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Sarcoidosis is a systemic inflammatory disease characterized by infiltration of immune
cells into granulomas. Previous gene expression studies using heterogeneous cell
mixtures lack insight into cell-type-specific immune dysregulation. We performed the
first single-cell RNA-sequencing study of sarcoidosis in peripheral immune cells in 48
patients and controls. Following unbiased clustering, differentially expressed genes were
identified for 18 cell types and bioinformatically assessed for function and pathway
enrichment. Our results reveal persistent activation of circulating classical monocytes
with subsequent upregulation of trafficking molecules. Specifically, classical monocytes
upregulated distinct markers of activation including adhesion molecules, pattern
recognition receptors, and chemokine receptors, as well as enrichment of
immunoregulatory pathways HMGB1, mTOR, and ephrin receptor signaling. Predictive
modeling implicated TGFB and mTOR signaling as drivers of persistent monocyte
activation. Additionally, sarcoidosis T cell subsets displayed patterns of dysregulation.
CD4 naive T cells were enriched for markers of apoptosis and Th17/T 4 differentiation,
while effector T cells showed enrichment of anergy-related pathways. Differentially
expressed genes in regulatory T cells suggested dysfunctional p53, cell death, and
TNFR2 signaling. Using more sensitive technology and more precise units of measure, we
identify cell-type specific, novel inflammatory and regulatory pathways. Based on our
findings, we suggest a novel model involving four convergent arms of dysregulation:
persistent hyperactivation of innate and adaptive immunity via classical monocytes and
CD4 naive T cells, regulatory T cell dysfunction, and effector T cell anergy. We further our
understanding of the immunopathology of sarcoidosis and point to novel
therapeutic targets.

Keywords: sarcoidosis, regulatory T cells, classical monocytes, RNA sequencing analysis, lymphocyte activation,
cell migration
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INTRODUCTION

Sarcoidosis is a systemic inflammatory disease characterized by
non-caseating granulomas. Granuloma formation and
maintenance involves dynamic interaction among both
adaptive and innate immune cells likely influenced by genetic
risk, environmental stimuli and persistent foreign or self-
antigens (1). Sarcoidosis susceptibility and etiology are both
poorly understood and likely vary by ethnic background and
environmental exposure (2-6). In fact, sarcoidosis is often
termed an “immune paradox”, as both inflammation at disease
sites and peripheral anergy to recall antigens are observed (7).
Anergy, a mechanism of tolerance to suppress self-reactive
lymphocytes, is consistent with sarcoidosis responding to
standard autoimmune disease treatments and sharing both
clinical presentation (1) and a genetic and molecular risk
profile with several autoimmune disorders (8, 9). However, T
cell reactivity to multiple mycobacterial proteins (10, 11) and, in
some cases, response to antimycobacterial therapy (CLEAR trial)
(12) also suggest infectious etiology.

Whereas past studies suggested compartmentalization of
inflammation within diseased organs, recent findings suggest
gene expression in granulomas is reflected in circulating immune
cells (13-15). Two small RNA sequencing studies, one of monocytes
(14) and one of regulatory T cells (16) have been published, as have
other gene expression studies of tissue or blood using PCR- or
microarray-based technologies. These studies of heterogeneous cell
mixtures dilute cell-specific transcriptional signatures and thus,
cell-type specific effects are not detectable.

It was thus our goal to characterize immune-cell-specific
pathways that are dysregulated in the periphery of sarcoidosis
patients via cutting-edge technology and analytics in the only
single-cell RNA-sequencing (scRNA-seq) study and one of the
largest transcriptomic studies in sarcoidosis to-date. We
interrogated the transcriptomes of single cells and thus
assessed hundreds of observations per sample for multiple
immune cell subtypes. In doing so, we aimed not only to verify
that both innate and adaptive signatures are present in the blood,
but also to offer insight into points of immune dysfunction.

