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Newborns are at significantly increased risk of severe disease following infection with

influenza virus. This is the collective result of their naïve status, altered immune

responsiveness, and the lack of a vaccine that is effective in these individuals. Numerous

studies have revealed impairments in both the innate and adaptive arms of the immune

system of newborns. The consequence of these alterations is a quantitative and

qualitative decrease in both antibody and T cell responses. This review summarizes the

hurdles newborns experience in mounting an effective response that can clear influenza

virus and limit disease following infection. In addition, the challenges, as well as the

opportunities, for developing vaccines that can elicit protective responses in these at

risk individuals are discussed.
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INTRODUCTION

Infection with influenza virus places a large burden on human health. The WHO estimates there
are 290,000–650,000 influenza-associated deaths and 3–5 million cases of severe disease globally
each year (https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)). In the U.S.
alone, the CDC estimated 35.5 million people experienced influenza in the 2018–19 season (www.
cdc.gov/flu/about/burden/2018-2019.html). Newborns and young infants represent a particularly
susceptible population for severe disease following influenza virus infection. Even in countries like
the U.S., where health care resources are widely available, those under the age of 6 months are six
times more likely to die as a result of influenza virus infection compared to children between the
ages of 13 and 17 years (1).

While it is known that infants experience a higher rate of infection than older children, a recent
study from the Influenza and Respiratory Syncytial Virus in Infants (IRIS) study suggests that our
current understanding of the rate of infection significantly underestimates the burden in infants (2).
Analysis of 1,934 acutely ill, non-vaccinated infants (0–11 months) enrolled during the influenza
season in four countries (Albania, Jordan, Nicaragua, and the Philippines) showed 254 (13%) were
influenza virus positive by either PCR, serology, or both.

Disease states associated with influenza virus infection in infants and children include otitis
media, pneumonia, myositis, and croup. The last is restricted primarily to individuals <1 year of
age and can be life threatening. The risk of lower respiratory disease is significantly increased in
children<2 years of age (3–7). In addition, bacterial pneumonia, which contributes to the increased
lower respiratory disease in this age group, is a common complication of influenza virus infection
(8). Bacterial coinfection has been shown to be a significant predictor of severe disease requiring
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admission to the pediatric intensive care unit (9). These data
show that influenza virus continues to be a major health issue
for newborns and young infants and establish the clear need
for improved therapeutics and vaccines for this vulnerable
population. Here, the underlying immune factors that contribute
to the increased susceptibility to disease and the promise for the
development of vaccines to protect these vulnerable individuals
are discussed.

THE INFANT IMMUNE SYSTEM

The increased susceptibility to severe disease in infants following
influenza virus is a result of the naïve status of newborns together
with the altered responsiveness of the immune system. Much
of our current understanding of the neonatal immune response
comes from studies performed in the mouse or from human
cord blood cells, although there is a growing body of work
in the non-human primate. The results of these studies reveal
alterations across the immune system, impacting both the innate
and adaptive arms of the response.

The innate response is the first line of defense against an
invading pathogen. Monocytes and dendritic cells (DC) play
critical roles in clearance of incoming virus as well as initiation
of an adaptive immune response. Activation and recruitment
of these cells is often regulated by pattern recognition receptor
(PRR) signaling (10, 11). These pathogen sensing molecules
promote the activation of multiple immune cell types and as
such can be critical regulators of the early immune response to
influenza virus infection (12).

Analysis of DC and monocytes isolated from human cord
blood revealed that these cells are decreased in their capacity
to respond to pathogen associated signals, e.g., TLR agonists,
compared to cells isolated from adults (13–19). PRR engagement
on newborn monocytes and DC differs from adult derived
cells in that it often results in the induction of a robust
anti-inflammatory (e.g., IL-10) coupled with a decreased pro-
inflammatory response (20). In mouse models, the suboptimal
responsiveness of DC from neonates manifests as a decrease
in the expression of costimulatory molecules and a striking
reduction in IL-12 (15–17), an important signal that promotes
T helper 1 (Th1) differentiation. The impaired production of this
important regulatory cytokine has been associated with increased
T helper 2 (Th2) differentiation and poor Th1 responses (13),
the latter of which is part of an optimal influenza virus-specific
response. Th2 biased differentiation appears to be the result of
expression of the IL-13Rα chain, which together with IL-4Rα can
serve as an alternative receptor for IL-4 (21, 22).

