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One cannot discuss anti-dsDNA antibodies and lupus nephritis without discussing

the nature of Systemic lupus erythematosus (SLE). SLE is insistently described as a

prototype autoimmune syndrome, with anti-dsDNA antibodies as a central biomarker

and a pathogenic factor. The two entities, “SLE” and “The Anti-dsDNA Antibody,”

have been linked in previous and contemporary studies although serious criticism to

this mutual linkage have been raised: Anti-dsDNA antibodies were first described in

bacterial infections and not in SLE; later in SLE, viral and parasitic infections and in

malignancies. An increasing number of studies on classification criteria for SLE have been

published in the aftermath of the canonical 1982 American College of Rheumatology

SLE classification sets of criteria. Considering these studies, it is surprising to observe a

nearby complete absence of fundamental critical/theoretical discussions aimed to explain

how and why the classification criteria are linked in context of etiology, pathogenicity, or

biology. This study is an attempt to prioritize critical comments on the contemporary

definition and classification of SLE and of anti-dsDNA antibodies in context of lupus

nephritis. Epidemiology, etiology, pathogenesis, and measures of therapy efficacy are

implemented as problems in the present discussion. In order to understand whether

or not disparate clinical SLE phenotypes are useful to determine its basic biological

processes accounting for the syndrome is problematic. A central problem is discussed on

whether the clinical role of anti-dsDNA antibodies from principal reasons can be accepted

as a biomarker for SLE without clarifying what we define as an anti-dsDNA antibody, and

in which biologic contexts the antibodies appear. In sum, this study is an attempt to bring

to the forum critical comments on the contemporary definition and classification of SLE,

lupus nephritis and anti-dsDNA antibodies. Four concise hypotheses are suggested for

future science at the end of this analytical study.
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INTRODUCTION

SLE, lupus nephritis and anti-dsDNA antibodies represent
cores of this, in principal eclectic study. The narrative is
in its nature a critical view on definition of lupus nephritis
as part of the syndrome SLE, and its classification, etiology
and pathogenesis. In particular, the interrelationship between
numerous classification criteria has not been given priority
in the literature, notably not in the original manuscripts
presenting the 1982 American College of Rheumatology [ACR
(1)] and the 2012 Systemic Lupus Erythematosus International
Collaborating Clinics [SLICC (2)] sets of classification criteria.
In the introduction to the revised SLICC SLE classification
criteria it is stated “To ensure that there is a consistent
definition of SLE for the purposes of research and surveillance,
classification criteria for SLE are needed” (2). This statement
indicates that the ACR or SLICC classification criteria are
valid as reliable approaches to define SLE, even though
they do not define SLE as a homogenous disease since
the classification criteria by definition provides hundreds of
clinical phenotypes [discussed in (3)]. Figure 1 principally
demonstrates the clinical phenotype variability problem. One
basic problem is that the SLE study objects—the patients—
are included based on selected heterogeneous clusters of
classification criteria as defined in the 1982 ACR (1), the
1997 revised ACR (4), the 2012 SLICC criteria (2) and
recently the 2019 EULAR/ACR classification criteria for SLE
(5) instead of selecting cohorts of patients with a homogenous
phenotype like lupus nephritis and anti-dsDNA antibodies as
selection parameters.

This critical argumentation is not equally relevant to studies
on elements of systemic autoimmunity, like autoimmunity to
dsDNA in SLE [see e.g., (3, 6–16)]. Such studies are focused
on distinct autoimmune processes that are unlinked from a
solitary SLE context, as is indicated by the triangular1 link
of anti-dsDNA antibodies to SLE, infections and malignancies
(Figure 2A). Autoimmunity to chromatin structures is, however,
relevant for SLE (11, 13, 14, 35–38), and for pathogenesis of
organ manifestations like lupus nephritis, dermatitis and cerebral
affections, as discussed below.

Paradoxically, we are not able to explain why the classification
criteria by any combinations define SLE. The criteria are neither
etiologically nor pathogenetically linked to each other, a problem
that has not been seriously discussed [see published discussions
in (1, 2, 5)]. In the context, lupus nephritis may robustly stand on
own feet as a unique and identifiable disease, as unintentionally
(?) indicated in the SLICC criteria, as this set of criteria
says that a person may have SLE if positive for anti-dsDNA
antibodies and demonstrating proteinuria. Thus, we are not able
to provide a concise definition of SLE and lupus nephritis, but
we identify SLE when we encounter patients. This is based on
inconsistent rather than coherent classification criteria, intuition,
and on experience.

1Triangular in this context: Relating to, or involving three elements (Merriam-

Webster).

SYSTEMIC LUPUS
ERYTHEMATOSUS—THE SYNDROME

SLE is an enigmatic disease, in which little of its pathogenesis
and less of its etiology is understood. In the history of SLE,
it is not possible to recognize penetrating studies that focus
on an autoimmune origin (in sense of etiology) of SLE, but
autoimmunity is recognized as a disease-modifying factor (in
sense of pathogenesis) that promote disease progression (3,
39–41). Rather, genetics in humans (42–44) and in mice (45,
46), infections (13, 15, 47–53), or cancers (13, 54–57) may be
relevant research foci to study molecular processes accounting
for etiology. The transformation of etiology into pathogenic
autoimmune processes are regarded central to understand the
imaginative syndrome SLE.

SLE: Syndrome, Etiology, and
Pathogenicity—Clarifying the Terms
(Lexical and Logic Semantics and
Simplifications)
Three terms are used to describe SLE: Syndrome, etiology,
pathogenesis. The term syndrome means concurrence—
symptoms appearing simultaneously. Etiology comes from
etymologistic: the study of causation, origination from the Greek
α
,
ιτιoλιγíα, aitiología, “giving a reason for” (α

,
ιτíα, aitía, “cause”;

and -λoγíα, -logía) (58). Etiology means the predisposition
of a disease or syndrome, and therefore something that
promotes pathophysiologic processes. Pathophysiology means
the origination and development of a clinical disease. If etiology
means the basic initiator, pathogenesis means the effector
of the disease. These terms are important to consider if we
aim to understand how to categorize hypotheses, basic and
clinical science on SLE—and how to probe hypotheses aimed
to understand the impact of classification criteria. There exists
no evidence that SLE is promoted by an autoimmune etiology,
because the 11 ACR or 17 SLICC criteria are definitively
not connected to a common etiology. The criteria may per
statements appear cumulatively in the body at different time
points as specified (1, 2) and interpreted in the study of Arbuckle
et al. (59). Considering the highly diverse nature of individual
classification criteria, the criteria may in fact rely on different
etiologies, and consequently on different pathogenic processes.
The autoimmune pathogenesis involved in evolution of the
syndrome SLE may therefore be set in motion not by a uniform
underlying etiology, but by etiologies promoting individual
classification criteria. A definition of SLE as a syndrome
(3, 12, 39, 60) is therefore etymologically and theoretically
unjustified. There are few discussions related to this problem,
but are tangentially approached by Touma et al. (61).

