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Clotting and inflammation are effective danger response patterns positively selected by

evolution to limit fatal bleeding and pathogen invasion upon traumatic injuries. As a

trade-off, thrombotic, and thromboembolic events complicate severe forms of infectious

and non-infectious states of acute and chronic inflammation, i.e., immunothrombosis.

Factors linked to thrombosis and inflammation include mediators released by

platelet granules, complement, and lipid mediators and certain integrins. Extracellular

deoxyribonucleic acid (DNA) was a previously unrecognized cellular component in the

blood, which elicits profound proinflammatory and prothrombotic effects. Pathogens

trigger the release of extracellular DNA together with other pathogen-associated

molecular patterns. Dying cells in the inflamed or infected tissue release extracellular

DNA together with other danger associated molecular pattern (DAMPs). Neutrophils

release DNA by forming neutrophil extracellular traps (NETs) during infection, trauma or

other forms of vascular injury. Fluorescence tissue imaging localized extracellular DNA to

sites of injury and to intravascular thrombi. Functional studies using deoxyribonuclease

(DNase)-deficient mouse strains or recombinant DNase show that extracellular DNA

contributes to the process of immunothrombosis. Here, we review rodent models of

immunothrombosis and the evolving evidence for extracellular DNA as a driver of

immunothrombosis and discuss challenges and prospects for extracellular DNA as a

potential therapeutic target.
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INTRODUCTION

Evolution positively selected four major danger response programs, i.e., inflammation, clotting,
epithelial healing, and mesenchymal healing because they assure survival upon traumatic injury
(1). Blood clotting and inflammation are early responses that immediately create barriers. Clotting
creates an inside-out barrier for blood loss and clotting and inflammation both create an outside-in
barrier for pathogen entry. Balanced clotting can prevent fatal bleeding and balanced inflammation
can prevent fatal sepsis. However, trade-offs exist and largely contribute to prevalent disease
pathomechanisms in clinical medicine (2). Thrombotic and thromboembolic events are important
complications in severe forms of infectious and non-infectious states of acute and chronic
inflammation, i.e., immunothrombosis (3). Proinflammatory mediators released from platelets,
complement, and lipid mediators link clotting and inflammation as do certain integrins, and
neutrophil extracellular traps (NETs).

As a novel entry, extracellular deoxyribonucleic acid (DNA) can elicit profound
proinflammatory and pro-thrombotic effects in the extracellular space (4). Pathogens release
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DNA together with other pathogen-associated molecular
patterns (PAMPs). Dying parenchymal cells release extracellular
DNA together with other danger- or damage-associated
molecular patterns (DAMPs) and neutrophils release DNA
by forming neutrophil extracellular traps (NETs) during
infection, trauma or other forms of vascular injury (5–
7). Extracellular DNA localizes to the sites of injury and
experimental studies employing deoxyribonuclease (DNase)-
deficient mouse strains or recombinant DNase demonstrate
a functional contribution of this extracellular DNA to the
development of immunothrombosis.

In this review, we summarize basic knowledge about
the process of immunothrombosis, and discuss the role of
extracellular DNA as a modulator of thrombosis in the
arterial and venous segments of the vasculature. Furthermore,
we describe several mouse models to study the process of
immunothrombosis in different disease settings.

Experimental Models of Venous
Thrombosis
Venous thrombosis is a common clinical health care problem
and causes congestion and pain when affecting the deep veins
of the limbs or acute thoracic pain, dyspnea, and shock when
affecting the pulmonary arteries. Pulmonary embolism is a severe
life-threatening complication of deep vein thrombosis. Venous
thrombosis frequently develops in the perianal venous plexus
region and usually presents as painful swelling at the site of the
blood clot. The most popular rodent model of venous thrombosis
is obstruction of the inferior vena cava via a surgical intervention,
which generates clots of sufficient size for measuring clot weight
and for histopathological characterization of the clot material (8).
Here, we introduce several types of venous thrombosis models
which are studied in mice (Table 1).

Inferior Vena Cava Stasis Occlusion Model
The stasis occlusion variant is a model of permanent inferior vena
cava (IVC) ligation, mimicking the clinical condition of complete
vascular occlusion. Technically, the IVC and all collateral side
branches distal to the left renal vein are ligated. Thrombus
formation in this model involves venous stasis and local release
of tissue factor (TF) with augmented coagulation inside the IVC
(9, 80). The advantages of this model are its low mortality,
high frequency of thrombus generation, and highly consistent
thrombus sizes (10, 11). Ultrasound can sequentially monitor
thrombus progression and to select an optimal time point for
harvesting the thrombus. This model has proven valuable to
study the interactions between the venous wall and thrombus
progression from acute (first 2–3 days) to chronic inflammation
as well as to study the subsequent remodeling of the venous wall
(12, 13). As a relevant discrepancy to most venous thromboses
in human, blood flow does not establish. Peternel et al. used
the stasis occlusion model in rats and found it well-suited for
evaluating antithrombotic therapies (14).

Inferior Vena Cava Stenosis Model
Partially reducing rather than completely blocking venous blood
flow is more similar to the process of venous thrombus in

humans. Technically, this implies only partial ligation of side
branches of the IVC and using a wire as a spacer during IVC
ligation that, once removed, maintains a small lumen with a
residual flow avoiding endothelial cell damage (15–21). These
subtle modifications mimic a residual flow that is typical for
human venous thrombosis and critical for its pathophysiology.
As a disadvantage, the thrombus formed in the IVC is generally
smaller and the size is more variable (22). This model allows us
to better study early thrombotic events (16).

Electrolytic Inferior Vena Cava Thrombosis Model
Cooley et al. first described thrombus induction by electrical
injury to the common femoral vein of mice (23, 24). Diaz et al.
modified the protocol by applying a constant current to a copper
wire inserted into the IVC. The electrical current induces free
radicals inside the wire, which subsequently activate endothelial
cells with minor cell damage (25–27). A thrombus develops
quickly in the direction of the blood flow and thrombus sizes are
highly consistent. This venous thrombosis model is used to study
pro-thrombotic, anti-thrombotic, and thrombolytic therapies
(28–30). Moreover, this model canmimic the early and late stages
of venous thrombosis. Disadvantages include long procedure
time and potential venous wall injury.