The decreased activation/maturation of DC in response
to stimulatory signals is compounded by alteration in the
number/frequency of IL-12 producing APC available for
surveillance. CD8+ and CD103+ DC are the major producers
of IL-12 in mice (23, 24). The correlative population in
humans, BDCA3+ DC, similarly produces high levels of IL-
12 (25, 26). Newborn mice are reported to have a paucity of
lymphoid tissue resident CD8+ DC (22), a DC subset that is
an important contributor to the generation of a CD8+ T cell

response. The alterations in DC extend to the tissue. Analysis
of DC in the lungs of 1-week-old mice showed a reduced
frequency of these populations as well as differences in DC
subset distribution (27–29). Further, the ratio of CD103+ airway
to CD11b+ parenchymal DC was reduced in neonatal mice
(28), suggesting an even greater impact on this population that
serves as a potent migratory APC for driving adaptive immune
responses following influenza virus infection (30). In addition
to the changes in number and distribution, DC in the lungs of
newborn mice are impaired in both their ability to upregulate
costimulatory molecules and in antigen processing following
virus infection (29).

The distribution and quantity of DC subsets in LN and lung
of human neonates has been minimally explored. In a study from
dos Santos et al., airway DC were reported to be very rare in
infants (31). In addition, few DC expressed DC-SIGN, a C-type
lectin that plays a role in uptake and TLR signaling (31). Gaining
a fuller understanding of the distribution and function of DC in
the newborn lung will need to be an area of high priority as we
strive to meet the challenge of developing new therapeutics to
support immune function following influenza virus infection in
this population.

Infant mice also have a highly reduced number of
plasmacytoid DC (28). While not involved in T cell activation,
these cells are important sources of type I IFN, which has
anti-viral activity as well as being an important regulatory
cytokine for adaptive responses. Although the role of these cells
in adult mice was reported to be dispensable during influenza
virus infection (32), their importance to the response in infants
has not been evaluated.

NK cells are another important innate immune cell for the
early control of influenza virus infection (33, 34). NK cells
mediate killing of infected cells through multiple mechanisms
including antibody dependent cellular cytotoxicity, direct release
of cytotoxic granules, TRAIL, and FasL. They also produce a
large array of cytokines such as IL-5, IL-10, IL-13, GM-CSF,
TNFα, TGFβ, and IFNγ. Surprisingly perhaps, human neonates
have comparable or higher numbers and percentages of NK cells
in the peripheral blood compared to adults (35, 36). However,
these cells have a less terminally differentiated phenotype, i.e., few
express CD57 (37), a marker associated with high cytotoxic and
low cytokine responses. NK cells in neonates also exhibit reduced
levels of CD54, suggesting impaired adherence to target cells
(38, 39) as well as increased expression of inhibitory receptors,
e.g., NKG2a (40). Thus, although they are present, their ability to
contribute to viral clearance is likely impaired. As with other cell
types, we have a limited understanding of lung NK cell number
and function in infants. In humans, NK cells appear to be present
as they were identified in the epithelial layer of human infants
who had died from causes not related to pulmonary disease (31).
However, how this population seeds the lungs and their ability to
function in infants has not been explored.

