). HCT patients
with Hurler’s disease and metachromatic leukodystrophy were
given MSCs to enhance enzyme production after HCT
(84). The rationale for using MSCs was because these cells
express high levels of alpha-L-iduromidase and arylsulphatase-
A. Four out of five patients with metachromatic leukodystrophy
had improved nerve conduction velocity. Five patients with

osteogenesis imperfecta who underwent HCT had donor
osteoblast engraftment, new dense bone, increased total bone
mineral content and improved growth velocity (85). The
frequency of bone fractures decreased. Gene-marked MSCs
were given to six HCT patients with MSC engraftment in
bone and accelerated growth velocity. In a fetus with bilateral
femur fractures due to severe osteogenesis imperfecta, in utero
transplantation of MSCs showed 7% engraftment and the patient
had fewer fractures than expected after birth (86).

MSCs FOR HEMORRHAGES AND
SIDE-EFFECTS

We used MSCs for hemorrhagic cystitis, colon perforation,
and pneumomediastinum after HCT (87). Adult patients
are more vulnerable and had more toxicity after HCT as
opposed to pediatric patients. However, toxicity also occurs
in children with advanced hematological malignancies treated
with multiple rounds of chemotherapy prior to transplantation.
Stromal cells induce clotting and may stop or prevent
bleeding. This effect appears to be stronger for DSCs than
BM-MSCs (88). Yim et al. reported on two patients with
pneumomediastinum/pneumothorax with resolution after MSCs
treatment (89).

MATERIALS AND METHODS

Patients
Six children diagnosed with grade II–IV acute gastrointestinal
GVHD, with or without skin involvement, were treated with
DSCs (Table 1). The patients comprised five boys and one
girl aged from 10 months to l6 years. Informed consent was
obtained from the legal guardians of the patients. Diagnoses
were pre-B-ALL in two children, Langerhans cell histiocytosis
(LCH), sickle cell anemia, osteopetrosis, and severe combined
immunodeficiency (SCID). The conditioning therapy was total
body irradiation and etoposide in the two patients with
leukemia. The four children with other disorders were given
fludarabine together with treosulfan in three patients and with
the addition of thiotepa in one patient with sickle cell anemia.
A boy with osteopetrosis was given a low dose of busulfan,
in addition to fludarabine. Donors were matched unrelated in
three patients, cord blood in two children, and bone marrow
from an HLA-identical sibling donor in one patient. Post-
transplant immunosuppression consisted of tacrolimus together
with sirolimus in four patients (Table 1). Three patients were
given antithymocyte globulin (90).

Acute GVHD was graded according to Seattle criteria
(91). The diagnosis of gastrointestinal GVHD was based
on biopsies from endoscopies (7–9). Skin biopsies were not
performed. Donor recipient chimerism was followed by PCR
and patients with acute GVHD were full-donor chimeras
(9, 92). Cytomegalovirus (CMV) was followed weekly by
PCR and reactivation was treated with ganciclovir (93).
Epstein-Barr virus (EBV) PCR was only regularly followed in
patients with an EBV-mismatched donor (94). Adenovirus was

Frontiers in Immunology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 567210

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ringdén et al. MSCs for the Treatment of Pediatric aGVHD

T
A
B
L
E
1
|
C
h
a
ra
c
te
ris
tic
s
o
f
p
e
d
ia
tr
ic
p
a
tie
n
ts

tr
e
a
te
d
w
ith

D
S
C
s
fo
r
a
c
u
te

G
V
H
D
.