Ferric Chloride (FeCl3) Inferior Vena Cava Thrombosis

Model
Local application of FeCl3 solution causes oxidative damage to
the surface of the exposed venous wall followed by thrombus
formation (31, 32). To achieve this, a small piece of filter paper
soaked with a defined concentration of FeCl3 solution is applied
to the IVC for 3min (33). As toxin exposure allows only a short
observation period, thrombus size is usually small with little
thrombus material for evaluation. Gustafsson et al. combined
FeCl3-induced vessel injury with IVC stenosis in rats to obtain
a larger thrombus size (34).

Recurrent Inferior Vena Cava Thrombosis Model
Patients with deep vein thrombosis face a high risk of post-
thrombotic syndrome and 30% experience recurrent thrombosis
with 45% occurring in the ipsilateral leg within the following 10
years. Attempts to model recurrent thrombosis employ first the
electrolytic method and 21 days later a secondary thrombus is
induced using either a second electric insult or a ligature-based
method. At the time of the second intervention, the primary
thrombus has been incorporated into the venous wall, and the
lumen has recovered. This clinically more relevant model has
proven valuable to study the biology of recurrent deep vein
thrombosis (35).

Experimental Models of Arterial
Thrombosis
Arterial thrombosis is followed by territorial ischemia and
infarcts during spontaneous rupture of atherosclerotic plaques,
or in patients with an anti-phospholipid syndrome or with
trauma. Arterial thrombosis is the central pathologic mechanism
contributing to myocardial infarction and ischemic stroke (81).
It is a major health concern in terms of cardiovascular morbidity
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TABLE 1 | Animal models of immunothrombosis.

Model Strengths Weaknesses References

Venous thrombosis

IVC ligation model (stasis

model)

Thrombus size is highly consistent. It completely blocks blood flow. (9–15)

IVC stenosis model Thrombus reduces blood flow, endothelial cell damage. Thrombus formation is strain-dependent, clamp relevant

injury is unclear.

(16–22)

Modified IVC stenosis

model

Thrombus reduces blood flow, no endothelial cells damage. Variable in thrombus incidence and size. (16–22)

Electrolytic IVC model

(EIM)

Thrombus size is highly consistent, with no endothelial cells

damage.

Long operation time. (23–30)

FeCl3 IVC model Produces thrombus within minutes, thrombus size is

time-dependent.

Transmural vein wall injury, the thrombus is small, only be

used to study early time points.

(31–34)

Recurrent IVC model Most clinically relevant. Twice surgeries on the same mouse. (35)

Arterial thrombosis

Photothrombotic model Localize the ischemic lesion, minimal variation in infarction,

low mortality and invasiveness, highly reproducible.

The translational impact is poor. (36–47)

Thromboembolic clot

models

Any kind of embolus-like material can be used, perfectly

matches human embolic stroke.

High variability in infarct size, embolic material not lysisable,

high price.

(48–52)

Microsphere/macrosphere

model

Infarcts with penumbras, induce ischemic cell death and

inflammation. Occlusion can be postponed.

Permanent ischemia, multiple vessels occluded, blood flow

redistribution, immediate disruption of the blood-brain barrier

and vasogenic edema.

(53–55)

Cholesterol clot model Cholesterol crystal triggers clots formation, appropriate for

thrombolytic agent study, low mortality, low invasiveness,

highly reproducible.

Requires a high degree of surgical skill, the high variability of

infarct size, localized ischemic region.

(56)

Thrombotic microangiopathy

Acquired TTP model A simple approach leads to salient features of TTP. It requires rabbit or mouse antibodies. (57–61)

Hereditary TTP model Spontaneous thrombocytopenia High mortality. (61)

HIT/T model Severe thrombocytopenia, allowing pre-clinical studies. Needs high doses of heparin, Four factors (Heparin, hPF4,

FcγRIIA, and anti-heparin/hPF4 antibodies) are present

simultaneously.

(62–65)

Disseminated intravascular coagulation (DIC)

Sepsis-related DIC model Inducible DIC with multiple organ failure, suitable for

candidate drugs testing.

Mice are relatively resistant to endotoxin. Needs more than

bolus injection.

(66–74)

CLP-related DIC model Inducible DIC with multiple organ failure. Technically easy,

reproducible and similar to human disease.

High mortality and variability. (75–79)

IVC, inferior vena cava; TTP, thrombotic thrombocytopenic purpura; HIT/T, heparin-induced thrombocytopenia/thrombosis; CLP, cecal ligation and puncture.

and mortality and has become an attractive drug target for the
treatment of these diseases. A variety of reproducible animal
models have been developed to investigate the pathomechanisms
of arterial thrombosis (Table 1).

Photothrombosis Model of Cerebral Stroke
The photothrombotic model uses a photosensitive dye (e.g., Rose
Bengal) that after injection responds to illumination across the
intact or thinned skull with laser light of a specific wavelength
(36, 37). Light exposure induces the formation of oxygen and
superoxide radicals damaging surrounding endothelial cell
membranes. Endothelial damage promotes local activation
and aggregation of platelets. As a consequence, platelet-rich
thrombi occluding cerebral microvessels, and causing cortical
ischemic infarcts. The photothrombotic stroke model involves
the neuroplasticity of perilesional and contralesional brain
tissues (38, 39). Modifications of the classical photothrombotic
stroke model mimic also a perilesional penumbra. A ring filter