MATERIALS AND METHODS

Cohort Characteristics

Participants include 35 consecutively evaluated sarcoidosis cases
and 13 healthy controls recruited via community outreach and
evaluated at the Sarcoidosis Research Unit of the Oklahoma
Medical Research Foundation. The unit does not provide direct
clinical care or diagnostic services to sarcoidosis patients. Therefore,
our clinical staff, in consultation with our advisors at the University
of Oklahoma Health Sciences Center and Vanderbilt University,
designed and standardized a protocol of medical record review to
document the diagnosis and clinical features of sarcoidosis adhering
to the World Association of Sarcoidosis and other Granulomatous
Disorders (WASOG) and A Case Controlled Etiologic Study of
Sarcoidosis (ACCESS) guidelines (17-21). Briefly, assessment

consisted of a one-time visit, where, after providing informed
consent, subjects donated a blood sample (78.5 ml) and
completed surveys of demographics, medication usage, and
clinical histories. Patients provided authorization to obtain their
medical records, which were reviewed to confirm biopsy and chest
imaging reports compatible with a diagnosis of sarcoidosis and the
exclusion of other granulomatous diseases (17, 20, 22, 23). Medical
records were used to verify the use of immunosuppressant
medications at the time of visit, in particular steroids or disease-
modifying antirheumatic drugs (adalimumab, azathioprine,
golimumab, hydroxychloroquine, infliximab, methotrexate, or
prednisone). A summary of clinical and demographic
information can be found in Table 1.

Single-Cell RNA-Sequencing

Cell capture was performed using the 10x Genomics Chromium
system, a novel technology that utilizes high-throughput
microfluidics to automatically encapsulate individual cells within
oil droplets, each droplet containing a uniquely labeled DNA
barcode bead. Single-cell 3’ transcriptomes originating from each
droplet were recovered following sequencing on an Illumina HiSeq
3000, according to the 10x Genomics Chromium protocol. Briefly,
peripheral blood mononuclear cells (PBMC) were collected using
LSM (Gibco). No further sorting of PBMC was performed after
collection. Fresh PBMC (target 4,000/patient) were loaded at a
concentration of 1000 cells/ul into a 10x Genomics Single Cell A v2
chip into the Chromium controller. Following single cell emulsion
generation, uniquely identifiable first strand template single-cell
cDNA libraries were individually generated from each oil-
encapsulated cell by emulsion PCR. After emulsion was broken,
the second ¢cDNA strand was generated and Illumina compatible
adapters were ligated. Following qPCR quantification, final libraries
were loaded onto single respective lanes of a HiSeq 3000 using read
lengths of 26 bp for the first read, 98 bp for the second read, and an 8
base index read. Upon completion of sequencing the raw bl files
were processed using the 10x Genomics Cell Ranger (v3.0.2)
informatics pipeline.

We obtained single-cell transcriptomes from 98,741 cells. After
filtering of platelets and erythrocytes as well as additional quality
control methods, 53,756 cells were retained for further analyses.
Usinga standard analysis pipeline [Seurat (24)], cells were clustered
by similar gene expression and differential expression (DE) analysis
was performed on each cell type independently. Gene expression
was normalized within each cell cluster regardless of sample source.
A subset of subjects did not contribute cells following quality
control, resulting in a final sample of 33 cases (47,276 cells) and
nine controls (6,480 cells) for DE analyses. For further technical
details, see Supplemental Methods. We identified 3759 unique DE
genes (Figure S2; Table S2), a large portion of which were cell-type
specific (1578/3759, 42.0%).

To characterize cell-specific sarcoidosis-associated inflammatory
pathways, we utilized a commercial software package, Ingenuity
Pathway Analysis (IPA) to intersect DE genes with known biological
functions. In addition, we utilized causal analysis approaches with
IPA to identify upstream regulators experimentally determined to
affect gene. For further technical details, see Supplemental Methods.
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TABLE 1 | Demographic and clinical information of sarcoidosis patients and
healthy controls.