Furthermore, accepting that criteria like “The anti-dsDNA
antibody” may appear timely unlinked from a clinically
overt pathogenic process challenges the Witebsky postulates
attempting to define a disorder as autoimmune and pertained by
a specific autoimmune response (62, 63) in analogy to the Koch’s
postulates to define a causative relationship between a defined
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FIGURE 1 | Principal problems linked to classification of systemic lupus erythematosus (SLE). Classification of SLE patients according to The American College of

Rheumatology (ACR) (A1,A2) or by The Systemic Lupus International Collaborating Clinics Criteria (SLICC) (B1,B2) classification criteria are descriptively

problematized. Each of the classification systems identify a substantial diversity of clinical phenotypes. The 11 ACR criteria is presented by numbers (A1, the

classification criteria are presented as a focused table in A2). Five patients are demonstrated. The patients share some criteria, but diverge with respect to others, and

their clinical phenotypes differ individually. Similarly, each of 11 clinical and 6 immunological SLICC criteria are presented by numbers (B1, the classification criteria are

presented as a focused table in B2). These chaotic figures (A1, B1) demonstrate that the use of the ACR and the SLICC criteria is problematic as bases for scientific

analyses covering genetics, etiology, pathogenesis, and response to experimental therapy in patient cohorts as the study objects do not represent a homogenous

group of patients. The patients in these figures are fictive but they reflect problems with the ACR and SLICC criteria in real life (Part of this figure (A) is a reprint with

permission of Figure 1 in Rekvig (3).
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FIGURE 2 | Principal problems linked to the ACR and SLICC classification criterion “The anti-dsDNA antibody” (criterion 11 in ACR) or “Anti-dsDNA” (criterion 6,

Immunological criteria, SLICC). Principal simplified problems are linked to the inadequate terminology of the anti-dsDNA antibodies. One problem [demonstrated in

(A)] illustrates that “The anti-dsDNA antibody” is not unique for SLE, but appears regularly in context of infections and malignancies (see text for details). Little is

examined whether anti-dsDNA antibodies are pathogenic and cross-reactive in the latter two categories of conditions (question marks in A) as they are in SLE. This

triangular nature of anti-dsDNA antibodies has not been considered in the classification criteria, and poorly in the relevant literature on SLE. The second dominant

problem considered for the “Anti-dsDNA antibody” is that the antibodies are presented as if “it” is monospecific for dsDNA. This has over decades crystallized the

conception that different assay systems detect antibodies possessing different avidities but not different specificities! This conflict is principally demonstrated in

(B). The “ssDNA/dsDNA” is categorized in 4 main categories with 5 subcategories for mammalian dsDNA, 2 for infectious dsDNA and 2 for cross-reaction of

anti-dsDNA for renal and non-renal proteins/phospholipids (see Table 1 for details on the latter category). Antibodies for all these dsDNA structures have been

identified by conventional assay systems, like ELISA in physiological salt (elongated/bent B dsDNA), in high salt (Z dsDNA), cruziform dsDNA, bacterial and viral

dsDNA in addition to heterogeneous binding to proteins and phospholipids. The idiom that anti-dsDNA antibodies bind dsDNA in a singular form as in the ACR or

SLICC classification systems must be challenged by the multifaceted recognition pattern of anti-dsDNA antibodies as informed in (B). Thus, data in this figure require

that assay systems for anti-dsDNA antibodies relates to categorized structural dsDNA specificities. Lack of implementation of the structural and molecular recognition

pattern recognized by individual anti-dsDNA antibodies undermine the potential clinical impact of anti-dsDNA antibody sub-specificities.

microbe and a consequently defined disease2. The essence
of the Witebsky postulates is that an autoantibody account
for a given tissue damage, and the characteristic pathological
changes can be reproduced upon transfer of the autoantibody
(or suspected T cells) into experimental animals. This is
discussed below.

2“Koch”. Random House Webster’s Unabridged Dictionary.

SLE: A Short History of Non-linear Periodic
Paradigm Shifts Leading to Our Times
Syndrome
The syndrome originally being described as a skin disease in
antiquity has evolved into a complex disease through milestones
defined as non-linear paradigm shifts (64–66).What can we learn
from this still ongoing evolution of SLE, and how can we include
the term SLE into a scientifically insinuated disease entity? In
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this context, the complexity of SLE and patients suffering from
SLE has been thoughtfully and eruditely presented by David
Isenberg (67).

The transformation of SLE from a serious monosymptomatic
skin disease into a syndrome has in Ludvik Fleck’s (68) and
Thomas Kuhn’s (69) sense not evolved linearly, but through
radical paradigm shifts. The central milestones appeared after
studies in the 1850ies and their aftermaths. Central perceptions
derive from paradigms settled by Cazenave in 1850ies (70),
and later by Kaposi (71), Osler (72, 73), and Jadassohn [(74),
reviewed in (64, 65, 70, 75)]. Through these paradigm shifts, the
definition of SLE has evolved into that of a syndrome including
systemic affection of viscera (71, 73) and later also comprising
immunological, biochemical and hematological parameters (1,
2, 5). This has resulted in new authoritarian descriptions of
SLE as in the canonical ACR (Figure 1A) or SLICC (Figure 1B)
sets of criteria. With still ongoing expansion of classification
criteria we have not reached a consensus on what SLE is, or
what its etiology or pathogenesis are. Thus, the paradigm shifts
resulting in the modern perception of SLE has not been very
helpful to understand what SLE basically is, but they provided an
understanding of its complex and systemic nature. An intriguing
question we can raise in this context is if SLE of today at all is the
disease known in antiquity as a skin disease.

When SLE should be interpreted from principals as those
observed, implemented and decoded in the classification criteria,
the positivists3 would (and indeed do so!) describe the syndrome
through collection of facts/criteria. The elements that exert this
collection of facts have, however, not reached a logic description
based on firm scientific data beyond statistical co-appearance
- cumulatively or simultaneously. By this, the syndrome SLE
can, as it is understood today, be classified by a hermeneutic4

approach to understand its nature.