Compounding those present in the innate arm of the immune
response, there are multiple challenges on the adaptive side of
the house. Some of these are a result of the innate alterations
described above, e.g., cytokine production or DC maturation;
this is certainly a major contributor to the propensity for
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differentiation of CD4+ T cells into Th2 cells [for review
see (41)]. Biased Th2 differentiation has also been reported
in human cord blood cells (42) as well as in newborn non-
human primates (NHP) (our unpublished data). However, in
addition to the regulatory signals derived from accessory cells,
there are inherent attributes of adaptive immune cells that
exacerbate the challenges associated with mounting a response.
T cells from human neonates exhibit a generalized defect in
responsiveness and differentiation (41, 43–51), making it more
difficult to activate T cells that do successfully engage antigen-
bearing DC. Reported defects include reduced levels of the
signaling molecules lck and ZAP-70 (48) as well as decreased
AP-1 mediated transcription (52).

As if these hurdles were not high enough, we have an
increasing appreciation for the heightened T regulatory cell
(Treg) response that is present in newborns and young infants.
Studies in human infants reveal a higher representation of Tregs
in circulation (53–59), a finding also seen in NHP [(60) and
manuscript in press]. This may be the result of the enhanced
propensity for cells to differentiate into Tregs in these individuals
(59, 61–63). The increase in these powerful regulators is thought
to provide benefit to the newborn by dampening inflammatory
responses to the establishing microbiome (64). However, the
consequence of their increased frequency and activity is the
potential for decreased virus-specific T cells in response to
infection as an overly exuberant Treg population can hamper
generation of a sufficient number of effector T cells needed for
viral clearance [e.g., (61, 65, 66)].

Antibody responses are also significantly decreased in
neonates, with reported defects in the production of high level,
high affinity antibody (41, 67). In humans IgG production is
generally weak for the first year of life (45, 68). Although
increased relative to IgG, IgM responses are also impaired as
exemplified by RSV infection of human infants, where both
IgM and IgG responses are poor (69). The altered CD4+ T cell
differentiation is one likely contributor to antibody responses in
newborns and young infants. Studies in newborn mice revealed
IgG1 skewing, consistent with a Th2 biased response (70).
Further, production of high affinity, isotype switched antibody
in the germinal center relies on CD4+ T follicular helper cells
(Tfh) (71–75). As with other arms of the T cell response, Tfh
generation is compromised in newborns (76, 77). Tfh provide
help to B cells through the production of cytokines, e.g., IL-
21 together with IL-4, IFNγ, or IL-17, as well as through the
expression of CD40L (78, 79). Their importance for influenza
vaccine responses is supported by the strong correlation between
Tfh and the development of memory B cell responses in humans
administered the inactivated influenza vaccine (80).

Infants are also challenged by inherent defects in B cell
survival and differentiation (81). A potential contributor to the
latter is the reduced expression of BCMA and BAFF-R on
neonate B cells (82). Engagement of BAFFR or BCMA on B
cells promotes survival through upregulation of anti-apoptotic
bcl-2 family members together with downregulation of the pro-
apoptotic factors bim and bad (83). Following differentiation,
plasmablast survival and differentiation into long-lived antibody
secreting cells depends on APRIL, the expression of which is

decreased in stromal cells that reside in the bone marrow of
neonates, likely hampering the sustained presence of these cells
(84, 85). Thus, B cells encounter hurdles all along the pathway
of activation, differentiation, and survival that make it harder to
generate and sustain long-lived, protective antibody.

THE NEWBORN IMMUNE RESPONSE TO
INFLUENZA VIRUS INFECTION

Our mechanistic understanding of the newborn response to
influenza virus infection comes predominantly from analyses in
mice. The earliest report of the increased disease in neonates
using the mouse model comes from a study by Smith and
colleagues showing newborn mice (1 day old) exhibited higher
viral load and increased mortality following infection (86).
Subsequent studies have made significant headway in uncovering
the basis of the decreased control of influenza virus infection
in this model (87–89). In a study by You et al., 7-day-old mice
infected with the mouse adapted A/PR/8/34 (H1N1) (PR8) virus
had a highly reduced (6-fold) IFNG