N
o

U
P
N

S
e
x
/a
g
e

D
ia
g
n
o
s
is

C
o
n
d
it
io
n
in
g

D
o
n
o
r

G
ra
ft

Im
m
u
n
o
-

s
u
p
p
re
s
s
io
n

A
c
u
te

G
V
H
D

g
ra
d
e

O
rg
a
n
s

in
v
o
lv
e
d

D
a
y
o
f
a
c
u
te

G
V
H
D

D
a
y
o
f
D
S
C

1
1
5
5
5

M
/1

L
a
n
g
e
rh
a
n
s
c
e
ll,

h
is
tio

c
yt
o
si
s

F
lu

tr
e
o

U
D

C
B

P
ro
g
ra
f

ra
p
a
m
u
n
e

III
S
R

G
Is
ki
n

+
2
0

+
2
3
,
+
4
3

2
1
6
2
5

F
/1
6

H
ig
h
ris
k
p
re

B
-A

L
L

T
B
I+

V
P
1
6

M
U
D

B
M

P
ro
g
ra
f

ra
p
a
m
u
n
e
A
T
G

II
S
R

G
Is
ki
n

+
1
8

+
3
0

3
1
6
8
7

M
/9

In
te
rm

e
d
ia
te

ris
k

p
re

B
-A

L
L

T
B
I+

V
P
1
6

H
L
A
id

si
st
e
r

B
M

P
ro
g
ra
f

ra
p
a
m
u
n
e

III
S
R

G
Is
ki
n

+
9

+
3
1
,
+
3
8
,
+
4
5
,

+
5
5
,
+
2
8
4
,

+
2
9
8

4
1
6
9
2

M
/1
4

S
ic
kl
e
c
e
ll

a
n
e
m
ia

F
lu

tr
e
o
T
T

M
U
D

B
M

P
ro
g
ra
f

ra
p
a
m
u
n
e
A
T
G

II
S
R

G
I

+
1
8
2

+
2
0
0

5
1
7
0
7

M
/1

O
st
e
o
p
e
tr
o
si
s

F
lu

B
u
2

M
U
D

P
B

P
ro
g
ra
f

m
e
th
o
tr
e
xa

te

A
T
G

II
S
R

G
I

+
1
7

+
2
1
,
+
7
0
,
+
7
8
,

+
8
6
,
+
9
3

6
U
A
H

M
/1

S
C
ID

F
lu

tr
e
o

U
D

C
B

C
yc
lo
sp

o
rin

e

M
M
F

IV
S
R

G
Is
ki
n

+
3
3

+
5
7
,
+
6
4
,
+
7
1
,

+
7
8
,
+
9
2
,
+
1
1
3

M
,
m
a
le
;
F,
fe
m
a
le
;
F
lu
,
F
lu
d
a
ra
b
in
e
;
Tr
e
o
,
Tr
e
o
s
u
lp
h
a
n
;
U
D
,
u
n
re
la
te
d
d
o
n
o
r;
C
B
,
c
o
rd

b
lo
o
d
;
G
I,
g
a
s
tr
o
-i
n
te
s
ti
n
a
l
tr
a
c
t;
T
B
I,
to
ta
l
b
o
d
y
ir
ra
d
ia
ti
o
n
;
V
P
1
6
,
ve
p
e
s
id
;
B
M
,
b
o
n
e
m
a
rr
o
w
;
A
T
G
,
a
n
ti
-t
h
ym

o
c
yt
e
g
lo
b
u
lin
;
T
T,
T
h
io
te
p
a
;
B
u
,

s
h
o
rt
c
o
u
rs
e
b
u
s
u
lp
h
a
n
;
S
R
,
s
te
ro
id
re
fr
a
c
to
ry
;
M
U
D
,
m
a
tc
h
e
d
u
n
re
la
te
d
d
o
n
o
r;
H
L
A
id
,
h
u
m
a
n
le
u
ko
c
yt
e
a
n
ti
g
e
n
id
e
n
ti
c
a
l;
U
A
H
,
U
p
p
s
a
la
A
c
a
d
e
m
ic
H
o
s
p
it
a
l;
S
C
ID
,
s
e
ve
re
c
o
m
b
in
e
d
im
m
u
n
o
d
e
fic
ie
n
c
y;
M
M
F,
m
u
ro
p
h
e
n
o
la
te
m
o
fe
ti
l. not monitored routinely (95), and only when an infection

was suspected.

Ethics
We received ethical approval from the regional ethic committee
to harvest DSCs from Caesarian section placentas and use them
for treatment of GVHD and toxicity after HCT (2009/418-31-
34 and 2010/2061-32, 2010/452-31/4, and 2014-2132-32). The
procedure for using DSCs was also later approved by the Central
Ethical Review Board in Sweden (Dnr 011-2016). The method
for clinical culture of DSCs was also approved by the Swedish
Product Agency (Dnr 6.1.3-42994/2013).