CASES CONTROLS
Demographic features
Gender n(%)
Male 12 (34.3) 3(23.1)
Female 23 (65.7) 10 (76.9)
Race n(%)
European American 27 (77.1) 12 (92.3)
African American 6 (17.1) 1(7.7)
Native American 2 (56.7) 0 (0)
Mean age in years (SD) 57 (10.8) 45 (12)
Disease Activity n(%)
Active* 12 (34.3) n/a
Not-active 23 (65.7) n/a
Disease Duration n(%)
Chronict (>2 years) 15 (42.8) n/a
Persistent (>5 years) 11 (31.4) n/a
Organ Involvement n(%)§,+
Lungs 35 (100) n/a
Extra-thoracic lymph nodes 14 (40) n/a
Calcium/Vitamin D 7 (20) n/a
Liver 4 (11.4) n/a
Spleen 4 (11.4) n/a
Eyes 4 (11.4) n/a
Skin 3(8.6) n/a
Bone/Joints 3(8.6) n/a
Bone marrow 2(.7) n/a
Kidney 2 (5.7) n/a
ENT 1.9 n/a
Nervous system 1(2.9) n/a
Heart 1.9 n/a
Other 1.9 n/a
Medication usage at collection n(%)§,ll
Prednisone 13 (37.1) 1(7.7)
Methotrexate 4 (11.4) n/a
Hydroxychloroquine 3(8.6) n/a
Azathioprine 2 (5.7) n/a
Infliximalb 2 (56.7) n/a
Adalimumab 1.9 n/a
Golimumab 1.9 n/a

*Defined as having exhibited (per medical records) novel organ involvement or a decrease
in forced vital capacity of >10% in the last 12 months. 'Defined as unresolved disease
lasting longer than 2 years. iAccord/ng to recommendations (18, 19). SA subject may have
multiple organs affected or take multiple medications. Il Medications may have been taken
for any cause, not exclusively for treatment of sarcoidosis.

RESULTS

Characterization of Demographic, Clinical,
and Transcriptomic Data

Our cohort was predominantly European American (Table 1).
Composition of patient and control groups did not differ by race
or gender, but patients were older than controls on average
(p=0.003) and thus age adjustment was included as part of
scRNA-seq analyses. Sarcoidosis cases were 10.6 years post
biopsy-proven diagnosis on average and had a wide range of
organs affected, most frequently the lungs and extra-thoracic
lymph nodes. Roughly half had unresolved disease lasting longer
than 2 years and about a third had active disease at the time of their
visit. A large proportion of patients were on immunosuppressive
treatment at the time of sample collection. The proportion of subjects

with active and/or chronic disease receiving immunosuppressants
is similar to other reports (25, 26). To verify previous reports that
treatment effects did not significantly alter results (13), we
compared enriched pathways in treated and untreated patients
(reported below).

To characterize cell-type-specific transcriptomes, we generated
scRNA-seq profiles of over 100,000 PBMC. Following quality
control measures, we identified 18 cell clusters (Figure 1A,
Supplemental Methods), all of which could be assigned cell
identities by canonical marker genes (Figure 1B, SI,
Supplemental Methods). Thirteen cell types contained at least
1,000 cells (Table S1); others, including plasmacytoid dendritic
cells (pDC, n=142) and plasmablasts (n=137) had only moderate
representation in our samples (Table S1) and were thus excluded
from downstream analyses. Each subject contributed an average of
1,280 cells that could be identified, although composition varied by
individual (Figure 1C).