SLE: A Primary or Secondary Autoimmune
Syndrome; Etiology vs. Pathogenesis
A classical statement promotes SLE as a prototype complex
autoimmune syndrome (1, 2, 5, 61, 76, 77). However, this
statement is standing in a certain contextual, but contrafactual
paradigm hampered by one central logical problem: We do not
understand an etiological origin of the classification criteria,
or what the link between the current criteria are. We have
till now not determined if they at all emerge from an inner
biological coherence. Theoretically, they might be determined
by a common etiology, or by diverse pathogenic processes
that account for the apparently non-coherent classification
criteria. If we aim our studies to understand the meaning of
all the classification criteria for SLE, we need to distinguish
the syndrom’s etiology from the (secondary) pathogenicity that
account for the manifold of the syndrome’s classification criteria.

3Positivism: A philosophical system founded by Auguste Comte, concerned with

positive facts and phenomena, and excluding speculation upon ultimate causes or

origins.
4Hermeneutics is the theory and methodology of interpretation, especially the

interpretation of biblical texts, wisdom literature, and philosophical texts.

The latter statement has not been profoundly discussed in
the literature. Only few exceptions from this offensive comment
on the classification criteria have been discussed. One obvious
exception is expressed in the SLICC criteria; a patient is said to
have SLE if having two criteria fulfilled: nephritis (proteinuria)
concurrently with anti-dsDNA antibodies (2). Here, the antibody
is strategically and logically linked to renal inflammation in a
causal relationship: The antibody as inducer of de facto renal
inflammation in accordance with the Witebsky proposals. The
other comes from a study published by Pisetsky et al. (77)
where they introduce a principal system for categorization of SLE
phenotypes; i.e., defining phenotypes of SLE in groups according
to interrelated criteria to define subgroups of SLE. In fact,
Pisetsky’s suggestion resembles data from Isenberg et al. where
they upon longitudinal studies of 988 SLE patients identified
different clusters of phenotypes (76). The newly suggested
revision of the criteria published by Aringer et al. (5) and Touma
et al. (61) do not help much here, as these revised criteria cement
non-interrelated affections into an enigmatic disease entity! This
is recently critically analyzed and discussed by Petri et al. (78).

SLE: A Cumulative Model for the
Classification of SLE Raises Problems
Linked to the Terms Etiology and
Pathogenesis
Relevant in the present context is to understand what ties
the evolving number of classification criteria together aimed
to classify the syndrome SLE—a common etiological or a
common pathogenetical mechanism? Or are they tied together
as a result of a domino effect of pathogenic events: one
leads to other events that are not initiated by the primary
etiology? And what is the rationale behind the statements in the
classification criteria that any events (processes, clinical criteria,
deviating laboratory parameters) counts over the timeline of the
syndrome. Classification criteria that appear disparate in time
count cumulatively. According to the definition of the term
syndrome—concurrence—this term does not harmonize with the
statement that the criteria may appear simultaneously or at any
time point in the history of a patient. If the criteria are related
to each other as inducers (autoimmunity?) or responders (organ
affections?) then how can the one or the other appear disparate
over years? This is an accepted, although contrafactual, statement
in the classification criteria which is not in agreement with the
Witebsky postulates to define a disease as caused by a specific
autoimmune antibody or an autoimmune T cell.

On the other hand, an autoimmune pathogenesis of SLE may
be a valid term for some of the criteria (like lupus nephritis or
lupus-related skin and cerebral affections) characterizing SLE.
In harmony with this, data demonstrate that the kidney disease
evolves and is maintained (pathogenesis), but not proven to be
initiated (etiology) by autoimmune responses with anti-dsDNA
antibodies as the central pathogenic factor (11, 16, 33, 79–81).
However, other criteria than lupus nephritis, lupus dermatitis
(82), and certain cerebral affections (83), have pathogenic origins
that are beyond the impact of anti-dsDNA antibodies. It may
be wise to probe the term autoimmune pathogenesis with the
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Witebsky postulates (62, 63) to establish a causative relationship
between a specific autoimmune response and a subsequent
autoimmune disease.

Another principal problem related to the use of classification
criteria is based on epidemiological studies and studies on the
effect of experimental therapeutic modalities. A critical question
must therefore be if patients implemented in multicenter-based
ACR or SLICC defined cohorts are homogenous to a degree that
allow us to validate results related to basic aspects of SLE, like its
etiology, pathogenesis, epidemiology and effect of experimental
therapy. This somewhat pedantic discussion is important since
SLE is regarded as an integrated and unified syndrome—however
without parameters that justify this assumption.

CURRENT APPROACHES TO STUDY THE
NATURE OF SLE

The contemporary ACR or SLICC criteria-related definitions
of SLE and its canonical link to autoantibodies against dsDNA
(10, 13, 14) can be confronted by argumentations at different
theoretical levels;

i. Do we have clear evidence-based definitions of the syndrome
and its marker antibodies;

Our contemporary insight into the syndrome SLE derives from
three mainstream types of scientific approaches. One is based
on identifying basic hypotheses related to separate processes
accounting for individual classification criteria. The second
approach is aimed to analyse why a wide diversity of clinical,
biological, and biochemical parameters in SLE cohorts are
implemented as diagnostic and classification measures. The
third is a neglected approach; lack of studies to elucidate why
the diverse classification criteria are appearing clustered in
SLE. These approaches have not guided us into evidence-based
definitions of SLE and its canonical marker antibodies. If we are
going further into these problems, we do not need to generate
more classification criteria, we need to select conservative and
uniform selection criteria in order to implement homogenous
patient cohorts, like those positive for proteinuria and anti-
dsDNA antibodies. By this, we can analyse whether these two
selection criteria define SLE and classification criteria that are
pathogenetically linked to nephritis and anti-dsDNA antibodies.
To select cohorts based on all combinations of classification
criteria, as demonstrated in Figure 1, may yield some statistically
significant combination of symptoms/parameters, but not
information on pathogenesis and even less on etiology of each
criterium or SLE itself.

ii. Do we perform sound theoretical considerations applied to
etiology and to pathogenesis of the syndrome itself as opposed
to its individual criteria;

Such requested studies are difficult to identify in historical
or contemporary studies. One possible approach could be to
identify analytically or through studies of relevant literature
etiological and pathogenetic processes accounting for individual
classification criteria.

iii. Can we implement open-minded reservations in this
argumentation, or is this approach dominated by
dogmatic conclusions deriving from statistical data (the
positivistic approach)?

In my opinion we have to generate clear reservations when
implementing newly and previously defined classification
criteria. If statistically significant associations of criteria should
be weighted, then biological and pathogenical studies must be
performed to promote information as to why these criteria tell
us something about SLE.