model produces a central area of brain injury surrounded
by tissue without thrombosis (40), but whether this model
sufficiently reflects the penumbra in a human disease context
is still under discussion (41). Other modifications include the
targeting of individual brain arterioles or implantable optical
fibers to produce small subcortical infarcts (42, 43), which
surround areas of hypoperfusion with characteristics resembling
an inverted penumbra (40). The photothrombotic stroke model
allows real-time analysis of many parameters in freely moving
rats and mice with acute stroke without the need for anesthesia
(44, 45). The activating light can be placed into the specific
cortical region of the desired brain area. Using this in vivomodel,
highly reproducible infarct size and low mortality are suitable
to study repair mechanisms of the brain and related long-
term functional outcomes (46, 47). Since microvascular clots
are unusually platelet-rich recombinant tissue plasminogen
activator (t-PA) can resolve such clots to a limited
extent (42).
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Thromboembolic Stroke Model
This model is frequently referred to study human
thromboembolic stroke, injecting thrombus-like materials
into the cerebral vessels, and the internal carotid artery (48, 49).
Depending on the size and amount of the injected material, this
model is characterized by leading to one or multiple arterial
occlusions followed by ischemic infarcts in the respective
territory. Compared to models of middle cerebral artery
occlusion (MCAO), cerebral thromboembolism models-induced
brain infarcts are surrounded by a well-defined penumbra but
infarct sizes are more variable. This model is suitable to study the
pathomechanisms of arterial immunothrombosis and the effects
of thrombolytic drugs in this process (50, 51). However, the
emitting source of the embolus is still not part of this model (52).

Microsphere/Macrosphere Embolic Stroke Model
Embolic stroke can also be induced by injection of synthetic
large-sized macrospheres (diameter between 300 and 400µm)
or small-sized microspheres (diameter between 20 and 50µm)
into the cerebral artery.Many differentmaterials, such as silicone,
collagen, and titanium dioxide have been used to induce embolic
stroke in vivo (53). This model has been characterized by
permanent ischemia as the fibrinolytic system cannot dissolve
such spheres. Microspheres cause multifocal and heterogeneous
small infarcts due to microembolization into multiple arteries
(54). Unlike thrombus formation, microspheres block blood
vessels suddenly, leading to a rapidly developing edema and
redistribution of blood flow (55). Although the macrosphere
model induces similar infarct development to the ligation
models, it does not allow to study the effect of thrombolytic drugs.

Cholesterol Embolism Model
We recently developed a model of cholesterol embolism by
injecting cholesterol crystals into the left renal artery of mice (56).
According to the size and number of cholesterol crystals, intra-
arterial injection leads to multiple microvascular thrombotic
occlusions followed by ischemic territorial infarcts. Interestingly,
these occlusions are sensitive to thrombolytic therapy preventing
tissue infarction and kidney failure. However, it does not
appear to be the crystals themselves but rather the blood clots
surrounding the crystals that cause vascular obstruction, tissue
ischemia, and organ failure (56). As a disadvantage, infarct size
is highly variable in this model but the degree of organ failure
tightly correlates with the injected crystal dose.

Experimental Models of Thrombotic
Microangiopathy
Thrombotic microangiopathies (TMAs) are heterogeneous
disorders characterized by thrombocytopenia, microangiopathic
hemolytic anemia, renal failure, and neurological symptoms
(82). Complex histopathological features have been detected
in TMAs, including thrombosis in arterioles and capillaries
with abnormalities in the endothelium and vessel wall [Table 1;
(83)]. TMAs can result from having numerous different
pathophysiological mechanisms resulting in a spectrum of
distinct but frequently overlapping clinical presentations, as
discussed in detail elsewhere (84). An important element is

genetic and acquired complement system alterations that either
alone or in combination with other triggers cause TMA. Such
triggers of uncontrolled complement activation at the endothelial
interface include infections, bacterial toxins, certain drugs, and
malignancies. Placental as well as maternal factors can trigger
TMA during pregnancy that can present with different clinical
features referred to by a traditional nomenclature, i.e., (pre-)
eclampsia or hemolysis-elevated liver enzymes and low platelet
count (HELLP) syndrome. Another entity relates to the von
Willebrand factor (vWF) cleaving protease disintegrin and
metalloproteinase with a thrombospondin type 1 motif, member
13 (ADAMTS13)-induced damages. Given this complexity of
disease pathomechanisms, animal models of TMA can mimic
only selective scenarios of the broad clinical spectrum of TMA.
Some are presented here.

Thrombotic Thrombocytopenic Purpura (TTP) Models
TTP develops from absence or inactivation of the ADAMTS13,
leading to the accumulation of vWF multimers and the
formation of microvascular thrombi with ischemic end-organ
damage (57, 82). Two important mouse models have been
developed to study the ADAMTS13 function in vivo. The TTP-
ADAMTS13 proteolytic activity inhibition model is based on
the administration of human anti-ADAMTS13 recombinant
single-chain variable region antibody fragments (scFv’s), which
inhibits the enzymatic activity of ADAMTS13 in mice (58, 59).
This in vivo treatment leads to persisted ADAMTS13 deficiency
for over 2 weeks and the formation of microvascular thrombi
(58, 60). Administration of Shiga toxin-2 to these mice results
in lethal TMA affecting the brain, heart, and kidney (61). In
anothermousemodel, ADAMTS13-deficientmice are challenged
with a second hit to develop TTP, e.g., the infusion of Shiga
toxin causes a syndrome closely resembling human TTP with
widespread vWF-rich and fibrin-poor hyaline thrombi in the
microvasculature of multiple organs (62).

Heparin-Induced Thrombocytopenia (HIT) and

Thrombosis
Heparin can trigger an immune-mediated thrombocytopenic
disorder characterized by venous and arterial thrombus
formation via antibodies against complexes of human
platelet factor 4 (PF4) and heparin (63, 64). Heparin-induced
thrombocytopenia in mice requires transgenic expression of
human PF4 and a lack of the genetic equivalent of human Fc
gamma receptor IIA (FcRIIA). As a third requirement, mice
are injected with anti-heparin-PF4 immunoglobulin (IgG) and
heparin (64, 65, 85). Although this combination of causal factors
is not identical to the clinical scenario in patients, the mouse
model is suitable to study HIT. Also, in some cases, lethal
TTP with disseminated arterial and venous thrombi have been
described in mouse models of HIT.

