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The variables that influence the selection of a preparative regimen for a pediatric
hematopoietic stem cell transplant procedure encompasses many issues. When one
considers this procedure for non-malignant diseases, components in a preparative
regimen that were historically developed to reduce malignant tumor burden may be
unnecessary. The primary goal of the procedure in this instance becomes engraftment
with the establishment of normal hematopoiesis and a normal immune system.
Overcoming rejection becomes the primary priority, but pursuit of this goal cannot
neglect organ toxicity, or post-transplant morbidity such as graft-versus-host disease
or life threatening infections. With the improvements in supportive care, newborn
screening techniques for early disease detection, and the expansion of viable donor
sources, we have reached a stage where hematopoietic stem cell transplantation can be
considered for virtually any patient with a hematopoietic based disease. Advancing
preparative regiments that minimize rejection and transplant related toxicity will thus
dictate to what extent this medical technology is fully utilized. This mini-review will provide
an overview of the origins of conditioning regimens for transplantation and how agents
and techniques have evolved to make hematopoietic stem cell transplantation a viable
option for children with non-malignant diseases of the hematopoietic system. We will
summarize the current state of this facet of the transplant procedure and describe the
considerations that come into play in selecting a particular preparative regimen. Decisions
within this realm must tailor the treatment to the primary disease condition to ideally
achieve an optimal outcome. Finally, we will project forward where advances are needed
to overcome the persistent engraftment obstacles that currently limit the utilization of
transplantation for haematopoietically based diseases in children.
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INTRODUCTION

Since its first attempts in the 1950s, allogeneic hematopoietic
stem cell transplantation (HSCT) has rapidly evolved over time
(1). Initially used for the most desperate of situations, it has now
become a standard of care for many disease conditions. This
transformation is a product of many advancements including:
(1) Improving our understanding of hematopoiesis and immune
reconstitution. (2) Improvements in supportive care, (3)
Improvements in the prevention of graft-versus-host disease
(GVHD), (4) Expansion of donor pools, (5) Refinements in
preparative regimen selection and design. These advancements
have produced a steady decline in transplant related mortality
rates which now approach 10% in some instances. Thus, HSCT is
now viewed as a viable option for virtually any disease that
originates from the hematopoietic system. Continued
improvements must now take into account not only mortality,
but also minimizing the long-term toxicities that a
surviving patient must confront after achieving cure of their
primary disease.

Long term toxicities can be a consequence of several variables.
1.) Organ damage from the preparative regimen, 2.) Sequelae from
the transplant course such as mucositis, infection, or excessive
bleeding, 3.) Chronic GVHD, 4.) Toxicity from other medications
administered (calcineurin inhibitors, steroids, etc.) (2). Although
some of these complications may be unpredictable, the choice of
the preparative regimen can have a significant impact. For non-
malignant conditions, the primary goal of the transplant
procedure is to achieve stable engraftment that is sufficient to
rectify the underlying disease yet minimize long term toxicity (3).
In its simplest view, the primary obstacle of HSCT is rejection of
the graft. Thus, the choice of preparative regimen should focus on
its immunosuppressive properties, optimizing engraftment yet
avoiding an excessive immunocompromised state leading to life
threatening infections (4). This “balance” can be difficult to
achieve, and the optimal regimen, which varies with the primary
disease, has not been established for any condition.

This mini-review will summarize both the history and current
state of the repertoire of preparative regimens that have been
utilized for HSCT for non-malignant conditions. We will discuss
the variables which should be considered in choosing the
appropriate preparative regimen and how different conditions
may warrant different approaches. Finally, we will discuss future
directions where advances in preparative regimen design may
improve the outcome for these patients.
INDIVIDUAL AGENTS UTILIZED FOR
PREPARATIVE REGIMEN DESIGN

Established preparative regimens have historically been
developed utilizing standard phase I designs which advance
dose intensity until a dose limiting toxicity was encountered.
Hematologic toxicity was disregarded due to its reversal with the
infusion of hematopoietic stem cells of the graft. Thus, doses and
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schedules of individual agents were limited by toxicities outside
the hematopoietic system.