Therefore, prevailing limitations of contemporary cohort
studies are founded on analyses of highly heterogenic groups of
SLE patients [discussed in (3)]. This simple fact makes studies of
SLE difficult without clearly defined and reflected hypotheses (see
suggested hypotheses in the conclusion section).

WHAT MAY EMERGE FROM THESE
THEORETICAL TRIBULATIONS AND
CONSIDERATIONS?

A conclusion of these reflections and concerns is that we
need to reconsider how we classify SLE. We also need to
generate new testable hypotheses, and accordingly to perform
studies on clinically homogenous patient cohorts, and to define
biomarkers relevant for such homogenous cohorts of SLE
patients. Basically, we need to determine whether revised or
contemporary classification criteria for SLE are etiologically or
pathogenetically logic and understandable. In sum, we must
prioritize, or categorize according to Pisetsky’s definition (77), the
criteria to approach a more uniform and homogenous definition
of the syndrome SLE. For example, a homogenous cohort could
be patients demonstrating anti-dsDNA antibodies concurrently
with proteinuria, taking only these two criteria into account. In
that context it would be intriguing to observe which of clinical or
laboratory parameters would deviate from normal values.

“THE ANTI-DSDNA ANTIBODY” - AN
ACCOUNT TO ITS NATURE AND
STRUCTURAL DNA SPECIFICITIES

This heading indicates a problem. “The anti-DNA antibody,”
as defined in ACR or SLICC classification criteria, is just that,
and does not reflect anti-dsDNA antibodies specific for various
dsDNA structures (see Figure 2B). This statement underscores
the problems defined in the following proclamations. Anti-
dsDNA antibodies occur in SLE, are a classification criterion for
SLE, exist in autoimmune syndromes other than SLE (13), in
bacterial (48, 53, 84), viral (49, 85–87), and parasitic infections
(88), and in cancers [(89), see Figure 2A). Importantly, these sets
of anti-dsDNA antibodies have multiple specificities for unique
DNA structures (Figure 2B). They have a pathogenic impact in
SLE (but not in infections or in cancers?), and they may even
be detected in healthy individuals [see general discussions in
(10, 13, 14)].
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Anti-dsDNA Antibodies: Appearing in
Principally Different Clinical Conditions
The annexation of “The anti-DNA antibody” as a criterion for
SLE does not communicate its pertinent clinical impact aside
from simply being claimed to be involved in lupus pathogenesis
[although how is still disputed (11)] or in which circumstances
the antibodies are clinical epiphenomena distinctively separated
from their assumedly pathogenic effects or their status as
biomarker. See in this context a concise discussion of the
term biomarker by Califf (90). Thus, rather of being a unique
biomarker antibody for SLE, the antibodies demonstrate clinical
associations with SLE, infections and malignancies, aside from
appearing sporadic in other disorders (13).

In SLE, anti-dsDNA antibodies are pathogenic in context of
lupus nephritis (11, 79), dermatitis (82, 91), and in certain forms
of cerebral lupus (27, 83, 92).Whether these pathogenic pathways
are determined by cross-reaction with non-DNA structures
(see Table 1 for examples) or by homologous recognition of
chromatin/dsDNA exposed in e.g., glomeruli (11, 93, 94), skin
basement membranes (82), or in the brain (27) is still not firmly
established. These clinical origins of anti-dsDNA antibodies has
not been seriously considered in the classification criteria, nor
in the relevant literature on anti-dsDNA antibodies and SLE
[discussed in (1, 2, 5, 13, 14, 39)].

Anti-dsDNA Antibodies: Recognition of
Disparate Unique dsDNA Structures and
Not Simply dsDNA (a Review of Relevant
Literature)
In the modern history of DNA discoveries, different forms of
DNA structures have been described in highly focused research
projects directed at describing what DNA is, which DNA
structures exist, and their role in facilitating and regulating
transcription of genes. Therefore, the second principal problem
to be considered is that the antibodies are presented as if
they constitute one specificity for dsDNA— “The anti-dsDNA
antibody” (1, 2, 5). “The anti-dsDNA antibody” is not an
unambiguous term, and the antibody reflects specificities to
a variety of structures far beyond the canonical double helix
structure. These structures represent the contexts in which
dsDNA is presented to the immune system. The term “The anti-
dsDNA antibody” comprises specificities toward ssDNA (95),
Z DNA [left-handed dsDNA (96–99)], bent and elongated B
DNA [right-handed dsDNA (100, 101)], diverse ss- and ds-
RNA sequences and RNA-DNA double-strand hybrids (102,
103), folded and unfolded cruciform DNA structures (104,
105), bacterial DNA (106, 107), and finally different forms of
viral dsDNA (108–110) that differ from mammalian dsDNA
structurally and serologically (85, 110). Among these individual
DNA structures, the most enigmatic in an auto-immunogenic
context is the mammalian B form of dsDNA, since many
of the other DNA structures were proven immunogenic, but
this was not the case with mammalian B DNA. Therefore,
over decades B DNA was considered non-immunogenic [(99,
111, 112), reviewed in (13)]. Anti-dsDNA antibodies further
cross-react with a large panel of proteins and phospholipids.

TABLE 1 | Examples of anti-dsDNA antibodies that cross-react with non-DNA

structures.

Anti-dsDNA antibody cross-react with References

α-actinin (17, 18)

Laminin (19, 20)

C1q (21)

Several cross-reactive activities presented at “Fifth

International Workshop on anti-DNA anti-bodies in London

2002 to highlight relevant

properties of pathogenic anti-DNA antibodies” (22)

Phospholipids (23)

Nucleosomes (24)

Platelet integrin GPIIIa 49–66 (25)

TLR 4 (26)

NR2 glutamate receptor (27)

Cell surface proteins*** (28)

Ribosomal P protein (29)

Collagen IV (30)

Pneumococcal antigen (31)

EBNA (32)

Entactin (33)

Entactin* (34)

*Mono-specific anti-Entactin antibody is included to suggest a control non-cross-reactive

antibody to determine if dsDNA as a cross-reactive specificity is required to gain

pathogenic potential.

This heterogenous group of antigens targeted by anti-dsDNA
antibodies are exemplified in Figure 2B andTable 1. The referred
antibody specificities have been detected in natural situations
(13), while antibodies have at least been raised experimentally to
cruciform DNA structures (105).

One relevant question in this regard is whether fine molecular
DNA antibody-specificities differ between their appearance in
infections, malignancies and in SLE, as some antibodies may
appear depending on the clinical situation, as is demonstrated
for experimental induction of Z dsDNA but not B dsDNA
specific antibodies in mice (99) although both appear in SLE.
A similar observation relates to the fact that the frequency of
antibodies to elongated mammalian dsDNA, as nucleosomal
linker dsDNA, is higher than antibodies to bent dsDNA as in
the core mononucleosome, both present on the same chromatin
structure (101, 113, 114) or to bent dsDNA as in the plasmid of
Crithidia luciliae (100).