Disseminated Intravascular Coagulation (DIC) Model
Thrombocytopenia is frequently observed in septic patients who
have a systemic activation of immunothrombotic mechanisms
(66, 86, 87). Several important models have been developed to
study the pathology of DIC in mice. In the endotoxemia model,
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injection of lipopolysaccharide (LPS), zymosan or E. coli bacteria
in mice initiates an overwhelming activation of innate immunity
and procoagulant pathways that can lead to DIC with multiple
organ dysfunction (67–70). Pathophysiological characteristics of
this treatment are reduced platelet count, prolonged bleeding
time, decreased plasma fibrinogen levels, and increased plasma
D-dimer levels (71–73). This model is often used for the testing
of drug candidates (74, 75).

Caecal Ligation and Puncture Model
This represents the gold standard for research on polymicrobial
sepsis (76, 77). It consists of DIC-like microvascular thrombosis
and multiple organ failure representing an irreversible stage of
sepsis (78, 79).

Cellular Components and Molecular
Mechanisms of Immunothrombosis
Platelets
Studies using mouse models of sepsis revealed the accumulation
of platelets in the microvasculature. Indeed, LPS injection
resulted in thrombocytopenia in mice, the accumulation of
platelets was found in the lung and liver. Several Toll-
like receptors (TLRs) were identified in human and mouse
platelets to bind a major component of the wall of gram-
negative microorganisms (LPS), transmitting signals between
platelets and the innate immune system, thereby inducing
inflammatory responses. TLR-2 and−4 on human and mouse
platelets bind LPS and increase nitric oxide and cyclic
guanosine monophosphate (GMP) levels, and activate protein
kinase G (88). TLR4 activates the nuclear factor-κB (NF-κB)
and the mitogen-activated protein (MAP) kinases increasing
interleukin6 (IL-6), cyclooxygenase (COX-2), and prostaglandin
E2 (PGE2) production (89). Platelet TLR-1- and−4 are
involved in the development of microvascular thrombosis
and sepsis-induced intravascular coagulation by triggering
platelet degranulation, which releases proinflammatory cytokines
from alpha (α)-granules and promotes platelet-neutrophil
interaction (Figure 1). Several other isoforms of TLRs have
been studied in human and mouse platelets, connecting TLR
signaling to pathogenesis of virus-induced thrombocytopenia,
and intravascular coagulation. Platelet glycoprotein (GP) Ib and
αIIbβ3 integrins are involved in this process, together with an
extracellular matrix bridge formed by vWF and fibrinogen. It has
been shown that collagen-mediated-activation of GPVI signaling
in platelets plays an important role in platelet adhesion onto
the inflamed endothelium (90). Altogether, these results suggest
that platelets can distinguish between cellular immunity and
hemostasis using a combination of different platelet TLRs and,
depending on the ligand binding of the pathogens, platelet TLRs
can transduce effector signals to immune cells.

Endothelial Injury, TF, and Thrombus Formation
In the inflamed vessel wall, endothelial cells start to expose
TF and extracellular matrix molecules at the luminal surface,
which induces functional crosstalk between platelets, immune
cells and activates the coagulation cascade. Platelets and
neutrophils are the first blood cells adhering to the luminal

endothelial surface of the inflamed vessel wall. Platelet GPIb
binds vWF, GPVI binds collagen, laminin, and fibrin (91,
92). Besides these interactions, α2β1 integrin and GPV bind
collagen, and α6β1 interacts with laminin during thrombus
formation (93, 94). Thrombus growth involves additional
platelet recruitment, thereby accelerating the coagulation cascade
and the immune response, which stabilizes the growing
thrombus on the endothelium surface (Figure 1). Thrombin
generation amplifies platelet granule secretion priming the innate
immune system. Granule-resident factors released by platelets
have diverse effects on the innate immune system, including
monocyte cell differentiation (95), neutrophil cell migration
(96), phagocytosis, and cytokine responses. For example, platelet
granules contain second wave mediators [adenosine triphosphate
(ATP) and serotonin], plasma factors, TFs, fibrinogen, and (pro)-
inflammatory cytokines, and chemokines. Platelet serotonin
released from delta (δ)-granules could significantly increase
neutrophil accumulation and extravasation during inflammation
(97). Platelet inflammatory cytokines interleukin-1 (IL-1),
regulated upon Activation, Normal T Cell Expressed and
Presumably Secreted (RANTES), platelet-derived growth factor
(PDGF), transforming growth factor-β (TGFβ), and epidermal
growth factor (EGF) enhance local inflammatory responses
and supported by platelet chemokines, such as chemokine (C-
C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand
4 (CXCL4), and 7 (CXCL7) that activate monocytes and
neutrophils. Interestingly, monocytes express TF in certain
pathological conditions (98, 99), connecting the innate immune
system to the coagulation cascade. In addition, microparticles
released by monocytes bind the platelet surface to accumulate
TFs and to promote coagulation (100).