Modern day regimens are typically classified into three
categories (3, 5, 6). Myeloablative regimens typically requires a
stem cell graft infusion to reconstitute hematopoiesis. Non-
myeloablative regimens, as the name implies, are less intensive
and, even in the absence of a stem cell infusion, spontaneous
hematopoietic recovery is expected. Reduced intensity regimens,
whose definition has not been rigorously defined, falls somewhere
in-between the two extremes, and is an acknowledgement that non-
myeloablative regimens are associated, by their nature, with an
increased risk of rejection. Reduced intensity regimens thus, fall
short of full myeloablative dosing, but may achieve engraftment
with less toxicity. Regardless of the type of preparative regimen,
below are the components which constitute most modern
day therapies.

Total Body Irradiation (TBI)
One of the first modalities developed, TBI was the primary
modality utilized in early transplant studies in animals because
of its known immunosuppressive and myeloablative properties
(7, 8). Clinical experience in humans quickly raised awareness of
TBI’s effects on the lungs and strategies that fractionated doses
and shielded the lung fields led to improvements in survival (9).
TBI’s toxicity unfortunately does not spare any tissue, often
leading to irreversible damage to exposed organs making it less
attractive for non-malignant diseases. Subsequent investigations
have strived to reduce the dose and presumably the toxicity to
exposed organ systems because of its usefulness in overcoming
rejection particularly in mismatched donors. Long term studies
have failed to identify doses that are free of significant rates of
infertility, thyroid disease, and growth hormone deficiency
making the use of this modality problematic.

Cyclophosphamide
A well-established alkylating agent, cyclophosphamide has
maintained its role in HSCT due to its highly immunosuppressive
properties and the relative resistance of hematopoietic stem cells to
this agent even the highest doses (8, 10, 11). Recent studies have
utilized cyclophosphamide post graft infusion to improve the
outcomes of haploidentical transplant procedures (12–14). The
success of this strategy has probably entrenched this agent as a
major element of transplant therapy. Acute toxicities including
hemorrhagic cystitis, and cardiac toxicity have been reduced with
improved supportive care, with persistent long term toxicities that
include sterility and secondary malignancies.

Busulfan
One of the first agents to be utilized in non-TBI containing
preparative regimens, the establishment of pharmacokinetic
modeling to project optimal dosing for this drug has reduced
rejections and hepatotoxicity (8, 10, 11, 15). Seizures, a common
complication of this agent has been minimized with prophylactic
anti-epileptic drugs. Sinusoidal obstruction syndrome, (SOS)
continues to be a clinical problem, but pharmacokinetic dose
adjustments have reduced its risk.
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Treosulfan
A structural analog of busulfan, its use is increasing with its
potent immunosuppressive properties and favorable toxicity
profile (16–19). Future trials will determine whether it
supplants busulfan as a primary agent for preparative regimens.

Thiotepa
An alkylating agent, thiotepa has gained increasing popularity due
to its immunosuppressive effects and its ability to lower rejection
rates in reduced intensity preparative regimens (8, 20, 21). Its
toxicity profile is comparable to other alkylating agents although
it does have unique properties that lead to significant cutaneous
toxicity which is typically managed with supportive care.

Melphalan
Another popular alkylating agent, its use has increased over the
years as its toxicity is limited outside of the hematopoietic system
particularly at doses used in modern reduced intensity
regimens (22).

Etoposide
A phase specific, topoisomerase II inhibitor, etoposide has
continued to be a common component of modern day
preparative regimens due to its predictable toxicity profile and
its ability to be combined with alkylating agents without adding
excessive side effects (8). Most short term toxicities outside of
myelosuppression has been restricted to gastrointestinal and
dermatologic which can be typically managed, and severe liver
toxicity is observed only with high doses (23). Etoposide’s
association with an increased risk of secondary leukemia limits
its use and makes it a somewhat less attractive agent for
transplantation in non-malignant conditions.

Fludarabine
A purine analog, fludarabine’s popularity in its incorporation
into more modern day preparative regimens is due to its
relatively potent immunosuppressive properties without
significant organ toxicity (10, 11, 24). Early use of this agent
was associated with neurologic toxicity which has been overcome
with dosing adjustments. Its successful incorporation into several
reduced intensity preparative regimens for non-malignant
diseases would indicate that it will a remain central element in
HSCT for the foreseeable future.