ANTI-dsDNA ANTIBODIES: ASSAY
CONDITIONS DO NOT PER SE

DETERMINE LEVELS OF ANTIBODY
AVIDITIES, BUT REFLECT DISPARATE
UNIQUE dsDNA SPECIFICITIES

The term “The anti-dsDNA antibody” has over decades shaped
the concept that different assay systems detect antibodies
possessing different avidities to dsDNA, but not different
molecular or structural dsDNA specificities. This problem has

Frontiers in Immunology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 569234

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Critical Viewpoints on SLE

not been considered when discussing binding of antibodies to
dsDNA in principally different antibody assay systems. This
conflict is demonstrated in Figure 2B. Antibodies binding the
“ssDNA/dsDNA” structures are in the figure classified into 4
main categories with 5 subcategories for mammalian dsDNA, 2
for infectious dsDNA and 2 for cross-reaction of anti-dsDNA
antibodies with renal and non-renal proteins and phospholipids
(Figure 2B, see Table 1 for details on the latter categories). These
categories and subcategories are examples of pertinent diversity
of dsDNA structures recognized by this family of antibodies
[see e.g., (115–117), all specific for functional DNA structures or
infectious-derived chromatin/DNA].

Antibodies for these dsDNA structures have been identified
by conventional assay systems, like ELISA-based detection of
anti-dsDNA antibodies against dsDNA in physiological salt; in
high salt (Z dsDNA); cruziform dsDNA; bacterial and viral
dsDNA [summarized in (10, 13)]. The idiom that anti-dsDNA
antibodies are presented in a singular form (“The dsDNA”)
must be challenged by the comprehensive structural recognition
diversity. This clearly opens for individual specificities generated
by different functional/structural states of dsDNA rather than
individual avidities (either low or high) linked to different assay
conditions. For example, if an antibody binds dsDNA in 2M
NaCl, it binds to a structure shaped in 2M NaCl; the Z dsDNA
(99, 118–121), and not because it has a high avidity over-winning
the strength of the high salt concentration as in the Farr assay
(122–124). This is also relevant for binding of other proteins
to dsDNA structures in various salt concentrations (125–127).
This difference is also evident from the fact that it is easier to
experimentally induce antibodies to Z dsDNA than to B dsDNA
(99). Similarly, antibodies that bind elongated dsDNA as in
ELISA and antibodies that bind bent dsDNA as in Crithidia
luciliae or in the core nucleosome may possess the same level
of avidities, but the antibodies recognize different structures,
elongated vs. bent dsDNA (128).

Thus, interpretation of data in Figure 2B demonstrate that
assay systems for anti-dsDNA antibodies detect specificities that
may have no or high potential impact as biomarker for SLE.
Their individual impact as classification criteria for SLE has,
however, not been investigated. This problem needs to be solved
in order to select the proper assays for clinically relevant anti-
dsDNA antibodies.

Anti-dsDNA Antibodies: Immunogenic
Origin—Facts and Controversial
Hypotheses
The third principal problem considered for the anti-dsDNA
antibodies relates to its biological origin—what imposes
production of these antibodies. Normally, mammalian dsDNA
is non-immunogenic (111, 129, 130). Tolerance in a normal
homeostatic situation is maintained at several biological check-
point levels. B cells specific for dsDNA above a certain level
of affinity are deleted in the bone marrow (131, 132); their
antigen receptors are edited, with loss of affinity for dsDNA
[(133–135), see a general discussion in (136)]; or they may
appear anergic and non-functional (137, 138). Tolerance is also

controlled by T helper cells. CD 4+ T cell deletion prevents
autoimmunity, and CD 4+ T cells targeting chromatin-derived
peptides are normally anergic (139). This is evident from
experiments demonstrating that anergic CD 4+ T cells can be
rendered functional in response to IL-2 (140, 141), thus helping
B cells to transform into antibody-producing plasma cells. If
such cells are deleted (142, 143), this will prevent B cells to
receive competent CD4+ T cell signals to be transformed into
antibody-producing plasma cells. This situation is presented in
a simplified version in Figure 3A, where tolerant (anergic or
deleted) T cells are indicated.

In SLE, however, autologous chromatin may gain
immunogenic power because e.g., histone-specific CD 4+
T cell tolerance is truly terminated [Figure 3B, as described
in (144–146, 148, 149)]. Termination of histone-specific
CD4+ T cell tolerance is also easily achieved in experimental
contexts (140, 141, 150), thus demonstrating that CD4+ T cell
autoimmunity to chromatin-derived peptides is a latent property
of the normal immune system (141).

Data have been demonstrated that infections may provide
chromatin-binding proteins allowing cognate interaction of
chromatin-specific B cells and non-tolerant helper T cell specific
for the infectious chromatin-associated proteins [Figure 3C, see
e.g., (13, 15, 49, 50, 86, 147)]. This model is denoted the hapten-
carrier model for in vivo-induction of anti-chromatin/anti-
dsDNA antibodies.

Anti-dsDNA antibodies can also be produced through a
mechanism known as molecular mimicry (151–154), and the
central and important study by Lafer et al. published in 1981
opened this topic for further studies of molecular mimicry
as a potential driving force for appearance of anti-dsDNA
antibodies (23).

Which of these models (described in Figures 3B,C) are
operational in malignancies have not been investigated in
depth. Since malignancies are complicated by viral and bacterial
infections (155–157), this apprehension may hypothetically
authorize the hapten-carrier model for infection-induced anti-
dsDNA antibodies also in malignant diseases [as indicated in
Figure 3C, exemplified by the role of e.g., the viral dsDNA-
binding polyomavirus T antigen (50, 147)]. It is therefore
tempting to assume that infections in malignant diseases
may encompass a model in analogy to the one presented
in Figure 3C—the hapten-carrier model, as explained in the
next section.