+ CD8+ T cell response
in the lungs compared to animals infected at 4 weeks of age
(88). A decrease was also observed in the CD4+ compartment,
albeit less than that observed for CD8+ cells. Interestingly, there
was no evidence of an increased IL-4+ T cell response in the
lungs of infant mice in this study. In addition a reduction
in virus-specific T cells, the authors found that these effectors
were reduced in their ability to clear virus as demonstrated by
adoptive transfer of neonate vs. adult T cells (88). Increased
susceptibility of newborn (here 2-day old) mice to influenza
virus infection was also reported by Garvy and colleagues (87).
This study focused on the capacity of T cells to enter into the
lung and their movement to the airway. Newborns exhibited an
approximately 4-day delay compared to their adult counterpart
in entry of virus-specific T cells. In addition, these cells exhibited
a distinct pattern of distribution in newborn mice, with a striking
impairment in migration to the airway space. The failure of cells
to migrate the airway correlated with a significant decrease in
CXCL9 and CCL2. These data reveal that in addition to the
challenges in generating an effector T cell response, newborns
must also cope with difficulties in getting these effectors to the
site of virus infection.

Recently, the overall transcriptional response in the lungs of
influenza virus-infected 3-day-old mice was evaluated (89). The
lungs of newborn pups showed transcriptional unresponsiveness
following infection, with only a modest number of assessed genes
differentially expressed as a result of influenza virus infection
compared to their adult counterpart (4 vs. 55%). Consistent
with known impairments of newborn cells discussed above,
the top pathways impacted were those responding to pattern
recognition receptors and dendritic cell maturation. Follow-up
studies to further explore these results will undoubtedly increase
our understanding of the influenza virus-specific response in
the newborn.

It is well-established that antibody responses are also
impaired in the context of respiratory infection of human
newborns and young infants (67). With that said, there is
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surprisingly little information available on the antibody response
generated in newborns and young infants following influenza
virus infection, even for the mouse model. However, we can
infer that a likely factor that will impact antibody is the
reduced Tfh response in newborns (76, 77) and the limited
expression of APRIL in newborn mice given the important
role of this signal in the maintenance of antibody titers in the
airways and serum following influenza virus infection of adult
mice (90).

Although the mouse model is highly tractable, one of the
limitations of this model is the difference in immune system
development at birth compared to humans (41). The immune
system of newborn mice does not reflect that of higher order
animals until 5–7 days following birth. In addition, the rapid
maturation of the immune system in mice further complicates
the study of newborn immunity. The NHP affords a useful
model to mitigate these limitations. The NHP lung is also
more similar in structure to humans than is the mouse lung
(91). Finally, there is a high degree of similarity between
the NHP and humans in the distribution and responsiveness
of TLR receptors (92), in contrast to mice (14). In our
studies, influenza virus infection (PR8) of newborn (6–10-
day old) NHP resulted in more pathology than adult NHP,
even when the virus dose in the infants was decreased 5-
fold (60). Somewhat surprisingly, the systemic IgG response
in the two age groups at d14 p.i. was similar. Whether this
is the case at later times as the antibody response continues
to develop is not known. In contrast, analysis of antibody in
the lung revealed a reduction in virus-specific IgG antibody as
well as highly reduced BALT in the lungs of newborns (60).
These data suggest a model wherein an impaired local immune
response in the lungs of newborns contributes to the reduced
clearance and increased disease observed following influenza
virus infection.