Antibody Agents
Antibodies directed at the lymphoid compartment have an inherent
attractiveness due to their lack of toxicities on other organ systems (3).
Such agents can help overcome rejection. In addition, their typical
long half-life allows for its persistence in the recipient where it can
potentially impact GVHD, depleting T cells from the infused donor
product. Appropriate premedication can overcome most infusion
reactions. The greatest challenge is to tailor the dosing and schedule of
administration to minimize rejection yet avoid sustained suppression
of the T cell compartment that would lead to excessive opportunistic
infections. Although many agents have been utilized over the years,
only a few have maintained a stable presence in this field.
Frontiers in Immunology | www.frontiersin.org 3
Anti-Thymocyte Globulin (ATG)
Two sources of anti-thymocyte globulin encompass most of
its use: 1) ATGAM (horse polysera) 2. Thymoglobulin
(rabbit polysera). ATGAM has been utilized for many more
years than the rabbit formulation (25), but the latter is a
more potent agent (26, 27). Studies with ATGAM have
demonstrated that its use reduces the duration of other
immunosuppressive agents (28). Both have been shown to
improve engraftment rates when added to conventional
preparative regimens and given their retained presence in the
host, their use has reduced rates of both acute and chronic
GVHD to varying degrees (29–32).

Anti-T Lymphocytes Globulin (ATLG)
Anti-T lymphocytes globulin, derived from rabbit polysera from
immunization with a Jurkat T cell leukemia line, is also gaining
in popularity (27, 33, 34). Most trials comparing the efficacy
between ATG and ATLG have been performed in patients with
malignant disease where more effective lymphodepletion and
subsequent reductions in GVHD have been offset by increased
rates of relapse of the primary cancer (35). More robust trials in
non-malignant diseases are needed.

Alemtuzumab
A humanized monoclonal antibody against CD52, alemtuzumab
has been shown to target T and B cells, NK cells, and antigen-
presenting cells. It has been incorporated into several reduced
intensity preparative regimens and has been used successfully for
immunodeficiencies, hemophagocytic lymphohistiocytosis,
lysosomal storages disease, thalassemia and sickle cell disease.
Like other anti-lymphocyte products, it is associated with an
increased risk for infections (36). However, since it is a
monoclonal product, the clinical responses may be less variable
from patient to patient in comparison to the polyclonal products
listed above.

Co-Stimulation Blockade
Recent investigations have begun to examine T cell co-stimulation
blockade as an additional means of immunosuppression to both
reduce the risk of rejection and GVHD. Abatacept, a CTLA4-Ig
agents can block the CD28-CD80/86 interactions needed for T cell
activation has been incorporated into newer preparative regimens
(37). Preliminary studies have demonstrated low rates of GVHD
with an acceptable toxicity profile. Further trials are needed to
further define its role.

Agents Less Commonly Used in
Preparative Regimens for Non-Malignant
Disease
Other chemotherapy agents which were initially advanced into
preparative regimens have not sustained their presence in
modern day treatments for non-malignant diseases due to their
inherent toxicities and the lack of a need for their anti-neoplastic
activity. Platinum agents, other alkylating agents, anthracyclines,
are examples of agents that have not sustained their presence in
modern day regimens (8).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hayashi Preparative Regimens in Pediatric Transplantation
Strategies in Preparative Regimen
Selection for Non-Malignant Diseases
Lacking the necessity of eradicating malignant cells, the
transplant physician contemplating HSCT for a patient with a
non-malignant disease must take several considerations into
account which may or may not be specific to the patient’s
disease state. These include: 1) What are the specific
vulnerabilities of a particular disease population that lead to
transplant related complications from the preparative regimen
selection? 2) How has the patient’s primary disease and the
corresponding treatment to treat that disease impacted the
patient’s vital organs? 3) What are the barriers to achieve
engraftment which would guide minimizing the intensity of
the preparative regimen? 4.) What are other immunological
features beyond rejection that influence transplant outcome?
Thoughtful consideration for each of these variables will
optimize the course of the patient.

Specific Vulnerabilities of a Particular Disease
Population
The different diseases which are considered for HSCT have
different clinical phenotypes which are linked to problems,
some which are severe. Although a successful HSCT procedure
may ultimately alleviate the condition, specific elements of a
particular preparative regimen may exacerbate a patient’s clinical
condition to serious levels. An appreciation of the specific
vulnerabilities for a particular disease will provide insight for
thoughtful decision making to select a preparative regimen
(Table 1). Given the diversity of clinical difficulties that each
disease possesses and given the expected patient to patient
variability in clinical courses, having a transplant team with
sufficient experience for a particular disease will ensure optimal
management of the unique complications that a patient
may experience.