Monocyte Activation and Trafficking Is
Limited to Classical Monocytes

Both animal models and patient studies have confirmed the
importance of monocytes, the circulating precursors of
macrophages, in the etiology and pathology of sarcoidosis (27).
We, like others (14), found altered expression of genes important
in activation (pattern recognition receptors and signaling
molecules) and migration (adhesion molecules and chemokine
receptors) in monocytes isolated from sarcoidosis patients
compared to those from controls. We identified two distinct
monocyte populations, classical (CD14) and non-classical
(CD16) monocytes, both of which are considered pro-
inflammatory, but differ in carrying out phagocytosis and
activating T cells (28). Specifically, we confirmed previously
reported enhancement of toll-like receptor (TLR) signaling
(Figure 2A) and DE of TLR-signaling associated genes TLR2,
TNFAIP3, and NFKBIZ as well as other pattern recognition
receptors CD163, FCN1, CLEC4A, and CLECI2A in CD14
monocytes (Table S2). Signaling pathways classically known to
affect monocytes activation were enriched in these cells as well,
including IL-8, Rac/Cdc42, LPS-stimulated and p38 MAPK,
TNFR1, chemokine, GM-CSF, and IL-6 signaling (Figure 2A).
Additionally, pathways more recently found to play a role in
monocyte activation, such as HMGBI1 (29) and ephrin receptor
(30) signaling, were also upregulated along with IL-3 signaling,
previously associated with models of sepsis and two prototypical
autoimmune diseases, systemic lupus erythematosus (SLE) and
multiple sclerosis (31). Activated classical monocytes have been
shown to undergo cytoskeletal rearrangements via RhoGTPases
for extravasation (28); we saw upregulation of actin- and Rho-
based motility pathways along with leukocyte extravasation
signaling in these cells. Supporting the finding of increased
trafficking, adhesion molecule PECAM]I and integrin subunits
ITGBI and ITGAM (CD11b), a gene known to play a role in SLE
(32), were all upregulated. Downstream pathways were also
enriched; CD14 monocytes upregulated acute phase response,
iNOS, and mTOR pathways. We compared our findings to
other datasets within the literature and found similarities to
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FIGURE 1 | Eighteen cell types identified from PBMCs. Single-cell RNA-seq data is visualized by t-SNE plot of 53,756 human PBMCs colored by predicted cell type
(A). (B) Expression of marker genes of cell type by both average normalized expression (intensity of color) and percent of cells in that type expressing the marker
gene (size of circle) in both sarcoidosis patients (red) and controls (blue). Bar charts (C) display the relative abundances of cells per type in patients and healthy
controls that contributed at least 20 cells. While cell composition varies across individual, most subjects show large populations of CD4 T cells (dark green and
brown), cytotoxic T cells (medium blue), CD14 monocytes (orange), and NK cells (pink).
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other sarcoidosis data sets as well as a prototypical infectious
granulomatous disease, tuberculosis, a granulomatous autoimmune
disease, Crohn’s, and SLE (Figure 3). Our findings show that classical
monocytes in sarcoidosis, similar to other diseases, experience
persistent innate activation, migration, and differentiation to
antigen-presenting cells.

We found multiple lines of evidence that persistent CD14
monocyte activation may be enhanced by lack of regulatory
mechanisms. HIF-1¢r expression has recently been found to be
upregulated in sarcoidosis CD14 monocytes and associated with
regulation of IL-1B and IL-17 production (33); here, we
confirmed upregulation of HIFIA in these cells. ERK5
signaling, shown to be associated with monocyte inflammation
and pro-inflammatory cytokine production in models of
infection and ischemia (34), was also upregulated in CD14
monocytes. Finally, we saw upregulation of mTOR in CD14
monocytes; induced overactivity of this pathway was sufficient to
generate spontaneous granulomas in a recent mouse model (35).

To further investigate the cause of dysregulation in these
pathways, we utilized publicly available experimental data
(DiseaseLand libraries, OmicsSoft, qiagenbioinformatics.com/
diseaseland) and predictive modeling of upstream regulators and
found evidence of master regulators of inflammation, fibrosis, and
autophagy. In this proprietary algorithm (IPA), the effects of known
regulators are curated from literature and compared to gene
expression changes. For example, here, among other genes,
STATI, IL10RA, and PTEN were underexpressed in sarcoidosis
CD14 monocytes compared to controls while CXCR4, ATGI2,
HIFIA, CCR1, and IER3 were overexpressed, consistent with the
effects of TGFB1 signaling. Utilizing this method predicted 39
potential upstream regulators activated or inhibited in sarcoidosis
CD14 monocytes with confidence; lipopolysaccharide, TGFBI,
STAT3, and RICTOR, a component of the mTOR complex, were
among the top 10 (Figure $3; Table S3). TGFf is widely recognized
as a core pathway of fibrosis, and mTOR signaling is a central
regulator of autophagy. Treatment was not responsible sarcoidosis-
associated CD14 monocyte dysregulation; treatment led to the
reversal of the direction of the enrichment of the majority of
pathways (Figure S4). These results suggest that sarcoidosis
monocytes may receive no more innate stimuli than those of
healthy controls, but aberrant regulatory pathways associated
with fibrosis and autophagy induce persistent hyperactivation.
Current immunosuppressive therapies may be somewhat effective
in controlling this hyperactivation, but more investigation of larger
cohorts is necessary.