Anti-dsDNA Antibodies: In vivo Expression
of Virus-Derived, DNA-Binding Proteins
Render Chromatin Immunogenic—
Evidence for the Hapten-Carrier Model
In Table 2, data are presented providing evidences that in vivo
expression of single dsDNA/chromatin-binding viral proteins
instigate the production of anti-dsDNA, anti-histone, and anti-
transcription factor antibodies like anti-TATA-binding protein
(TBP), anti-cAMP-response element binding protein (CREB)
antibodies in accordance with the hapten (dsDNA) -carrier
(viral dsDNA-binding protein) model. Molecular mimicry is less
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FIGURE 3 | Principal basic problems attempting to describe how or why

chromatin/dsDNA execute their immunogenic potential in vivo. Concerning the

origin of anti-dsDNA antibodies, they are not induced on a normal immune

background by exposure of pure autologous chromatin [A,

(7, 111, 112, 129, 134, 136)], although autologous chromatin may gain

immunogenic power in situations where helper T cell tolerance is truly

terminated as demonstrated in SLE [B, (141, 144–146)]. Infections may

provide chromatin-binding non-self-proteins that allow cognate interaction of

(Continued)

FIGURE 3 | chromatin/dsDNA-specific B cells and non-tolerant helper T cells

specific for the infectious chromatin-associated protein [C, see Table 2 for

examples (15, 49, 50, 86, 147)]. However, the possible immunogenicity of

chromatin in malignancies has not been explored in depth, although infections

as are predisposed for in cancers may encompass a model that is analogs to

the one presented in (C) (C is reprinted with permission from Figure 5 in

Rekvig (3)].

probable as explanation for production of anti-dsDNA in context
of these experiments, since in vivo-expression of a mutated
SV40T antigen, the SLT155T>S, rendered the SV40T antigen
non-dsDNA-binding and did not elicit production of anti-
dsDNA or anti-histone antibodies [Table 2, (147)]. Expression of
this mutant protein resulted, however, in antibodies to T antigen
(Table 2). Summarizing the models described in Figures 3A–C

and Table 2, tolerance is maintained in a normal individual,
terminated in SLE patients and lupus-prone mice, and tolerance
is also terminated in context of certain (complicating) infections.

Anti-dsDNA Antibodies: Tolerance to
Chromatin and the Role of Autologous
Chromatin-HMGB1 Complex and of DNase
1L3 Gene Deficiency in Promoting
Anti-dsDNA Antibody Responses
There is still, aside from generation of hypotheses (158–161),
no consensus as to whether pure autologous chromatin is
rendered immunogenic in context of reduced clearance of
apoptotic chromatin from dead and dying cells. Furthermore,
no firm evidence has been provided that exposure of neutrophil
extracellular traps (NETs) induce antibodies to dsDNA [see e.g.,
an insightful and still relevant discussion by Pieterse and van
der Vlag (162)]. These hypotheses have been discussed over
the last 2 decades, although sound experimental biologically
relevant evidences are still lacking [see a discussion in
(3, 13, 161, 162)].

Two independent observations may, however support the
view that autologous chromatin possesses auto-immunogenic
potential. Urbonaviciute et al. demonstrated that anti-
dsDNA/chromatin antibodies are induced upon exposure
of the high mobility group box protein 1 (HMGB1) tightly
attached to chromatin in apoptotic cells (150). In another study,
a null mutation in the DNase1L3 gene was described in SLE
patients with lupus nephritis (163). This deficiency correlated
with production of anti-dsDNA antibodies and lupus nephritis.
In agreement with the observational study in familiar SLE,
mice with experimentally deficient expression of the DNase 1L3
gene developed analogous anti-dsDNA antibodies and lupus
nephritis (164). Thus, in DNase 1L3 gene deficient individuals
extracellular degradation of chromatin is reduced and this
deficiency correlates with promotion of anti-dsDNA antibodies.
Thus, clearance deficiency of chromatin due to DNase 1L3
deficiency or release of extracellular chromatin in complex
with HMBG1 from apoptotic cells, are two potential sources of
complex autologous immunogens in both mice and humans.
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TABLE 2 | Experimental expression of single viral DNA-binding proteins in context of plasmid injections, promote production of anti-dsDNA antibodies and to a variety of

chromatin proteins.

Plasmid promoter Expressed

antigen

Anti-T antigen

antibodies

Anti-dsDNA

antibodies

Anti-Histone

antibodies

Anti-TBP* Anti-CREB** References

pRSV-BKT RSV LTRt Pyv T ag 681 ± 40 *** 715 ± 69 557 ± 112 318 ± 99 402 ± 91 (50, 147)

pRcCMV-BLT HCMV ie-1 Pyv T ag 1282 ± 186 871 ± 53 763 ± 87 468 ± 254 552 ±186 (50, 147)

pBS-BLT None Not expressed Not detected Not detected Not detected Not detected Not detected (50, 147)

pRcCMV-SLT155 HCM ie-1 SV 40T ag 573 ± 34 360 ± 46 259 ± 52 Not tested Not tested (50, 147)

pRcCMV-SLT155T>S HCM-ie-1 SV 40T ag

Mutant

non-dsDNA binding

442 ± 44 29% ± 2, 5**** Not detected Not tested Not tested (50, 147)

pRA 17 SCM-ie 1 EBNA 1 (69.7 kDa) Not tested EBNA-1, dsDNA,

Sm

Not tested Not tested Not tested (49)

All reported experiments are performed in BALB/c mice.

*TATA-binding protein.

**cAMP-response element binding protein.

***The results are given as titers. These were determined by ELISA analyses of the induced serum antibodies aimed to quantify autoantibodies in mice injected by various T antigen

expressing/non-expressing plasmids. The titers were determined from 2-fold dilution curves starting from dilution 1/100. The titers were defined as the reciprocal value of the dilution

giving 50% of maximal binding to wells, as determined by individual reference sera (147).

****These sera gave only marginal binding values as their binding at 1/100 dilution gave only 29% of the binding of a reference serum included in these assays.

ANTI-dsDNA ANTIBODIES AND LUPUS
NEPHRITIS

In the next section new aspects and interpretive problems will
be discussed in attempts to understand the link between anti-
dsDNA antibodies, lupus nephritis and SLE. This is on one hand
easy to do when considering the enormous amount of studies
accepting this linkage, but on the other hand difficult if basic
scientific data are considered critically.

SLE and “The Anti-dsDNA Antibody”
—Clinical and Biological Contexts
Anti-dsDNA antibodies were first described in an infectious
context in 1938–1939 (165–167), while in an autoimmune
context in 1957 (168–171). Despite considerable scientific efforts
we have not reached consensus on four fundamental aspects
of anti-dsDNA antibodies in SLE. These aspects are comprised
by four dogmatic areas: Their (i). Origin, (ii). Structural DNA
specificities, (iii). Pathogenic impact, and iv.Assumed link to SLE
[see discussions above and in (3, 11, 13, 14, 172)].