Platelet-Immune Cell Interactions
Platelet attachment to the inflamed vessel walls is supported
by the interaction between platelets and extracellular matrix
components, thereby promoting the interaction of platelets with
immune cells and endothelial cells. Indeed, the interaction of
surface receptors of activated immune cells and platelets strongly
influences innate immune responses. It has been shown that
liver-resident macrophages (Kupffer cells) can interact with
platelets via platelet GPIb receptor and the exposed vWF on
the Kupffer cell surface, e.g., during bacterial infection-induced
immunothrombosis (101). Such platelet-immune cell conjugates
correlate to the severity of sepsis (102). Although the detected
lifetime of this conjugates in the peripheral blood is very short,
this interaction activates integrins and induces granule secretion.
Platelet-neutrophil adhesion to the endothelium involves the
interaction between neutrophil P-selectin glycoprotein ligand-
1 (PSGL-1) and αMβ2 integrin to platelet P-selectin and GPIb,
respectively. Neutrophil macrophage antigen 1 (Mac-1) also
binds platelet GPIb and αIIbβ3 integrin in the presence of
fibrinogen, inducing exposure of proinflammatory chemokines
CXCL4 and CCL5 (103). P-selectin and PSGL-1 interactions
also contribute to the formation of platelet-monocyte conjugates
resulting in monocyte activation. Also, monocyte-resident Mac-
1 receptor and platelet adhesion receptors GPIb, junction
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FIGURE 1 | Central paradigms of immunothrombosis. Damaged vessel walls and injured endothelial cells release tissue factor (TF) and extracellular matrix molecules,

inducing functional crosstalk between platelets and leading to platelet aggregation. Activated platelets promote thrombin formation thereby enhancing platelet

degranulation and fibrin formation. Activated platelets release proinflammatory cytokines from α-granules, which promotes platelet-neutrophil interaction and triggers

the release of the NETs. vWF, von Willebrand Factor; GPIb, glycoprotein Ib; GPVI, glycoprotein VI; TLR, toll-like receptor; LPS, lipopolysaccharides; NO, nitric oxide;

GMP, guanosine monophosphate; NF-κβ, nuclear factor-κ beta; IL-6, interleukin 6; MPO, myeloperoxidase; NETs, neutrophil extracellular traps; MAC-1, macrophage

antigen 1.

adhesion molecule 3 (JAM3), or αIIbβ3 integrin form transient
interactions (104).

Platelets and NET Formation
Electron micrographs showed adhesion and aggregation of
activated platelet within a fibrous meshwork of NETs (105).
In addition, platelet aggregation accurred in a time-dependent
manner, and DNase treatment simultaneously cleared NETs and
platelets (105). The release of NET into the circulation is followed
by platelet adhesion and aggregation, which together with
histones released from NETs promote thrombus formation and
growth (4). The NET release was observed also in non-infectious
inflammatory conditions, such as venous-, microvascular-,
and cancer-related thrombosis, acute lung injury, endothelial
damage with trauma, autoimmune diseases, preeclampsia, and
systemic lupus erythematosus (106). Interestingly, the structure
of thrombi in the presence of NETs is more rigid and
less permeable. In a mouse model of sepsis, TLR2, and
TLR4 on the surface of platelets in liver sinusoids and lung
capillaries contribute to platelet-neutrophil interaction and NET
formation (107). In addition, synchronized activation of surface
integrins and chemokine receptors induce NET formation (108).
Thromboxane A2 (TxA2)-released from activated platelets can

also amplify NET formation and this process is inhibited by
aspirin (109).

Coagulation
The blood coagulation cascade operates in three steps:
(i) formation of prothrombin activator, (ii) conversion of
prothrombin to thrombin, and (iii) conversion of fibrinogen to
fibrin (Figure 1). The first step involves the intrinsic coagulation
pathways. The intrinsic pathway is activated by exposure of
endothelial collagen and the extrinsic pathway is activated
through TF released by injured endothelial cells. The following
two steps encase platelet aggregates and red blood cells into
a fibrin network and attach it to the damaged endothelium.
At sites of the damaged vessel wall, platelet activation and
degranulation convert inactive IL-1 to the active form by
thrombin cleavage, thereby connecting the coagulation system
to immunothrombosis. NET release influences the coagulation
cascade by activating coagulation factor XII (FXII), inactivating
anticoagulant tissue factor pathway inhibitor (TFPI), and
by providing an active surface for platelet adhesion and
aggregation. All of these mechanisms lead to the inhibition of
fibrinolytic activity, thereby promoting thrombus formation
and growth.
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TABLE 2 | Experimental evidence for the role of extracellular DNA in immunothrombosis.

Model Type of evidence References

Venous thrombosis IVC model, ecDNA were present in thrombosis, DNase degrades ecDNA, breaks down

NETs, reduces thrombus size.

(16, 114, 115)

Acute limb IRI model, DNase I reduced DNA traps, inflammation,

Thrombin-Anti-Thrombin-III expression, and enhanced post-ischemic hind limb perfusion.

(116)

Ex vivo, DNA-histones complexes improved stability and rigidity of thrombus, and DNase

promotes clot lysis.

(117)

Arterial thrombosis Murine models of atherosclerosis, DNase I reduced atherosclerosis burden. (118)

Ischemic stroke model, circulating nucleosomes and DNA was increased after ischemic

stroke. DNase I reduced infarct size and improved stroke outcome.

(119)

Cholesterol clot model, ecDNA were presented in crystal clots, DNase prevented clots

formation, reduced organ infarction.

(56)

Thrombi collected from stroke patients, neutrophils were abundant in all thrombi, and

NETs contributed to the composition of all thrombi especially in their outer layers.

(120, 121)

Thrombotic microangiopathies

syndromes

HIT/T model, thrombi including neutrophils, extracellular DNA. While neutrophil depletion

abolishes thrombus formation, DNase treatment limited venous thrombus size.

(122, 123)

Sepsis-induced DIC in the murine model, ecDNA were presented in thrombus, the blood

vessel of lung occluded in DNase deficient mice, DNase treatment prevented NETs clot.

Time-dependent increase of cfDNA, later administration of DNase reduced cfDNA,

inflammation, and suppressed organ damage.

(124, 125)

In a murine CLP model, later administration of DNase 4 or 6 h after CLP resulted in

reduced cell-free DNA, inflammation, prevented organ damage, and improved survival.

(126)

In acute TMA patients, levels of DNase activity of plasma showed a significant reduction in

compared with healthy controls, plasma-mediated degradation of NETs is reduced in

patients with acute TMA.