We have also evaluated the epitope specificity of the antibody
response following influenza virus infection in the newborn NHP
model (93). The specificity of the antibody is an important
determinant of response efficacy as there are epitope-dependent
differences in clearance mechanisms and cross-strain reactivity
(94–99). HA represents the major target of influenza-specific
antibody (100). Five neutralizing sites have been described in the
globular domain of this molecule (101). In adult mice, the relative
representation of antibodies directed to these sites, i.e., their
pattern of immunodominance (ID), is consistent within a given
mouse strain, evolves over time, and is altered by the nature of the
immunizing event (i.e., vaccination vs. infection) (102). Virtually
nothing is known about age related alterations in antibody ID.
The ID pattern established by infection is of particular interest in
newborns given the potential effects of childhood vaccination on
lifelong influenza A virus (IAV) immunity as evidence suggests
that the first exposure to IAV antigens can mold the lifetime
response (103). Our analysis revealed altered ID patterns in
the early IgM anti-HA response in newborns vs. adults that
converged over time. Somewhat surprisingly the ID profiles for
IgG vs. IgA differed, suggesting isotype specific regulation of ID.
This study also examined the generation of antibody capable of
recognizing the conserved HA stem region, a target of universal

vaccine approaches. These antibodies were readily generated
in newborns; similar to what is observed in adults, they are
subdominant to the HA head domain (93, 104).

In summary, newborns face multiple challenges in combatting
infection with influenza virus (Figure 1). Both the innate
and adaptive arms of the response exhibit alterations that
make clearance less robust. Hurdles are present at the
activation/differentiation phase that occurs in the lymph node as
well as the effector stage in the lung, a site where the immune
system must be able to clear virus efficiently while minimizing
tissue damage.

INFLUENZA VACCINATION TO PROTECT
NEWBORNS

The ability to protect newborns from influenza infection through
vaccination would represent a significant step forward in
improving the health of this population. In considering how
to harness the power of vaccines to maximize protection of
newborns, there are two complementary approaches that can
contribute to this goal, protection through passive transfer of
vaccine-elicited maternal antibody and direct vaccination of
the newborn.

Influenza vaccination for all pregnant women is the current
recommendation and there is clear evidence of benefit to both
mother and infant. Maternal vaccination has been reported
to reduce proven influenza illness by 63% in infants up to 6
months of age and averted approximately a third of all febrile
respiratory illnesses in mothers and young infants (105). Further,
infants of vaccinated mothers were 45–48% less likely to have
influenza hospitalizations than infants born to non-vaccinated
mothers (106). Given these results, why should we not rely solely
on this approach? While clearly providing increased protection
for infants, the benefit of maternal antibody, as noted above,
begins to wane after the first 8 weeks of life. For example,
the efficacy of the trivalent inactivated influenza vaccine (TIV)
administered during pregnancy for preventing PCR–confirmed
influenza infection in the infants was 86% during the first 8
weeks, but decreased to 49% if considering the overall 6-month
follow-up period (107). Another study reported that while∼40%
of infants had protective antibody levels at birth, by 3months this
had declined drastically, with only 10% retaining protective levels
(108). These results make evident the critical need to develop
vaccines that can initiate protective antibody responses in young
infants before the loss of protection that occurs as maternal
antibody wanes.

Ideally, an influenza vaccine for newborns would be capable
of inducing protective responses that would be in place following
a single dose of vaccine, although admittedly this is a challenging
goal given the altered immune system of newborns. Given the
time required for development of the peak response and the likely
need for a second dose of vaccine to induce protective antibody
levels, as is the case even when the current vaccine is given at 6
months of age, the initial vaccination would need to occur within
the first 2 months of life in order to minimize or eliminate a
window of susceptibility.
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FIGURE 1 | Reported and potential alterations in the newborn immune response following influenza virus infection. Newborns encounter challenges at multiple steps

in the generation of an effective immune response following influenza virus infection. A number of these have been experimentally demonstrated in newborn animal

models. These are indicated in black font. There are also alterations that seem highly likely in the context of influenza virus infection based on in vitro studies or other

models of newborn responses as described in the text. However, they have not been directly shown for influenza virus infection of newborns. These proposed

alterations are shown in red font.