Anti-dsDNA Antibodies—Specificity
Critically Determines Nephrogenicity and
May Also Affect Alveolitis and Dermatitis?
Consensus has been established that anti-dsDNA antibodies
promote lupus nephritis. How they do so are still controversial.
The schisms divide scientists into two main interpretive groups.
One assumes that the antibodies bind chromatin exposed in the
kidneys (11, 173–176). This model is presented in Figure 4A. The
other mainstream model implies that nephritogenic anti-dsDNA
antibodies cross-react with intrinsic glomerulus basement
membrane (GBM) constituents (illustrated in Figures 4B, 5).
Which of the many autoantibodies described in SLE (183)
involved in promotion of lupus nephritis remain, however,
elusive. The cross-reacting antibodies assumed to be implicated

in lupus nephritis recognize among many ligands laminin (19,
184, 185), α-actinin (17, 18, 186), C1q (21), and entactin [(30, 33),
Table 1].

There is, however, one central problem in these studies. Each
of them focuses on one cross-reactive pattern and conclude
that the actual cross-reaction correlates with lupus nephritis.
Surprisingly, no discussion is presented that require a mutual
multicenter study that compare the different cross-reactions in
one cohort of lupus nephritis patients. This approach is awaited
because nephritogenic-prone cross-reactions can be identified,
and those that do not correlate with nephritis can be separated
as unrelated epiphenomena. It would be important also to test
if mono-specific antibodies not recognizing dsDNA, like those
monospecific for e.g., laminin, or α-actinin, have the potential
to promote lupus-like nephritis, as is suggested for the mono-
specific anti-entactin antibody presented in Table 2.

To understand the basis for these problems, it is necessary
to understand the unique processes of the two dominating
models for lupus nephritis. In Figure 4A, the chromatin model
is presented. On top, a principal presentation of the architecture
of a glomerulus is illustrated and in Line 1 a principal transition
of the mesangial matrix into the GBM is indicated.

In a classical progression of lupus nephritis, as described
in (NZBxNZW)F1 mice (177, 178) chromatin-IgG complexes
deposit in the mesangial matrix and form the early mesangial
nephritis (Figure 4A, line 2). One consequence of this
limited inflammation is silencing of renal DNase 1, reduced
fragmentation of chromatin from dead cells, and subsequent
accumulation of large chromatin fragments in complex with
IgG in the GBM [line 3, (178, 179)]. This process forms the
basis for a systemic glomerular inflammation and progression
of lupus nephritis into end stage renal disease. Silencing of
DNase 1 expression in this situation is unique to the kidney and
does not occur in other organs (179). Notably, the mesangial
matrix and the GBM share constituents like laminins, collagens
and entactin. As chromatin-IgG complexes bind laminins and
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FIGURE 4 | Principal problems to be solved before the chromatin or the cross-reactive model for lupus nephritis can be settled. In (A), the chromatin model is

presented. On top, a principal presentation of the architecture of a glomerulus is described. In line 1, the mesangial matrix (blue) and its transition into the GBM (red) is

principally demonstrated. In a classical progression of lupus nephritis (177, 178), chromatin-IgG complexes deposit in the mesangial matrix and form the early

mesangial nephritis (line 2). One consequence of this limited inflammation is silencing of the renal endonuclease DNase 1, a consequent reduced fragmentation of

chromatin from dead cells, and a subsequent deposition of large chromatin fragments in complex with IgG within the GBM [line 3, (178, 179)]. This forms the process

that promote glomerular inflammation and progression of lupus nephritis into end stage disease [discussed in (11)]. Silencing of DNase 1 expression in this situation is

unique to the kidney and does not occur in other organs (179). Since chromatin-IgG complexes bind laminins and collagens in the GBM with relatively high affinity

(180), and are released locally in the glomerulus, these observations may explain the canonical progression of lupus nephritis as described by Weening et al. (177).

This process may have therapeutic consequences, since chromatin prone to be deposited in GBM may be removed by flushing kidneys with the negatively charged

heparin or other analogous chaperone molecules [line 4, (181)5], and theoretically, the process may be interrupted upon upregulation of renal DNase 1 expression [line

5, (181)]. In (B), the glomerulus architecture is organized as in (A), and the matrix-GBM transition is principally illustrated (line 1). In the cross-reacting model,

cross-reacting anti-dsDNA antibodies bind intrinsic glomerular structures like entactin, laminin or collagen (line 2, see also data in Table 2). Since these antibodies

may bind ligands shared by mesangial matrix and GBM, the antibodies are expected to bind simultaneously in the mesangial matrix and in the GBM (line 2). Therefore,

the cross-reactive antibodies might well-initiate a glomerular inflammation more similar to the renal inflammation in Goodpasture syndrome (line 3) than to the stepwise

progression of lupus nephritis as illustrated in (A), lines 2 and 3. This consequence has not been considered in the relevant literature. One possible exception for this

Goodpasture-like inflammation would be an early production of antibodies specific for a ligand unique for the matrix (suggested in line 4) and that the mesangial

(Continued)

5Jenny Buckland. Therapeutic targeting of chromatin in lupus nephritis? Research Highlights Nat Rev Rheum. (2011) 7:132.
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FIGURE 4 | nephritis promoted by this particular antibody incites an inflammation that down-regulates renal DNase 1 and a subsequent exposure of undigested

chromatin fragments in complex with IgG anti-chromatin antibodies in GBM. This would promote the evolution of progressive lupus nephritis. In contrast to this

hypothetical model, lines 5 and 6 summarize progressive lupus nephritis according to the chromatin model. These principally conflicting models are summarized in

(A), lines 2 and 3 for the chromatin model, and in (B), line 2 for the cross-reactive model [This figure is a revised and extended version of Figure 4 in Rekvig et al. (182)

with permission from Elsevier (License number 4832930988362)].

FIGURE 5 | Principal problems linked to the cross-reactive model for lupus nephritis. The cross-reactive model inherits another provoking problem. Laminins, entactin

and collagens are obligate constituents in all basement membranes. This is relevant for basement membranes in glomeruli [see (11) for discussion], alveoli (187) and

skin (188). Accordingly, one should expect affection of glomeruli (A), alveoli (B) and skin (C) in analogy to Goodpasture syndrome [glomeruli and alveoli (189, 190)] and

autoimmune skin diseases (191–193). Surprisingly, in context of studies on the impact of cross-reactive anti-dsDNA antibodies as a model for pathogenesis of lupus

nephritis, the involvement in other organs has not been discussed or considered in the relevant studies. Observational and experimental studies argue against this

theoretical model. Analyses of nephritic glomeruli by electron microscopy (EM), immune EM (IEM), co-localization IEM, TUNEL co-localization IEM, allowed clear

indications that in vivo bound IgG were observed in electron dense structures (EDS) localized in the matrix and GBM [(194–196) summarized and discussed in (11)].