How Has the Patient’s Primary Disease and the
Corresponding Treatment to Treat That Disease Impacted
the Patient’s Vital Organs?
The natural history of a particular disease may lead to organ
compromise that may make the patient less tolerant to
preparative regimens with specific toxicities. For instance,
patients with leukodystrophies with substantial demyelination
of the CNS may not tolerate TBI or high doses of neurotoxic
chemotherapy such as busulfan (66, 67). A patient with sickle cell
disease who has acquired substantial renal injury may handle
agents cleared by the kidney poorly leading to heightened
toxicity (81, 82). Alternatively, a patient with an immune
compromised state such as chronic granulomatous disease may
have incomplete clearance of infections which may worsen and
progress once the full immunosuppressive effects of the
preparative regimen have taken hold (50, 51). Thus, not only
must the clinician be sufficiently familiar with the inherent
vulnerabilities of the patient’s disease state, but an evaluation
that sufficiently characterizes an individual’s susceptibilities to
the procedure is a critical facet of the process. Preparative
regimen selection and agent dosing may need to be
individualized for a patient to minimize the toxicities while
Frontiers in Immunology | www.frontiersin.org 4
still striving toward a successful procedure. A sensitivity to
these issues will minimize the transplant related morbidity and
mortality for the patient, who could otherwise survive for a
substantial number of years in the absence of the transplant procedure.

What Are the Barriers to Achieve Engraftment Which
Would Guide Minimizing the Intensity of the
Preparative Regimen?
The barriers to engraftment are primarily immunologic, with its
magnitude dictated by the patient’s underlying disease and past
treatment history (54, 57, 71). Certainly immunodeficiencies are
presumed to be less capable of rejecting infused grafts, but there
is wide variability in the immune competence between primary
diagnoses and even for patients with the same disease. This may
not necessarily be reflective in obvious differences in phenotype,
but it will manifest itself in rejection (43–45). There is a tendency
to provide as minimal intensity as possible for patients with
immunodeficiencies to try and reduce toxicities, particularly if
the patient presents with a preexisting infection. However,
rejections from an inadequate preparative regimen will
invariably lead to a need to repeated procedures of increasing
preparative regimen intensity to avoid another rejection. Such
escalation will invariably result in the accumulation of toxicities
potentially leading to an unsatisfactory result.

Other disease states that are amenable to HSCTmay in fact have
intact immune systems. In contrast to patients with malignancies in
which prior chemotherapy exposure may reduce the likelihood for
rejection, non-malignant diseases, such as lysosomal storage
diseases, leukodytrophies, and hemoglobinopathies may require
preparative regimens with substantial immunosuppressive
properties, perhaps even requiring fully myeloablative regimens
(20, 66, 71, 72, 82). Such transplant procedures will lead to more
severe long term toxicities.

Conditions of bone marrow failure further illustrate the
complexities of choosing the right preparative regimen. Aplastic
anemia, typically a disease of T cell mediated destruction of the
hematopoietic system, is a condition where prior blood product
exposure may sensitize the donor to an even greater risk of rejection
(55). Alternatively, other conditions such as Fanconi’s Anemia or
Dyskeratosis Congenita, possess difficulties in DNA repair with
intolerance to the even most modest doses of radiation or alkylating
agents (57–60, 64). Thus, even conditions of poor marrow function
present with a wide array of clinical challenges.

What Are Other Immunological Features Beyond Rejection
That Influence Transplant Outcome?
Beyond rejection, the immune system plays a central role in the
clinical course of the transplanted patient. The expansion of
alloreactive T cells will ultimately result in varying degrees of
GVHD, and will have a substantial impact on both long term
toxicity and treatment related mortality. Simultaneously, the
newly reconstituting immune system is striving to achieve a
protective state against infections, building new B and T cell
repertoires while priming to new antigens (38, 86–90). Further
complicating this process is the impact specific preparative
regimen agents may have on the newly emerging lymphocyte
population. Antibodies with specificity to different lymphocyte
October 2020 | Volume 11 | Article 567423
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TABLE 1 | Disease-specific vulnerabilities and the influence of preparative regimens on HSCT course.