While previous studies have suggested a role of CD16 monocytes
(36), we found little evidence of cell-type-specific differences
between these cells in sarcoidosis cases and healthy controls. Like
CD14 monocytes, pathways known to affect monocyte activation
were upregulated in CD16 monocytes, including PI3K/AKT
signaling (Figure 2B). However, other inflammatory pathways,
including NF«B, TLR, and TREMI signaling were downregulated.
IL-3, neurotrophin/TRK (37), and macropinocytosis signaling were
upregulated in both monocyte types, while shared pathways of
production of nitric oxide and reactive oxygen species and TLR
signaling were downregulated in CD16 monocytes. In contrast to

classical monocytes, CD16 monocytes demonstrated predicted
inhibition of a single upstream regulator, CSF3 (G-CSF; Table
$3). These results suggest future studies should be performed on
isolated monocyte subsets to localize inflammatory signals.

CD4 Naive T Cells Display Markers of
Non-TCR-Mediated Activation, Apoptosis,
and Differentiation Dysregulation

Sarcoidosis models and patient studies also point to T cells as key
players in the pathogenesis of sarcoidosis, indicating an interplay
between adaptive and innate immunity (9, 27). We found
evidence of CD4 naive T cell activation in sarcoidosis as well
as enrichment of regulatory pathways, suggesting a persistent
inflammatory response of potentially infectious or autoimmune
origin. Specifically, CD4 naive T cells displayed upregulation of
JAK/STAT, PI3K/AKT, and ERK/MAPK signaling, suggesting
general activation (Figure 2C). As expected for naive cells, we
found no evidence indicative of antigen-driven T cell stimulation
(Figure 2C, Table S2). Indeed, only antigen-independent
stimulatory pathways capable of affecting naive CD4 T cells
prior to antigen recognition, such as IL-2, IL-15, IL-6, and PDGF
signaling, were enriched in these cells.

As in CD14 monocytes, we also found evidence of dysregulation
of multiple regulatory mechanisms. First, multiple pathways
indicated a loss of mechanisms of apoptosis in CD4 naive T cells.
Signaling via TOBI, a negative regulator of T cell proliferation and
cytokine transcription, was upregulated. ATM signaling, known to
maintain naive T cell survival, was upregulated, and T lymphocyte
apoptosis was downregulated. PPAR signaling, which may regulate
both T cell survival and differentiation (38), was also downregulated.
Other regulators of T cell differentiation, including PDGF (39) and
IGF-1 (40) signaling, known to regulate T, proliferation and
function in, among others, autoimmune diseases, were enriched.
Similarly, both HIPPO signaling and TGFf signaling, known to affect
Th17/T,, differentiation (41), were enriched. Together, these results
suggest dysregulation of both apoptosis and differentiation
mechanisms consistent with other autoimmune diseases that may
inhibit resolution of the initial immune response in sarcoidosis.
Treatment reversed the direction of most of these enriched
pathways, suggesting an inhibitory role (Figure $4B). Interestingly,
treatment also upregulated Th2 signaling in these cells, potentially
promoting differentiation to this effector T cell subset.