This highlights the need for improved vaccine approaches
for newborns, given that these individuals do not respond
effectively to the current seasonal inactivated vaccine before
the age of 6 months. Previous studies reported the virtual
absence of seroconversion in infants between 3 and 5 months
old after a single administration of the trivalent inactivated
influenza vaccine with the exception of one virus strain
(A/Mississippi/11/85), which had a 40% conversion rate for
reasons that are unknown (109).While maternal antibody has the
potential to inhibit vaccine responses (110), this was not the case
here, as non-responding infants had influenza-specific antibody
titers of <1:8. A second dose resulted in a protective titer rate of
approximately 29% across all strains evaluated. Not surprisingly,
a correlation was observed between age and seroconversion, with
older infants converting at a higher rate than younger infants
(109). In a second study, conversion was assessed following two
doses of vaccine, with a reported conversion rate of 32% for
H1N1 and 47% for H3N2 strains (110). Mechanistic studies were
not performed in these trials, so how these infants responded
at the level of T and B cell activation and differentiation is
not known. A review of the literature reveals a surprisingly
limited amount of information in animal models to inform
our mechanistic understanding of the response to the seasonal
inactivated influenza vaccine in newborns vs. adults.

Given these challenges, how do we achieve the objective of
protecting newborns through vaccination? One area that remains
an ever present goal for increasing the efficacy of vaccines is
the development of new adjuvants. Intense effort has focused on
exploiting the immune stimulatory properties of TLR agonists as
adjuvants, including in the infant. Among the most promising

are TLR7/8 agonists. The natural ligands of TLR7 and TLR8
are guanosine- and uridine-rich ssRNA (111, 112). However,
a number of small molecule mimetics have been developed
that are potential vaccine adjuvants. The TLR8 agonist 3M-002
induces potent upregulation of CD40, CD80, CD83 and CD86
as well as production of the Th1-polarizing cytokine IL-12p70
in cells from neonates (113). A contributor to the effectiveness
of TLR8 agonists in the context of neonate cells appears to be
the resistance of this pathway to inhibition by adenosine (113), a
known suppressive immune modulator in the blood of newborns
(114). We have found that an inactivated vaccine comprised of
the TLR7/8 agonist R848 conjugated to the influenza virion is a
potent inducer of antibody and IFNγ-producing T cell responses
in a newborn NHP model (115, 116). TLR2 agonists also show
promise in their ability to increase activation of newborn T
cells (117). Further, select TLR ligands can induce maturation of
newborn APC, approaching the level observed in adults (27, 113,
118). The TLR5 agonist flagellin has shown particular promise as
a mucosal adjuvant for neonates in its ability to effectively induce
maturation and migration of newborn lung-resident DC (27).

A strategy for further increasing the efficacy of these
immune modulators is the delivery of multiple TLR agonists.
Simultaneous engagement of several TLR has been shown
to change dendritic cell maturation in both a qualitative
and quantitative fashion (18, 119). T cells derived from
human cord blood stimulated concurrently with TLR2 and
TLR5 agonists underwent greater proliferation and cytokine
production compared to cells stimulated with either agonist alone
(117). The success of the tuberculosis vaccine (BCG: Bacille
Calmette-Guerin), which is routinely delivered within 48 h of
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FIGURE 2 | Adjuvants and pathways reported to promote responses in newborns. A number of experimental adjuvants have been tested in the context of neonates

or neonate derived cells. Some of these adjuvants impact multiple cell types, while others are more targeted. The results from these analyses suggest combinations of

adjuvants may be needed to overcome the multiple impairments in the newborn immune response. A summary of a representative selection of promising adjuvants for

newborns is shown. LN, lymph node; GC, germinal center; PC, plasma cell; Bmem, memory B cell; DC, dendritic cell; FDC, follicular dendritic cell.

birth, supports the utility of this strategy. BCG contains ligands
for 5 distinct TLR (1, 2, 4, 6, and 9) (120) and it seems likely that
the ability to induce immune responses in neonatesmay be due to
the combined signaling following engagement of multiple TLR.