Decidua Stromal Cell Culture
The method to culture and expand DSCs was previously
published in detail (96). DSCs express CD166, CD105, CD73,
CD44, and CD29. They did not express hematopoietic markers
CD34, CD14, and CD45. DSCs were negative for bacteria,
mycoplasma, and fungi before infusion. The DSCs were cultured
and expanded in a good manufacturing process laboratory.
DSCs were stored in liquid nitrogen, thawed, and resuspended
in CliniMACS PBS/EDTA buffer, supplemented with 10% AB
plasma or 5% albumin (69). The cells were washed three times
and resuspended in NaCl and 10% AB serum or 5% albumin.
The infusion solution was filtered through a 70µM cell strainer
(BD Bioscience, Franklin Lakes, NI) before being transferred to
a heparinized syringe (Leo Pharma, Ballerup, Denmark) at 2 ×

106 cells/ml. The DSC was infused intravenously using a central
venous line. The central venous line was flushed with 2–5mL of
NaCl with 25 IE heparin/ml in children weighing over 15 kg and
12.5 IE heparin/ml in children weighing under 15 kg.

RESULTS

Patient 1 (UPN, unique patient number, 1555). A male baby
boy was presented with disseminated LCH disease including
bone marrow involvement and was pretreated with steroids and
chemotherapy, followed by aHCT. The boy received an unrelated
cord blood transplant. We previously reported that LCH can be
cured by HCT (97, 98). Due to poor engraftment he was treated
with granulocytes colony-stimulating factor (G-CSF) from day
+20 after HCT. He reached absolute neutrophil counts (ANC)
>0.5 × 109/L on day +27. On day +20 after HCT, he started
vomiting and had watery diarrhea 10 times/day. His diarrhea
deteriorated and he developed a skin rash on the back of his
body. He was given high- dose prednisolone (2 mg/kg). Due to
unresponsiveness he was treated with DSCs 3 days later and one
additional dose was administered 3 weeks after the steroids had
been introduced (Table 1). DSC doses were above 2 × 106/kg
and viability was 78 and 95% in the two infusions, respectively
(Table 2). At day 28 after DSC infusion, he had a partial response
(PR). At day 56 and at the 6-month follow-up he showed no
signs of acute GVHD (Table 2). He was diagnosed with a CMV
reactivation on day +61 treated with ganciclovir. He is currently
alive and well more than 8 years after HCT and from last follow
up he showed Lansky score of 100%.
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Patient 2 (UPN 1625). A 16-year-old female with high risk B-
ALL in 2nd complete remission (CR) received bonemarrow from
an unrelated donor. The patient was treated pre-HCT according
to the NOPHO (Nordic Pediatric Hematology Oncology) ALL
protocol 2008 and was in complete remission pre HCT, including
MRD <0.01% (99). She experienced CMV reactivation on day
+19, treated with ganciclovir. ANC reached >0.5 × 109/L on
day +23. Eighteen days post-transplant, she developed steroid
refractory grade II acute GVHD of the gastro-intestinal tract and
a skin rash. She was treated with a high dose of steroids from
day +20, but did not respond. Due to steroid resistance, she was
treated with one dose of DSCs 30 days after HCT (Table 1). The
DSC dose was 1.7 × 106/kg with 91% viability (Table 2). Her
symptoms of acute GVHD disappeared and she was considered
to be in a complete response at day 28 and remained so. However,
the patient died from leukemic relapse 2 years after HCT.