(127)

IVC, inferior vena cava; ecDNA, extracellular DNA; cfDNA, cell-free DNA; NET, neutrophil extracellular trap; HIT/T, heparin-induced thrombocytopenia/thrombosis; CLP, cecal ligation

and puncture.

PRO-THROMBOTIC
DANGER-ASSOCIATED MOLECULAR
PATTERNS (DAMPs): THE ROLE OF
EXTRACELLULAR DNA IN
IMMUNOTHROMBOSIS

Among the mediators released from injured cells, extracellular
DNA acts as pro-thrombotic DAMP (110–112). Released
chromatin forms similar functional structures as the fibrin
network to trap red blood cells, platelets, and coagulation
factors including TF and fibrin (113). Here, we discuss some
experimental pieces of evidence derived from studies on venous,
arterial and microvascular thrombosis, and ischemic stroke
(Table 2).

Contribution of Extracellular DNA to
Venous Thrombosis
Several animal models established the role of extracellular
DNA in venous thrombosis (Table 2). Ligation of the IVC
in mice can increase plasma levels of extracellular DNA
during several days (114). Immunofluorescence studies revealed
colocalization of extracellular DNA with histones and vWF in
the thrombus. DNase I administration protected mice from
thrombosis at 6 h and 48 h in this model, indicating that the
extracellular DNA itself is a critical component of fibrin-rich
thrombi. Several experimental studies confirmed the presence of
extracellular DNA in venous thrombi induced by the restriction
of blood flow (16, 114, 115). In a mouse model of acute limb

ischemia-reperfusion injury, DNase I treatment significantly
reduced the presence of extracellular DNA traps, immune
cell infiltration, thrombin-anti-thrombin-III generation, and
enhanced post-ischemic hind limb perfusion. Interestingly,
neutrophil depletion resulted only in a small reduction in DNA
traps without inducing any skeletal muscle injury, or hind limb
perfusion (116). Indeed, ex vivo experiments showed that DNA-
histone complexes stabilized the fibrin network resulting in a
higher rigidity of an artificial thrombus that was resistant to t-PA.
In contrast, adding DNase I promoted clot lysis in combination
with t-PA (117). Thus, evolving data in a set of different
models of venous thrombosis consistently demonstrated a role
of extracellular DNA in venous thrombosis.

Contribution of Extracellular DNA to
Arterial Thrombosis
Numerous studies on animal models suggested the role of
extracellular DNA in arterial thrombosis. In murine models of
atherosclerosis, DNase I treatment resulted in a reduced burden
of atherosclerosis (118). Recently, we showed that in a murine
model of cholesterol embolism, extracellular DNA can be a non-
redundant component of crystal clots forming within a few hours
upon embolization and vascular occlusion. Similar to the platelet
purinergic receptor P2Y12 antagonism with clopidogrel, DNase
I treatment significantly reduced the numbers of obstructed
arteries, decreased ischemic-related organ failure, and tissue
infarction (56). In addition, preincubation of washed platelets
with DNAse I inhibited platelet activation, P-selectin exposure,
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and aggregation response to a collagen-related peptide (CRP) and
thrombin. Furthermore, treatment with DNAse I inhibits ATP
release and the formation of a fibrin network.

Contribution of Extracellular DNA in
Ischemic Stroke
In stroke patients, extracellular DNA components have been
also observed in ischemic brain tissues, possibly contributing
to stroke development. In support of this, histological analysis
of thrombi collected from stroke patients revealed that a large
number of nucleated leukocytes presented in all thrombosis
specimens, neutrophils were abundant in all observed thrombi,
and NETs were found in all thrombi, in particular in their
outer layers (119, 120). In a murine model of transient middle
cerebral artery occlusion (tMCAO), increased levels of circulating
nucleosomes and DNA were found after ischemic stroke. Under
hypoxic conditions, an increased level of extracellular chromatin
was detected. Moreover, targeting extracellular chromatin
components with DNase I improved stroke outcome (121).
Strikingly, adding DNase I to t-PA significantly accelerated the
ex vivo lysis of thrombi compared to t-PA alone (119, 120).

Contribution of Extracellular DNA to
Thrombus Formation in the
Microvasculature
Recent experimental evidence suggests that extracellular DNA
plays an important role in DIC-related organ dysfunction,
probably caused by elevated levels of circulating thrombin,
high platelet aggregation, vascular leakage, the release of
proinflammatory cytokines, and NET formation (128). In sepsis-
induced DIC, large numbers of NETs are accumulated mainly in
the microvasculature of the lung and liver (124). Studies using
DNase-deficient mice reported that the formation of NET clots
associates with TMA and DIC, including schistocytes, hemolytic
anemia, and organ failure due to vascular occlusions. Similar
observations have been detected in patients with severe bacterial
infections (124). Studies using multicolor confocal intravital
microscopy studies showed the presence of aggregated platelets
and fibrin clots together with extracellular DNA in septic tissues
(125). NETosis is regulated by the citrullinating enzyme peptidyl
arginine deiminase 4 (PAD4) which induces decondensation
of the chromatin through arginine modification of histones.
Accordingly, in mouse models of sepsis, deficiency of PAD4, or
DNase I treatment significantly inhibited systemic intravascular
thrombin activity, reduced platelet aggregation, and improved
microvascular perfusion (125). Patients with acute TMA show
lower plasma levels of DNase I when compared with healthy
controls (127). In a murine caecal ligation and puncture model,
a time-dependent increase in cell-free DNA was accompanied by
systemic inflammation (126). Interestingly, early administration
of DNase I at 2 h after caecal ligation and puncture resulted in a
drop in circulating cell-free DNA levels, increased inflammation,
and organ damage in the lungs and kidneys. In contrast, later
administration of DNase I, 4 or 6 h after caecal ligation and
puncture, resulted in less cell-free DNA and inflammation,
preventing organ damage and improving survival (126).