In addition to TLR agonists, other approaches are also
exhibiting potential in newborns. A recent study from Hensley
and colleagues reported that a nucleoside modified mRNA-lipid
nanoparticle vaccine was capable of inducing prolonged germinal
center formation newborns (121). The efficacy of this adjuvant
has been associated with high antigen production that drives
Tfh and GC B cell responses (122). Interestingly, this approach
could also partially mitigate the inhibitory effects of maternal
antibody (121).

Vaccination of 1 week old mice with trehalose-6,6-dibehenate
(TDB), a synthetic analog of the mycobacterially-expressed
trehalose-6,6-dimycolate (TDM), in combination with HA in
liposomes was found to induce protection of newborn mice
through increases in Tfh and generation of high affinity plasma
cells (123). This is the result of signaling that is induced
following binding to the C-type lectin receptor Mincle. Ligands
for this PAMP detecting molecule are primarily bacterially
glycolipids (124). The squalene based adjuvant MF59 has also

been reported to be effective in mouse, NHP, and human
neonates (125–127). Newborn (1 week old) mice vaccinated
with HA and MF59 had increased influenza-specific IgG,
DC maturation, and CD4+ T cell responses. However, a
potential limitation of MF59 is its failure to drive Tfh in
the neonates.

The development of a robust germinal center is dependent
on development of a mature follicular dendritic cell network,
which occurs inefficiently in newborn mice (128). Using a
tetanus toxoid conjugated polysaccharide vaccine, Jonsdottir and
colleagues showed a non-toxic mutant of Escherichia coli heat-
labile enterotoxin (LT-K63) could drive the maturation of the
FDC network in newborn mice and that this resulted in the
increased number and prolonged survival of IgG+ antibody
secreting cells (129). While exciting, there is recent evidence
that the effects of this adjuvant can vary depending on antigen,
route of delivery, and mouse strain (130). This is likely true
for many of the adjuvants discussed suggesting a caution and
making clear the need for empirical testing of each vaccine
construct with the experimental adjuvant. A summary of the
pathways successfully targeted by adjuvants in newborns is
shown Figure 2.
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FIGURE 3 | Universal influenza vaccines as a first antigen exposure in newborns. Current influenza vaccine efforts are focused on the development of approaches that

can provide broad strain recognition, i.e., a universal vaccine. These vaccines often target the conserved stem region of the HA molecule. The ability to successfully

employ a universal vaccine that can work in newborns through appropriate adjuvantation would likely result in HA stem as the first influenza antigen exposure.

Subsequent virus challenge should preferentially drive these universal specificities and may result in their higher representation compared to what would occur in

individuals who received the stem vaccine later in life. Whether this single specificity response, e.g., stem-specific antibody, will provide adequate protection will need

to be carefully assessed. QIIV, quadrivalent inactivated influenza vaccine.

VACCINATION AS THE FIRST EXPOSURE
TO INFLUENZA ANTIGENS

As noted above, infants cannot receive their first dose of
the seasonal inactivated influenza vaccine until they reach 6
months of age. This allows for infection to serve as the first
exposure of many infants to influenza antigens. Although the
priming environment for immune activation includes all of the
stimulatory signals associated with infection, it comes at the cost
of the potential for severe disease as described above. If we realize
the goal of producing an effective influenza vaccine for use in
newborns, it would become likely that the first antigen exposure
for this at-risk population would come through vaccination.

A number of landmark studies have firmly established the
contribution of antigenic seniority as a governing factor in
driving immune responses to influenza vaccination or infection
[for review see (131)]. The notion of antigenic seniority states
that strains encountered early in childhood establish a position
of seniority, such that these responses are preferentially boosted
following encounter with alternative strains over a lifetime. This
then shapes an individual’s response to a given strain confronted

later in life and over time, there is an accumulation of antibody
and memory B cells specific for childhood strains.