Disease Specific vulnerabilities Impact of preparative
regimen toxicities

Agents to be used
with caution

Agents with less associated
toxicity

SCID (22, 38–42) Pre-existing infection Disruption of mucosal
barriers
Prolonged
myelosuppression/
immunosuppression
Pulmonary
toxicity/Pneumonitis

TBI,
High-dose busulfan,

Fludarabine
Dose adjusted busulfan
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Other immunodeficiencies (22, 43–49) Pre-existing infection
Autoimmune disease
Higher rates of rejection

Disruption of mucosal
barriers
Prolonged
Myelosuppression
/immunosuppression
Autoimmune cytopenias
Pulmonary
toxicity/Pneumonitis

TBI,
High-dose busulfan,

Fludarabine
Dose adjusted busulfan
Treosulfan
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Chronic granulomatous disease (21, 50–52) Chronic aspergillus
pneumonitis
Granulomatous lung
disease
Inflammatory bowel
disease
Anti-Kell
alloimmunization

Pulmonary
toxicity/Pneumonitis
Fungal sepsis.
Bowel injury

TBI
High-dose busulfan

Fludarabine
Dose adjusted busulfan
Treosulfan
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG

Aplastic Anemia (53–56) Blood product
sensitization
Iron overload
Chronic
neutropenia/infection

Mucositis
SOS
Hemorrhagic cystitis

TBI Cyclophosphamide
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Fanconi’s Anemia (57–63) Poor DNA repair
Endocrine deficiencies
MDS/AML

Mucositis
SOS
Pulmonary
toxicity/Pneumonitis
Renal insufficiency
Hemorrhagic cystitis

Radiation,
Alkylating agents

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
ATG

Inherited Bone Marrow Failure Syndromes, other
than Fanconi’s anemia (19, 64, 65)

DNA repair defects
(DKC)
Endocrinopathies
Chronic
neutropenia/infection

Severe mucosal injury
Pulmonary toxicity
SOS
Infection
Hemorrhage

TBI, high dose
Alkylating agents

Fludarabine
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Leukodystrophies (66–70) Leukoencephalopathy,
Adrenal insufficiency

Seizures, decline in
neurologic and cognitive
function,
Adrenal insufficiency
(ALD)
Swallowing difficulties,
Impaired ambulation

Radiation
High dose busulfan

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Hurler’s Disease (66, 71–73) Upper airway patency,
Heart failure

Mucositis,
Airway obstruction

Radiation Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Thalassemia (74–80) Iron overload Mucositis
SOS
Pulmonary
toxicity/Pneumonitis
Hemorrhage

Radiation
High-dose busulfan

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Treosulfan
Lymphocyte depleting antibodies
(ATG

Sickle cell anemia (81–85) History of
stroke/vasculopathy
Recurrent Chest
Syndrome/Pulmonary
compromise

Mucositis
Seizures
PRES
Renal injury

Radiation
High-dose busulfan

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

(Continued)
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populations (ATG, ATLG, alemtuzumab etc.) will linger in the
body many days after their infusion and impact not only the
infused lymphocyte populations of the graft but also the newly
emerging populations. The amount of antibody present as the
engrafting lymphocytes develop varies with the agent, dose
administered, and between patients. Thus, the transplant
physician must use information from past clinical trials in
selecting the appropriate regimen for an individual patient in
contrast to making empiric decisions. A reduced effect on the
emerging immune systemmay lead to extensive GVHD, while an
excessive one may lead to life threatening infections (91). The
inability to “fine tune” this effect is a limiting feature of the use of
antibody agents.

Thoughtful Use of Preparative Regimens in HSCT in Non-
Malignant Diseases
It is apparent from this review that many challenges confront the
clinician when choosing a preparative regimen for a transplant
candidate. Over the past several decades, investigators have
reported their successes and challenges exploring different
strategies (Table 2). It is apparent that virtually every element
Frontiers in Immunology | www.frontiersin.org 6
of the transplant course from rejection risk to overall survival
vary tremendously from report to report. Furthermore, variables
such as donor source, age of the patient, and disease status
prior to the transplant procedure can influence the transplant
outcome further obscuring the impact of the preparative
regimen. This variability is in part due to differences in
the condition of the patient population transplanted, the
agents used to formulate the preparative regimen, the graft
selection, (matched sibling, matched or mismatched unrelated
donor, cord blood, peripheral blood verses bone marrow), and
graft manipulation (T cell depletion) which will result in varying
outcomes. Furthermore, many reports merge outcomes of
several different preparative regimens or combine multiple
diseases together, sometimes making it impossible to link
specific outcomes from a preparative regimen to a specific
disease. Thus, comparisons between reports can be difficult.
Programs and groups that commit to a specific preparative
regimen “backbone,” and then refine elements from
this backbone in well-defined cohorts will provide the most
useful information on how to select a preparative regimen for
a patient.
TABLE 1 | Continued