Effector T Cells Upregulate Anergy-
Associated Genes and Suppress T Cell
Receptor Signaling

T cell anergy is a mechanism of peripheral tolerance that is
classically defined as a hyporesponsive state established in T cells
when antigen is sensed in the absence of co-stimulation such as
CD28 binding. Anergy prevents cell proliferation and cytokine
production in response to subsequent antigen encounter via
blockade of T cell receptor (TCR) signaling and is thought to be
protective against autoimmunity. In sarcoidosis, anergy is
observed specifically by lack of reaction to skin antigen tests
and peripheral blood exposure ex vivo to recall antigens (42).
Mechanisms of this observed anergy are poorly understood, but
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FIGURE 3 | Sarcoidosis CD14 monocytes demonstrate enriched pathways similar to both infectious and autoimmune disease. Genes differentially expressed in
sarcoidosis CD14 monocytes (red arrow) compared to those from controls were compared to publicly available experimental data from human diseases via the
Analysis Match function of IPA. Included datasets are sarcoidosis (sarc), tuberculosis (TB), Crohn’s disease (CD), or systemic lupus erythematosus (SLE) data sets
with the highest overall z score of similarity. Data sets were also limited to those from the HumanDisease data bank of either case-control or disease severity
comparisons. Hierarchical clustering was performed utilizing the Morpheus tool (Broad Institute; https://software.broadinstitute.org/morpheus/) with the following
parameters: one minus Pearson correlation, single linkage method, clustering of columns. K-means clustering was performed 20 times for each number of clustering
and representatives of most common clusters are shown. Clustering was performed on all data; here, rows are limited to diseases and functions. From left to right,
the following data sets are included: Case-control analysis (CC) of lung tissue in sarcoidosis, GSE16538.GPL570.test1; CC analysis of CD14 monocytes from this
study of sarcoidosis, GSE132338; CC of peripheral blood in CD, GSE3365.GPL96.test1; CC of lacrimal gland in sarcoidosis, GSE105149.GPL570.test3; CC of
lacrimal gland in sarcoidosis, GSE105149.GPL570.test7; CC of peripheral blood in SLE, GSE22098.GPL6947 .test1; analysis of lung tissue from progressive, fibrotic
(P-F) sarcoidosis vs. nodular, self-limiting (N-SL) sarcoidosis, GSE19976.GPL6244.test1; CC of peripheral blood in SLE, GSE50635.GPL6244.test2; CC of peripheral
blood in TB, GSE19439.GPL6947 .test2; analysis of peripheral blood of active vs. latent TB cases, GSE19439.GPL6947 .test3; analysis of peripheral blood of active
vs. latent TB cases, GSE19444.GPL6947 .test3; CC of peripheral blood in TB, GSE19444.GPL6947 .test2; CC of peripheral blood in SLE,
GSE49454.GPL10558.test1; CC of peripheral blood in CD, GSE83381.GPL11154.DESeq?2.test4; analysis of peripheral blood of active vs. latent TB cases,
GSE28623.GPL4133.test3; CC of monocytes in CDGSE86434.GPL10558.test7; CC of peripheral blood in CD, GSE86434.GPL10558.test10.
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both compartmentalization of immune competent cells to
affected tissues and T, or effector T cell dysfunction have
been proposed. Here, we find enrichment of pathways
classically associated with anergy (43). Specifically, early T
effector cells (ETE) from sarcoidosis patients had significant
downregulation of TCR signaling (labeled “SLE T cell signaling
pathway” here) and ICOS-ICOSL signaling, as well as PI3K/
AKT, ERK/MAPK, NFAT, ERBB2 (TOB), sirtuin, and mTOR
signaling (Figure 2D), relative to controls.

Two different systems are widely utilized to induce anergy in
T cells: treatment with ionomycin (44) or stimulation with anti-
TCR (45)/anti-CD3 (46). To further validate an anergy
phenotype in our ETE, we compared our findings to three
microarray studies utilizing these methods. Of the 392 anergy-
associated genes, only 18 (4.6%) were shared by at least two
studies, suggesting a lack of consensus of an anergy “signature”.
However, a large portion of anergy-associated genes (115;29.3%)
were DE in sarcoidosis ETE (Table S$4).