Patient 3 (UPN 1687). A 9-year-old boy with an intermediate
risk of B-ALL in CR2 received a bone marrow graft from his
HLA-identical sister. He was previously treated according to the
NOPHO ALL protocol 2008 (99). Both donor and recipient were
CMV seropositive. He had no CMV reactivation. On day+10 he
had hemorrhagic cystitis grade II that resolved. Already on day 9
after HCT he developed acute GVHD of the gastrointestinal tract
and erythema of the skin. He did not respond to high doses of
steroids and was considered steroid refractory. On day +30 he
also developed a varicella-zoster reactivation. One month after
HCT he was given 1.2 × 106 DSC/ × 106/kg with a viability of
97% (Table 2). At day 28 after DSC treatment was initiated, he
had complete resolution of all signs of acute GVHD but received
another three additional weekly doses (Tables 1, 2). However,
at 6 months, it was evident that he had developed signs of
chronic GVHD as sicca and lichenoid changes of the skin, treated
with extracorporeal psoralene and ultraviolet light (PUVA). After
another 2 months he developed signs of a more generalized
GVHD, with symptoms from both the skin, the liver, and the
gastrointestinal tract. The biopsy from the GI-tract revealed
GVHD, grade II (8) and he was given two more doses of DSC
(Tables 1, 2). The symptoms of acute GI-GVHD disappeared but
one and a half year after transplant he was still having symptoms
of moderate chronic GVHD, mainly symptoms of bronchiolitis
obliterans. 6.5 years after HCT he is suffering from NIH grade
2 chronic GVHD and is now treated with a JAK2 inhibitor, but
from his last follow up he scored Lansky 100%.

Patient 4 (UPN 1692). A 14-year-old boy arrived in Sweden,
from an African country with an untreated severe sickle cell
disease. He had a history of multiple sickle cell crises, as severe
pain, osteonecrosis, cerebral infarctions, and bleedings and was
therefore planned for a HCT. Before HCT he was treated with
Hydrea capsules, but the treatment showed very moderate effect.
He was finally transplanted and received bone marrow (0.25 ×

106 CD34+ cells/kg) from an unrelated donor (12/12 match).
He reached ANC >0.5 × 109/kg on day +19. On day +28 he
was treated with acyclovir for a herpes simplex virus infection.
Immunosuppression was tacrolimus combined with sirolimus.
During discontinuation of immunosuppression on day 182 after
HCT he developed diarrhea diagnosed as gastrointestinal GVHD.
Steroids were administered, but the diarrhea continued. One
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week later he was given 0.9 × 106 DSC/ × 106/kg (Table 2). He
had a partial response at 28 days and at follow-up at 6 months.
Seven months after HCT he had CMV reactivation treated with
ganciclovir. One year after the transplant he developed chronic
GVHD, NIH overall score 2 (Table 2). However, the patient died
from severe cerebral hemorrhage 1 year and 9 months after HCT,
where previous cerebral damage pre HCT probably contributed
to cerebral hemorrhage post HCT.

Patient 5 (UPN 1707). A 1-year-old boy with osteopetrosis
rejected the first graft and was re-transplanted 2 months later.
He received a peripheral blood graft from an unrelated donor
(Table 1). HLA-match was 10/12 with one antigen-HLA-C and
–DP-mismatches. CD34+ cell dose was 34 × 106/kg. He had
CMV reactivation on day +11, treated with ganciclovir. On day
17 after HCT he developed diarrhea grade II that did not respond
to steroids. He was subsequently given five doses of DSC in doses
ranging from 1.5 to 1.9 × 106/kg per kg (Table 2). The viability
of the cells ranged from 82 to 100%. At day 28 after initiation
of DSC therapy, he had a complete response. At day 56 he had
some abdominal pain and a loose stool. At the 6-month follow-
up the stool was normal. He did not develop any chronic GVHD
and is currently alive and well 6 years after transplantation, with
a Lanskys score of 100%.

Patient 6The boy, born at term, non-consanguineous parents,
was admitted to the hospital at the age of 9 months, with
symptoms of severe respiratory infections, failure to thrive,
and low lymphocytes. He was investigated for suspected severe
combined immunodeficiency (SCID). Genetic analysis revealed
a JAK-3 gene mutation (two heterozygous variants, leading to
a frame shift and premature stop codon; p.Ser 449LysfsX71).
At 12 months of age the boy was transplanted, with cord
blood as a stem cell source. Pre-HCT the boy was colonized
with rhinovirus, which also was observed after transplantation.
On day 29, PCR-chimerism analysis revealed 60% donor cells.
Subsequently, during immunosuppressive tapering, he developed
a skin rash and, a few days later, also massive diarrhea due to
gastrointestinal GVHD. This was diagnosed on a colon biopsy
showing crypt destruction with several apoptotic bodies and
regenerated features of grade IV gastrointestinal GVHD (8). He
did not respond to steroids or mycophenolate mofetil therapy
(Tables 1, 2). From day 57 after HCT, he was treated with
weekly doses of DSCs. He had a partial response at day 28 and
continued to need albumin transfusions. He received a total of six
doses of DSCs before the resolution of gastrointestinal GVHD.
At day 56 and 6 months after transplant he had a complete
response and was doing well. Apart from rhinovirus, no viral,
or fungal infections were diagnosed post-HCT. He is currently
alive and well, 5 years after transplantation. He doesn’t need any
medications goes to school and shows Lanskys score of 100%.