Adding an additional layer of complexity to this process,
in mice there is evidence that the immune response primed
by vaccination vs. infection is altered (102). Using a panel of
viruses that individually expresses each of the five neutralizing
epitopes identified in the HA head, Angeletti et al., showed
that the pattern of immunodominance, i.e., the representation
of each of the HA epitopes in the antibody repertoire, was
distinct following infection vs. vaccination (102). This has
the potential to functionally impact the response as the
representation of antibodies directed to individual epitopes
can impact how the virus is cleared, i.e., neutralization vs.
antibody dependent cellular cytotoxicity (ADCC). While, the
ability of vaccination vs. infection to alter dominance patterns in
newborns has not been tested, the results suggest an intriguing
possibility that newborn priming of influenza-specific responses
by vaccination vs. infection may result in differences in the
representation of antibodies to these individual epitopes. This
may in turn alter the array ofmechanisms available for combating
infection as well as the specificity of antibodies boosted
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following subsequent encounter with viruses or vaccines in the
following years.

The concept of antigenic seniority has taken on added
importance in newborn vaccination in light of recent efforts
directed toward development of a universal vaccine approach. A
vaccine that can protect from drifted strains, i.e., those that have
point mutations in the globular head domain of the HAmolecule,
that circulate in subsequent seasons would decrease the need for
yearly reformulation and delivery of the vaccine. Such a vaccine
also has the potential to provide protection from pandemic
strains. Currently universal vaccine development is primarily
focused on driving antibody responses to the highly conserved
stem region of HA [there are multiple excellent reviews on this
effort, e.g., (95, 132–134)]. Such a vaccine is now being tested in
adults in clinical trials (NCT03814720, www.clinicaltrials.gov).

Is this approach feasible in newborns? The answer may
be yes based on our recent studies of newborn NHP in
which we observed a robust response to the HA stem region
following infection (93). These data suggest the newborn B cell
repertoire has the potential mount this response. Further, the
avidity of the HA stem-specific antibodies produced appears
to be on par with antibodies binding to other epitopes (93).
Our understanding of antigenic seniority would indicate that
priming the newborn response with an HA stem construct
would be of significant benefit. Pre-clinical studies performed
in adult mice and ferrets vaccinated with a stem bearing
nanoparticle construct resulted in generation of broadly cross-
reactive antibodies (135). These antibodies could completely
protect mice and partially protect ferrets against a lethal
heterosubtypic H5N1 influenza virus challenge (135). We would
expect that antibody responses generated by an HA stem vaccine
would allow for preferential activation and boosting of these
broadly protective antibody responses following infection or
subsequent vaccination (Figure 3). The response will likely differ
in human newborns vs. adults, as the latter already has a
population of memory cells that can respond to the vaccine
that will undergo selective boosting. Priming responses from a
naïve repertoire in the newborn would leave the infant with a
single antibody specificity. While stem-specific antibodies should
provide benefit through broad strain recognition, it is critical
that we understand more fully the protective capacity of such a
vaccine. In addition, how this universal response would impact
subsequent responses to the head region of HA or other viral
proteins needs to be addressed. Answering these questions

will be a critical step in advancing universal vaccines for use
in infants.

CONCLUDING REMARKS

Newborn vulnerability to severe disease following influenza virus
infection is a significant public health concern. Current influenza
vaccines are inadequate for eliciting protective responses in
these at-risk individuals and while maternal antibody can
provide benefit, waning antibody levels will leave the infant
increasingly unprotected in the months following birth. The time
necessary for a prime and boost-approach to achieve protective
antibody levels necessitates early delivery of the first vaccine
dose to limit the window of susceptibility to infection that
will occur as maternal antibody decreases and infant immunity
develops. While a number of experimental adjuvants show
promise in newborns, a more in depth understanding of the
newborn immune system will be critical to the development of
effective adjuvants and vaccine delivery approaches. This will
be facilitated by use of models that most faithfully reflect the
human newborn immune system coupled with our increasing
ability to assess human newborns as a result of technological
advances that maximize the information that can be gained with
the limited samples accessible from these individuals. While the
challenges are significant, they are not insurmountable, and we
are continually nearing the goal of developing a vaccine that can
limit influenza virus infection and disease in newborns.
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