Disease Specific vulnerabilities Impact of preparative
regimen toxicities

Agents to be used
with caution

Agents with less associated
toxicity

Renal insufficiency
Red cell
alloimmunization
October
ATG, anti thymocyte globulin; ALG, anti-lymphocyte globulin; PRES, posterior reversible leukoencephalopathy syndrome; SOS, inusoidal obstruction syndrome; TBI, total body irradiation.
TABLE 2 | Variation of HSCT outcomes.

Disease Successful Preparative
Regimens (#patients)

Graft Failure/
Rejection Rate

aGVHD cGVHD TRM EFS OS

SCID (22, 38–42) Range of Reported
Outcomes0,51,55-58

None (21) (92)
Bu/Cy (9) (93)
Flu/Mel (5) (94)
Bu/Cy/ATG (6) (95)
Bu/Flu/ATG
Treo/Flu
Treo/Cy

0–82%
42%*
11%
0%
0%

0–65%
38%
22%
60%
50%

0–39%
0%
22%
33.3%

-

0–24%
0%
33%
20%
33%

60–95%
95%
67%
80%
67%

67–84%
95%
67%
80%
67%

Other immunodeficiencies Range of Reported Outcomes
22,47,48,67-70

Bu/Cy (7) (93)
Alem/Treo/Flu (13) (48)
Treo/Flu/Thio/RTX/ATG (8) (48)
Alem/Flu/Mel (12) (46)
Flu/Mel/ALG (5) (22)
Bu/Cy/PTN
Bu/Cy/ATG
Bu/Flu/ATG
Treo/Flu/

0–66.7%
0%
0%

12.5%
66.7%
20%

17.4–
87.5%
57%
62%
87.5%

-
50%

0–20%
14.2%
0%
0%
-

20%

0–44%
14.2%
0%

12.5%
25%
20%

33–
100%
86%
100%
87.5%
33%
80%

62.5–
94%
86%
100%
87.5%
62.5%
80%

Chronic granulomatous disease (21, 50–52) Range of Reported
Outcomes9,34,35,63

0–20%
0%

4–60%
33%

0–20%
4.8%

0–40%
4.8%

80–91%
97.2%

60–100
97.2%

(Continued)
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TABLE 2 | Continued

Disease Successful Preparative
Regimens (#patients)

Graft Failure/
Rejection Rate

aGVHD cGVHD TRM EFS OS

Bu/Flu/ATG (96)
Bu/Flu/Alem (96)
Bu/Alem(5) (52)
Bu/Alem/LD TBI (33) (52)
Treo/Flu (5) (21)
Treo/Flu/Alem (22) (21)
Treo/Flu/Thio/ATG(5) (21)
Alem/Flu/Mel (4) (97)
Bu/Cy
Bu/Cy/ATG
Bu/Flu/Cy/ATG

9%
0%
12%
0%
13%
20%
25%

39%-
-
-

60%
40%
40%
50%

9%
-
-

20%
14%
0%
25%

6%
0%
3%
40%
4.5%
0%
0%

91%
100%
76%
60%
90%
80%
75%

91%
100%
85%
60%%
95%
100%
75%

Aplastic Anemia (53–56) Range of Reported Outcomes (7,
40, 41, 51)
Cy/ATG (33) (98)
Flu/Cy/ATG (28) (55)
Flu/Cy/ATG# (29) (55)
Alem/Flu/Mel (17) (99)
Bu/Cy
Bu/Cy/ATG
Cy
Cy/TBI

0–6%
6%
3.6%
3.4%
0%

8–37.5%
-

35.7%
37.5%
29%

6–
37.5%
35.7%
37.5%
35%

5.7–
32.1%
12%
32.1%
3.5%
12%

64.3–
93.1%
81%
64.3%
93.1%
88%

67.9–
96.6
89%
67.9%
96.6%
88%

Fanconi’s Anemia Range of Reported
Outcomes46,52,54,55,74,76

Cy (109) (62)
Cy/TAI/ATG (35) (58)
Bu/Flu/Cy/ATG (45) (100)
Flu/Cy/ATG (44) (60)