Overall Follow Up
The outcome among these six children treated for severe
gastrointestinal and sometimes also acute skin GVHD at the
28-day follow-up was a complete response in three patients
and a partial response in three patients (Table 2). At 6 months,
a complete response was seen in four patients and a partial
response in two patients. Two patients developed moderate

chronic GVHD. One patient with high risk pre-B-ALL died of
leukemic relapse 2 years after transplantation. A boy with sickle
cell anemia died of cerebral hemorrhage 1 year and 1 month
after HCT, although he had a history of multiple severe sickle
cell crises before HCT. Three patients are alive and well and
one patient is suffering from moderate chronic GVHD with
obstructive bronchiolitis but responded to Jak-2 inhibition. Now
he scores Lansky 100%. Overall, there is a 5-year survival of 67%.

DISCUSSION

Although this is only a small series of pediatric patients treated
for acute GVHD, it still holds some promise. None of the children
died from GVHD and 6-year survival was four out of six (67%).
This is similar to what was achieved with DCSs with 21 patients,
most of them older adults with a 4-year survival of 57% (100).
The two deaths were due to relapse in the patient with high-
risk ALL and cerebral hemorrhage in the patient with sickle cell
disease. These are unfortunate yet expected complications after
HCT. Patients who survived acute GVHD have an reduced risk of
leukemic relapse (101). The graft-versus-leukemia (GVL) effect
did not prevent relapse in this girl with high risk B-ALL. She did
not develop chronic GVHD. The study from the International
Registry suggested that acute GVHD had a profound GVL effect
in ALL patients (102). A European study in ALL patients found
that chronic GVHD was more important to decrease relapse
probability (103). There were only two patients who developed
moderate chronic GVHD. Children have a relatively low risk
of chronic GVHD (104, 105). However, there is an increased
risk of chronic GVHD in patients who survive acute GVHD
(101). Children have a better outcome than adults after HCT
and this is striking in patients with severe acute GVHD (6).
In a prospective randomized study performed by Osiris, it was
reported that children treated for severe acute GVHD, as opposed
to adults, had a better outcome (51). The first multicenter study
using MSCs for acute GVHD also showed a better outcome
in children than adults (47). However, this was not supported
by a meta-analysis, which showed that survival following
MSC therapy for acute GVHD did not differ in children and
adults (106).

An advantage of usingMSCs as opposed to other drugs to treat
acute GVHD is safety, with few, if any side-effects (107, 108).
There were no side-effects caused by the stromal cells in any of
the six children treated with DSCs.

The ideal source of stromal cell for treatment of acute
GVHD, MSC from bone marrow, adipose tissue, Wharton’s
jelly, umbilical cord, placenta tissue or DSCs, may be discussed.
In a humanized mouse model, it was shown that MSCs from
BM, umbilical cord, and adipose tissue had different properties
(109). In Table 3 is listed the different properties of MSCs
from bone marrow compared to DSCs. Bone marrow aspiration
is quite a painful procedure. Thus, alternative sources such
as adipose tissue, cord, placenta tissue, or fetal membrane,
stromal cells are more easily accessible. We found that DSCs
had a stronger immunosuppression of alloreactivity in vitro
in mixed lymphocyte cultures compared to MSCs from other
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TABLE 3 | Differences between bone marrow-derived mesenchymal stromal cells

and placenta-derived decidual stromal cells.