In a mouse model of HIT, thrombi are composed of
neutrophils, extracellular DNA, citrullinated histone H3, and
platelets. Interestingly, neutrophil depletion or Pad4-deficiency
abrogates thrombus formation and DNase I treatment reduced
the size of venous thrombi (122, 123).

As the studies on animal models supported a therapeutic
potential of recombinant DNase I against thrombus formation
in different types of vessels, this concept deserves further
investigation at the clinical level. Recently, clinical studies
suggested that endogenous DNase I activity could represent a
therapeutic biomarker during acute myocardial infarction (129).
Accordingly, coronary NET burden and endogenous DNase
activity are shown as predictors of myocardial infarct size and
stenosis resolution (130). Indeed, recombinant DNase I can
accelerate t-PA-mediated lysis of human coronary and cerebral
thrombi ex vivo (119, 120). Patients with acute microvascular
thrombosis displayed reduced DNase I activity (127). Timely
and efficient removal of extracellular DNA is required to
prevent excessive thrombus formation. The restoration of
plasma DNase I activity possibly represents a new therapy for
thrombotic complications.

Cellular Sources of Extracellular DNA in
Immunothrombosis
Extracellular DNA could be released by activated immune cells
such as neutrophils and monocytes, by apoptotic platelets or
by the damaged vasculature (131–134). Therefore, it is difficult
to identify precisely the sources of extracellular DNA that
contribute to thrombus formation in vivo context. Neutrophils
are considered as a major source of extracellular DNA when
they release their chromatin as NETs (105, 135). As indicated
above, NETs are critical for the development of sepsis-
induced intravascular coagulation regardless of the inciting
bacterial stimulus (gram-negative, gram-positive, or bacterial
products). Indeed, many clinical and experimental studies use
extracellular DNA as a marker for NETs in the circulation.
NETs and extracellular DNA are present in patients with HIT.
In patients with myocardial infarction, blood samples contain
DNA, nucleosomes, myeloperoxidase, and neutrophil elastase,
and their plasma levels correlated with the burden of NETs,
detected within coronary thrombi, as well as with the infarct
size (130). In ischemic stroke, thrombi in cerebral arteries
stain positive for neutrophils, extracellular DNA, and neutrophil
elastase, suggesting NET formation (119).

Extracellular traps are also released from monocytes, referred
to as METs. METs have a similar web-like structure comprising
DNA, granular enzymes, and citrullinated histones, and
procoagulant activity, similar to NETs (132). Besides neutrophils
and monocytes, it has been reported that eosinophils also form
extracellular traps (134).

Another source of extracellular DNA can be released by
necrotic vascular or parenchymal cells. During thrombosis-
induced tissue ischemia, the majority of cells die primarily via
a process of necrosis, this process releases nuclear DNA into
the extracellular space and bloodstream. Injured cardiomyocytes
are probably a major source of extracellular DNA in patients
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with myocardial infarction (136, 137). Another source is
injured endothelial cells at the site of vascular obstruction
(56, 138). Finally, activated platelets release DNA from their
mitochondria. Although the total amount of mitochondrial
DNA per platelet is low, the large numbers of platelets
involved in blood clotting also render platelets as a potentially
significant source of extracellular DNA (139, 140). Taken
together, numerous sources contribute to the pool of extracellular
DNA in immunothrombosis.

Therapeutic Potential of Recombinant
DNAse I in Immunothrombosis
In a mouse model of sepsis-induced intravascular coagulation,
NET release coincided with increased platelet aggregation,
thrombin generation, and fibrin clot formation (125). DNase I
treatment reduced NET formation and degraded extracellular
DNA, which was associated with inhibited platelet aggregation
and microvascular obstructions (Figure 2). In the LPS-
induced sepsis mouse model, NET release and fibrin clot
formation were inhibited by the combined treatment of DNase
I with the thrombin inhibitor argatroban. However, these
treatments did not influence bacterial dissemination (141).
In line with this, in septic patients, NETs also significantly
increased the generation of thrombin and fibrin clot formation,
and this effect was reduced by DNase I treatment (142).
Of note, DNase I treatment leads to the release of NET
components into the bloodstream, which may elicit procoagulant
activity and intravascular thrombosis in septic patients. Free
extracellular DNA fragments enhance the intrinsic coagulation
pathway (143), which is also observed in patients with
deep vein thrombosis (144), leading to tissue hypoxia and
endothelial damage.

It is known that DNA intercalates with fibrin to form a
scaffold that stabilizes clot structure in the bloodstream (4),
therefore DNA-fibrin complexes have a fundamental effect on
clots lysis. In plasma of septic patients, extracellular DNA
significantly delayed t-PA-mediated clot lysis times by forming
DNA-plasmin-fibrin ternary complex which results in a densely
packed clot structure (145). Elevated levels of extracellular DNA
in plasma from septic patients promoted thrombin generation
(146). DNA alone or NETs inhibited plasminogen activation
and t-PA-induced resolution of plasma clots (147). In a murine
model of HIT, PF4 combines with NET-forming complexes
that selectively bind HIT-induced antibodies, DNase I treatment
limited venous thrombus size (148). Extracellular DNAmarkedly
affects the hemostatic system by activating factor XI (FXI) and
factor XII (FXII) (149). Extracellular DNA present in the fibrin
clot inhibits the antithrombotic activities of anticoagulants, such
as unfractionated heparin and enoxaparin (150). In contrast,
RE31 DNA aptamers inhibit thrombin formation, accelerates
fibrinolysis in vitro, and suppress thrombosis in vivo (151, 152).