When we assessed DE genes for potential gene, protein, or
mRNA upstream regulators (IPA, digitalinsights.qiagen.com),
CD3 and CD40LG were the two most significantly associated,
inhibited, transcriptional regulators. Similarly, causal network
analysis found the TCR-CD3 complex the most likely master
regulator of all ETE DE genes. As our cells were untouched by
antibodies, we can conclude our findings were not due to effects
of labeling. Differences in proportion of ETE cells between cases
and controls or subsets of cases were not observed. Enriched
pathways were not driven by treatment, as treatment subset
analyses yielded almost no enriched pathways (data not shown).
This evidence suggests anergy in sarcoidosis is driven by
persistent inhibition of TCR-mediated T cell activation in
peripheral ETE via enrichment of anergy-related pathways,
potentially as a mechanism to prevent activation of self-
reactive T cells in the presence of persistent cognate self-antigen.

Sarcoidosis T Cell Dysregulation Is
Potentially Aggravated by Changes in
Regulatory T Cell Survival and
Differentiation

Regulatory T cells (T,eg) suppress T cell subsets that have been
activated by either infectious or autoimmune antigens through
multiple mechanisms, including depletion of local IL-2 through
IL2Raq, secretion of granzymes to induce cytolysis, and CTLA-4-
dependent suppression of antigen-presenting cells. T,e; from
sarcoidosis patients have been shown to have reduced suppressive
capacity ex vivo (47), increased expression of FOXP3 (16), decreased
CTLA4 (48), and altered expression of genes in the p53 pathway
(16). We found downregulation of the p53 pathway in these cells
(Figure 2E) along with DE of p53 pathway genes ATM, BAX, BCL2,
PIASI, and PRKDC (Table S2). Both previously-found and
novel cell death genes were enriched in T, (e.g., BCL2, CASPI;
Table S2), substantiating the observation that sarcoidosis T;e; have
decreased survival (49). Signaling via TNFR2, a known regulator of
Teg function (50) did not meet criteria for enrichment via IPA
analyses; however, members of the TNFR?2 signaling pathway were
differentially expressed in T\, including TANK and TNFAIP3. We

observed enrichment of Th17 signaling, suggesting dysregulation of
the balance of Th17/T,., differentiation. Finally, we confirmed our
findings were not driven by treatment, as treated patients did not
display any enriched pathways when compared to untreated
patients (data not shown).