0–11%
4%
5.7%
2.2%
0%

6.7–23%
11%
23%
6.7%
27%

4–36%
5%
12%
6.7%
4%

5.7–
44%
12%
5.7%
17.8%
29.5%

70.5–
94%
88%
89%
77.8%
70.5%

53.6–
94%
88%
89%
80%
70.5%

Inherited Bone Marrow Failure Syndromes, other than
Fanconi’s anemia

Range of Reported Outcomes
19,53,77

Bu/Cy/ATG (101)
Treo/Flu/ATG (14) (19)
Alem/Flu/Mel (6) (102)
Alem/Flu/Mel (11) (103)
Bu/Flu/Mel
Mel/Flu/Cy
Flu/Cy
TBI/Mel/Cy

0–17%
10%
0
0%
9%

9–70%
70%
43%
33%
9%

10–
31%
10%
14%
16%
27%

7–33%
20%
7%
33%
18%

62–93%
70%
93%
67%
82%

63.3–
93%
80%
93%
67%
82%

Leukodystrophies Range of Reported Outcomes
38,39,78-80

Alem/Flu/Mel (7) (104)
Bu/Cy/ATG (12) (105)
Bu/Cy/ATG (27) (106)
Bu/Flu/Cy/ATG (4) (107)
Bu/Cy
Bu/Flu/ATG

0–12%
14.2%
9%

11.1%
0%

31–44%
71.4%
40%
40.7%
75%

10–
25.9%
0%
10%
25.9%

-

0–44%
14.2%
25%
25.9%
0%

48–
100%
85.7%
66.7%
66.7%
100%

52–
100%
85.7%
66.7%%
74.1%
100%

Hurler’s Disease (71–73) Range of Reported Outcomes
6,42,73

Bu/Cy (8) (108)
Bu/Cy/ATG (7) (109)
Bu/Cy/ATG (20) (21)
Bu/Flu/Mel/ATG (8) (110)
Alem/Flu/Mel (7) (104)

0–37.4%
12.5%
0%
15%
0%

14.2%

12.2–
16%
12.5%
28.6%
25%
25%
71.4%

0–
14.8%
0%
0%
10%
0%
-

0–
45.8%-
12.5%
0%
15%
0%

14.2%

41.2–
100%
75%
100%
85%
100%
85.7%

60.8–
100%
87.5%
100%
85%
100%
85.7%

Thalassemia (74–80) Range of Reported Outcomes 4-80

Bu/Cy/ATG(12) (76)
Bu/Flu/Cy/ATG (48) (75)
Thio/Treo/Flu/ATG (60) (77)
Thio/Treo/Flu (28) (76)
Bu/Flu/Thio (8)
Bu/Flu/Thio/Abet (24) (111)
Alem/Flu/Mel (9) (112)
Alem/Flu//Thio/Mel (33) (79)

0–16.7%
16.7%
0%
9%
7.1%
0%
0%
0%
3%

14–75%
16.7%
8.3%
14%
14.3%
75%
16.7%

-
33%

2–40%
16.7%
8.3
2%
10%
25%
25%
-

21%

0–
37.5%
0%
0%
7%

21.4%
37.5%
0%
0%
18%

62.5–
100%
83%
100%
84%
71.4%
62.5%
100%
100%
64%

62.5–
100%
100%
100%
93%
78.5%
62.5%
100
100%
82%

(Continued)
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Considerations of the vulnerabilities of the primary disease,
the clinical status of the individualized patient, the essential needs
of overcoming rejection yet temporizing GVHD and life
threatening infections must all be weighed in making the
appropriate decision for the patient. Unfortunately, despite over
three decades of experience, there is no “formula” that can be
utilized to assemble a combination of agents that will give a
predictable outcome fulfilling the needs of both the clinician and
the patient. Large scale studies with detailed reports of outcomes
and toxicities provide our only resource to guide the clinician to
Frontiers in Immunology | www.frontiersin.org 8
make thoughtful decisions for their patient. Further research with
well-designed clinical trials with full characterization of outcomes
are needed to enhance our understanding of this topic.
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