In cystic fibrosis the lung is frequently affected by recurrent
bacterial infections and chronic inflammation causing
progressive lung destruction; the development of thick mucus in
small bronchioles and peribronchial regions of the lung thereby
triggering permanent bacterial infection. Infiltrated neutrophils

release granular content to eliminate the pathogens, and also
release high concentrations of extracellular DNA, forming NETs
in the inflamed bronchioles, which contribute to airway damage,
aggravating mucus viscosity, and its mucociliary clearance
from the bronchioles. Blood samples from patients with cystic
fibrosis showed an increased number of activated platelets (153),
which form cell conjugates with monocytes and neutrophils
(153, 154). Increased platelet aggregation responses to adenosine
diphosphate (ADP) and thrombin receptor-activating peptide
(TRAP), and second-wave mediators (TxA2, ATP, serotonin),
and α-granule-resident proteins [tumor necrosis factor alpha
(TNFα), CD40 ligand (CD40L), leukotriene B4 (LTB4), and
interleukins] were also detected (155, 156). Plasma levels of
platelet granule-resident proteins are correlated with a decreased
lung function of these patients (157, 158). DNase I treatment
showed significant improvement in rheological parameters in
cystic fibrosis, reducing the thick mucus layer by cleaving the
extracellular DNA of NETs. Therefore, patients can release more
easily the accumulated mucus up from the inflamed lung tissue.

The literature also describes that following bacteremia,
neutrophils recruited to the liver sinusoids enhance the clearance
of pathogens from the circulation (107, 159). Similar to the
phenomenon observed in septic lung tissues, and in liver
sinusoids, neutrophils also release intravascular NETs (69).
Blocking NET formation by DNase I reduced the capture
of circulating bacteria in the liver, resulting in increased
dissemination of bacteria to distant organs.

NET formation was also detected in acute ischemic
stroke, located in the outer layer of developing thrombi,
and consequently, the increase of extracellular DNA content in
the blood plasma correlates with stroke severity. Although
thrombolysis with t-PA administration promotes fibrin
degradation in the occluded vessel of acute ischemic stroke,
t-PA-resistant clot formation has been frequently observed
in platelet-rich arterial thrombi. Hence, fibrin accumulation
in the growing thrombi is limited at the early phase of acute
ischemic stroke (160, 161). Interestingly, the co-administration
of DNase I with t-PA accelerated thrombolysis ex vivo. However,
DNase I treatment alone had no thrombolytic effect ex vivo.
These results suggest that both fibrin and NET formations can
be targeted simultaneously to induce successful thrombolysis
and recanalization of the artery in acute ischemic stroke (120).
In line with these results, combined treatment of DNase I
with t-PA also attenuated infarct size in a murine model of
myocardial ischemia-reperfusion injury. Again, DNase I or
t-PA treatment alone had no beneficial effects in this mouse
model (162). Altogether, these results suggest that DNase I and
t-PA treatment together improve both myocardial and cerebral
post-ischemic infarction. However, a clinically implemented and
safe pharmacological strategy of DNase I treatment is currently
established in patients with cystic fibrosis (163) and limited
clinical trials investigated the thrombolytic effects of NET
degradation in other disease conditions. Altogether, these data
suggest that in some cases, DNA-targeted therapies by DNase I
may improve thrombolysis and inhibit coagulation. Therefore,
further investigation is necessary to establish the role of DNase I
treatment in immunothrombosis.
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FIGURE 2 | Proposed model of DNase function in immunothrombosis. Damaged endothelial cells release tissue factor (TF) and ecDNA. TF activates the coagulation

cascade, converting prothrombin to thrombin, which further activates platelets through PAR receptors. The ecDNA acts as DAMP and directly activates platelets and

triggers inflammatory responses. The damaged endothelial layer exposes extracellular matrix proteins (collagen, laminin), and accumulates vWF, fibrinogen and other

blood plasma proteins on the endothelial surface, further supporting platelet adhesion and activation through platelet specific glycoprotein receptors (GPIb, GPVI) and

integrins (αIIbβ3, α2β1). During degranulation, second wave mediators (ATP, ADP, serotonin), extracellular matrix components (vWF, fibrinogen), and inflammatory

cytokines are released by activated platelets, triggering thrombus formation and enhancing immune cell responses and NET formation. Platelet purinergic receptors

(P2Y1, P2Y12) are activated by ADP, further promoting platelet aggregation and thrombus growth. P-selectin exposure on the plasma membrane of activated platelets

increases procoagulant activity and supports platelet-immune cell interaction and NET formation. In the process of immunothrombosis, DNase could inhibit NETosis

by fragmenting DNA within the NETs, thereby dissociating platelet-rich components from the endothelial surface, and inhibiting thrombus growth. DNAse may also

inhibit purinergic signals in platelets and immune cells. TF, tissue factor; ec-DNA, extracellular deoxyribonucleic acid; vWF, von Willebrand Factor; ADP, adenosine

diphosphate; ATP, adenosine triphosphate; TNFα, tumor necrosis factor alpha (TNFα); GPIb, glycoprotein Ib; GPVI, glycoprotein VI, DNase, deoxyribonuclease; ADP,

adenosine diphosphate; ATP, adenosine triphosphate.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Immunothrombosis is a complex process involving numerous
elements of the cascades of coagulation and inflammation. In

vivo preemptive administration of recombinant DNase I not
only cleaves deposits of extracellular DNA but also inhibits
ATP release from platelet δ-granules and prevents the formation
of fibrin network. Extracellular DNA may directly induce
fibrin formation, thereby enhancing thrombus growth. Studies
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analyzing the role of extracellular DNA in immunothrombosis
related to either the use of DNase-deficient mice or the
recombinant DNase I. It worth to postulate that DNAse I
treatment may limit thrombus formation by inhibiting the
function of platelet-derived second wave mediators, such ATP.

Several questions remain unanswered: What is the main
source of extracellular DNA during the early phase of blood
clotting in vivo? How does the extracellular DNA released from
infarcted tissues may contribute to the clot formation and the
resistance to the fibrinolysis? Is extracellular DNA a suitable
therapeutic target in humans beyond the anticoagulants or
fibrinolytic drugs? Does recombinant DNase I have a better safety
profile compared to the anticoagulants? A better understanding
of the role of extracellular DNA in a immunothrombosis context
is required to clarify these issues.
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