DISCUSSION

Sarcoidosis is an enigmatic disease involving established genetic
predisposition and immune dysregulation but an otherwise
unknown etiology. Here, in one of the largest gene expression
studies of sarcoidosis, we apply cutting-edge technology for
examining the transcriptomic profiles of single cells in as natural
and unmodified state as possible. Our objective was to pinpoint the
differential gene expression between patients and controls to
specific cell subtypes, identifying relevant dysregulation in specific
peripheral immune cells. Our results substantiate immune
dysregulation inherent to sarcoidosis that involves peripheral
hyperactivation of both T cells and classical monocytes with
subsequent migration into affected tissue. We solidify a number
of commonalities between sarcoidosis and both infectious and
autoimmune diseases, including persistent hyperactivation of
innate immunity via classical monocytes as well as CD4 naive T
cell activation, regulatory T cell dysfunction, and enrichment of
fibrosis-, autophagy-, and anergy-associated genes and pathways
(51). We show evidence of novel dysregulation of both T cell and
monocyte subsets and identify potential upstream regulators and
regulatory mechanisms (summarized in Figure 4). Finally, our
highly detailed, single-cell expression patterns provide multiple
candidate pathways for targeted, bench-to-bedside treatments
aimed at reestablishing normal functions of the main dysregulated
cell types that we identified in sarcoidosis. Ephrin receptor signaling,
upregulated in sarcoidosis CD14 monocytes, has been an attractive
therapeutic target for both infection and cancer (52) and has recently
been investigated as a therapy for Inflammatory Bowel Disease (53).
A recent study found chloroquine, a drug commonly used in the
treatment of autoimmune disease, could reduce HIF-1¢ levels in
sarcoidosis alveolar macrophages and reduce IL-17 and IL-18
production in sarcoidosis PBMC in response to anti-CD3 (33).
More investigation is needed to ensure chloroquine would
effectively reduce the enrichment of HIFIA seen here in classical
monocytes. Additionally, blocking of activation of sarcoidosis
classical monocytes by targeting GM-CSF with otilimab
(GSK3196165) or IL-3 signaling with XMD8-92 (56) are suggested
by our findings. Similarly, our findings in sarcoidosis CD4 naive
T cells suggest they may be effectively targeted by nintedanib, a
multi-tyrosine kinase inhibitor approved for use in idiopathic
pulmonary fibrosis that targets the JAK/STAT pathway and
reduces the effects of TGFp signaling (54). While sarcoidosis T;cg
were not highly dysregulated here, the p53 pathway is the target of
existing pharmacological therapies and should be further explored
as a target of immunomodulation of sarcoidosis Ty Additional
avenues of investigation suggested by our findings include antagonists
of HMGBI (55), Tec kinases, PPAR, JAK/STAT, TGFj3, and mTOR
inhibitors such as rapamycin (51), among many others.
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FIGURE 4 | The four pillars of sarcoidosis model. Classical monocytes upregulated distinct markers of activation including adhesion molecules, pattern recognition
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implicated TGFB and mTOR signaling as drivers of persistent classical monocyte activation. In contrast, CD16 monocytes displayed both up- and down-regulation of
a small number of inflammatory pathways. Sarcoidosis T cells subsets also displayed patterns of dysregulation. CD4 naive T cells were enriched for markers of
apoptosis and Th17/T 4 differentiation, while effector T cells showed enrichment of anergy-related pathways. Differentially expressed genes in regulatory T cells
suggested dysfunctional p53, cell death, and TNFR2 signaling. We therefore hypothesize sarcoidosis pathology is marked by four distinct cell-specific effects: 1)
persistent hyperactivation of innate immunity via classical monocytes 2) in combination with CD4 naive T cell activation and 3) exacerbated by regulatory T cell
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in sarcoidosis.

While our study presents many novel insights, we acknowledge
they are not without certain limitations. Our patient population is
more representative of an outpatient than a hospital-based or a
research sample with targeted enrollment by phenotype, and thus
comprises a less homogeneous patient population, suggesting our
results are applicable across multiple disease subtypes, even in the
presence of treatment. We also acknowledge that there has been
some evidence of distinct immune dysregulation in circulating and
tissue-resident immune cells in sarcoidosis. However, as we and
others have shown (13-15), the immune dysregulation
characteristic of sarcoidosis is present in circulating immune cells,
collection of which is a much less invasive and cost-effective option
for new diagnostic tools. The collection and analysis of scRNA-seq
data is still a developing field; however, multiple studies have now
been published with the standard analytical techniques we utilized.
Finally, as with all such studies, there is concern about the influence
of any number of factors on the levels of gene expression. One
potential source of altered expression is stimulation or
manipulation of the cells themselves; thus, we chose to use the
10x technology instead of flow cytometry to isolate cells,
minimizing contact and manipulation. The other major potential
source of altered gene expression is medication use. Our assessment
of treatment effects is consistent with the many gene expression
studies done to date that show modest effects of treatment on
specific genes but do not hinder the ability to find meaningful,
biologically relevant differences. This has been shown to be
particularly true in single cell studies as the number of
observations per patient are increased by 100-fold, thus maximizing
power while minimizing false positives.

To date, no other single-cell characterization of circulating
immune cells in sarcoidosis has been published. In this study, we
have shown, using scRNA-seq, that cell type-specific differences
exist in subsets of PBMC of sarcoidosis cases versus healthy
controls. Our findings confirm previous findings in both T cells
and monocytes and offer novel insights into the source of persistent
immune dysregulation. We offer strong evidence that sarcoidosis is
a systemic disease and that relatively noninvasive access to
circulating immune cells offers the potential for novel and
powerful diagnostics. We also show novel evidence of the
mechanisms by which immune dysregulation in sarcoidosis
patients persists, regardless of the initial stimuli. This new
mechanistic insight offers practical targets for novel and
repositioned pharmaceutical intervention.
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