Characteristic MSC DSC

Expansion potential ++ ++++

Differentiation to fat and cartilage +++ +/–

Size, volume 4600 fl 2400 fl

Express PDL-1, PDL-2 + ++

Express CD49d, homing to inflammatory tissue (integrin) + ++

Vascular cell adhesion molecule 1 (VCAM-1) expression + –

Express HLA class II after IFNγ stimulation + –

Pro-coagulant tissue factor 6% 39%

CD55 complement regulatory activity 62% 98%

Reduction in clotting time 55% 70%

Prevent alloreactivity in vitro (MLC) ++ +++

Needs direct contact for immunosuppression – +

Overall response in steroid refractory acute GVHD 75% 100%

MLC, mixed lymphocyte culture.

sources. We therefore selected DSCs for further investigation
(30). DSCs also appeared to be more effective for treating acute
GVHD compared to BM-MSCs (69). However, it is unlikely that
different sources of stromal cells will be compared in prospective
randomized studies for the treatment of acute GVHD. Currently,
there are several promising drugs for treating acute GVHD,
such as Ruxolitinib, Vedolizumab and Etanercept (110–112).
However, it seems that an advantage of using MSCs is the
toxicity profile.

The first child (UPN1555) was treated with G-CSF for
poor engraftment. G-CSF was reported to be associated with
severe acute GVHD because it can trigger alloreactive T-
cells (113, 114). G-CSF may have potentiated acute GVHD in
this child.

Several large studies have been using MSCs, as shown from
a single report on children from Kurtzberg et al. who recently
reported on 241 children with grade II–IV steroid refractory
acute GVHD (115). The 28-day overall response rate was 65%
with a 14% complete response. The 100-day survival was 67%.
These results were achieved with the commercially available
MSCs Remestemcel-L. The randomized study by Osiris, which
did not show an overall improvement in the placebo-controlled
trial, showed that pediatric patients had a significantly better
outcome using MSCs compared to the placebo group (53). Bonig
et al. used MSCs pooled from multiple donors to treat acute
GVHD (58). They reported an overall response rate of 82%
following a median of three doses of pooled MSCs. Overall,
6-month survival was 64%.

MSCs have mainly been used for treatment of acute GVHD
in pediatric patients. They have not been used much for
chronic GVHD. This is because stromal cells have a strong
anti-inflammatory effect, which may be more effective for acute
inflammatory processes such as acute GVHD and less effective
in chronic fibrotic processes (116). Another indication for MSCs,
mainly used in adults, is hemorrhagic cystitis (117, 118). MSCs
have also been used for the treatment of acute respiratory
distress syndrome (ARDS). There is a wealth of experimental data
suggesting the potential of MSCs for sepsis and ARDS (119–121).

We treated a young boy who developed ARDS after HCT with
MSCs (122). He died from massive Aspergillus infection. DSCs
were shown to dramatically reverse ARDS in a male patient early
after HCT (123). There is limited clinical experience (124). The
lack of data on pediatric patients for these more novel indications
could be because they are under development. If effective in the
adult studies, MSCs will also be used for hemorrhagic cystitis,
ARDS, and other indications that are more experimental today.

In addition to acute GVHD, MSCs have also been used to
prevent and reverse graft failure, enhance engraftment, or as
prophylaxis to reduce GVHD (74, 79–81). These studies include
pediatric patients and adults.

As discussed above, the immunosuppressive effects of MSCs
are induced by direct contact, as well as via several soluble factors.
Exosomes and microvesicles derived from MSCs were shown
to protect from acute kidney injury (125), myocardial ischemia
(126), and pulmonary hypotension (127) in animal models.
Exosomes for MSCs were also demonstrated to reverse severe
acute GVHD (46). Since exosomes will only transfer soluble effect
by MSCs and not a direct immunosuppressive effect, it is less
likely that exosomes will replace MSCs in the near future.

To conclude, MSCs from various sources are mainly used
in pediatric patients to treat severe acute GVHD and have
shown encouraging response rates and survival efficacy. Thus,
commercially available MSCs are registered as a drug in
Canada, Japan and New Zeeland (128). Furthermore, MSCs
also have the potential to cure other acute inflammatory and
toxic disorders seen in pediatric patients, such as hemorrhages,
ARDS, poor engraftment, and possibly also neuroinflammatory
disorders (129).
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