These EDS were TUNEL positive, and bound antibodies against histones, transcription factors and dsDNA added to sections in vitro. Because of the problematization

of how “The anti-dsDNA antibody” promotes lupus nephritis, questions that are illustrated in Figure 4, should be considered and focused on in future studies on the

distinct autoimmune pathogenesis of nephritis [A in this figure is a truncated reprint of Figure 4 in Rekvig et al. (182) with permission from Elsevier (License number

4832930988362)].

collagens with relatively high affinity (180), and are released
locally in the glomerulus, these observations may explain
the canonical progression of lupus nephritis from mesangial
nephritis into end-stage disease as described by Weening et al.

(177). This process may have specific therapeutic consequences,
since chromatin prone to be deposited in GBM may be removed
by flushing kidneys with heparin or other analogous chaperone
molecules [Figure 4A Line 4, (181)], and theoretically, the
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process will assumedly be interrupted upon upregulation of renal
expression of DNase 1 [(181), as indicated in Figure 4A, line 5].
Such experimental approaches are awaited.

In Figure 4B, the architecture of the glomerulus is
repeated, and the transition of the mesangial matrix into
the GBM is indicated (Figure 4B, line 1). Cross-reacting anti-
dsDNA antibodies bind non-dsDNA, intrinsic mesangial
matrix and GBM structures like entactin, laminin or
collagen (Figure 4B, line 2); thus, these antibodies may
from theoretical arguments simultaneously bind ligands
shared by the mesangial matrix and GBM. If this model is
correct, the cross-reactive antibodies might well initiate a
glomerular inflammation similar to the renal inflammation
in Goodpasture syndrome (Figure 4B, Line 3). The model
may indicate that mesangial nephritis does not precede
progressive lupus nephritis, but appear simultaneously. This
consequence of a cross-reaction has not been considered in
the literature.

One possible exception for this would be an early
production of antibodies specific for a ligand unique for
the matrix (suggested in Figure 4B, line 4) or that the
mesangial nephritis promoted by this particular antibody
incites an inflammation that down-regulates renal DNase
1 and subsequent exposure of large chromatin fragments
in GBM and thereby the evolution of progressive lupus
nephritis. In contrast to this hypothetical model, Figure 4B

lines 5 and 6 summarize progressive lupus nephritis
according to the chromatin model. These principally
conflicting models are summarized in Figure 4A, lines 2–
3 for the chromatin model, and Figure 4B, line 2 for the
cross-reacting model.

The cross-reactive model also inherits another provoking
problem that is not regarded in the literature. Since e.g.,
laminins, entactin, collagens, and other ligands are obligate
constituents in all basement membranes, this is relevant also
for basement membranes in glomeruli [discussed in (11)],
alveoli (187) and skin (188). Accordingly, one would expect
affection of glomeruli (Figure 5A), alveoli (Figure 5B) and
also skin (Figure 5C) in analogy to Goodpasture syndrome
[glomerulonephritis and alveolitis (189, 190)], and to
autoimmune skin diseases (191–193, 197). Surprisingly, in
context of studies on the impact of cross-reactive anti-dsDNA
antibodies as central in the pathogenesis of lupus nephritis,
the involvement in other organs has not been considered in
relevant studies.

Concluding Remarks and Four Concise
Hypotheses
SLE is a complex serious disease considered to rely on an
autoimmune pathogenesis. One central question arises from
the discussions above: Is SLE with nephritis another syndrome
than SLE without nephritis? And are the same clusters of
classification criteria, and the same sets of biomarkers linked
to SLE with and without nephritis or with or without anti-
dsDNA antibodies informing about the same fundamentals
of the disease? We do not need more classification criteria

in the aftermath of those tentatively identified till now. For
now, we first have to develop an understanding why they
appear in clusters and thereby why they define the syndrome
SLE. Today, these problems are hidden from our perspective
on SLE in our search for new classification systems for
SLE. We need a penetrating and better theoretical model
for SLE, to generate a basis for new and stringent cohort
studies. The discussions given above on classification systems
for SLE, anti-dsDNA antibodies and phenotypes of lupus
nephritis must be imperative to develop new concise and
testable hypotheses.

The following hypotheses may be considered.

• Analyzing cohorts of SLE patients selected by ACR or SLICC
criteria will identify a larger spectrum of deviating clinical and
biological parameters than homogenous cohorts of patients
selected based on e.g., proteinuria and anti-dsDNA antibodies.

• The “Anti-dsDNA antibody” has lower impact as a
classification criterium than anti-dsDNA antibodies specific
for certain unique dsDNA structures.

• Different assay systems detect antibodies with different
structural dsDNA specificities and not different avidities of the
antibodies detected in the individual assay systems, thus this
may result in different phenotypic presentations of SLE.

• If crossreacting anti-dsDNA antibodies bind renal basement
membrane structures like laminin, entactin and collagen, the
probability that they bind basement membranes in other
organs is high. If not, onemay question whether cross-reaction
is of clinical significance.

In sum, SLE remains an enigmatic disease despite (or because)
implementing new classification criteria; anti-dsDNA antibodies
in clinical medicine are still poorly defined; lupus nephritis
pathogenesis needs to be defined with respect to specificity of
nephritogenic anti-dsDNA antibodies: Specificity for dsDNA or
cross-reacting renal antigens.

DATA AVAILABILITY STATEMENT

The present article is a review on hypotheses and theories
related to murine and human SLE and lupus nephritis. All data
are taken from original published studies approved by relevant
ethical committees.

ETHICS STATEMENT

The present manuscript is a review on hypotheses and theories
related to murine and human SLE and lupus nephritis. All
data are taken from original published studies approved by
relevant ethical committees. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

Frontiers in Immunology | www.frontiersin.org 13 October 2020 | Volume 11 | Article 569234

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Critical Viewpoints on SLE

FUNDING

This study was supported by the University of Tromsø as
Milieu Support and a grant given by Norwegian Center for
Molecular Medicine, University of Oslo. The publication
charges for this article have been funded by a grant
from the Publication Fund of UiT The Arctic University
of Norway.

ACKNOWLEDGMENTS

I thank David S. Pisetsky, Duke University School of Medicine,
Marco Radic, The University of Tennessy Health Science Center,
and Dhivya Thiyagarajan, UiT The arctic University of Tromsø,
for longstanding critical discussions and considerations that

enriched my insight into the fields of SLE, lupus nephritis,
and anti-dsDNA antibodies. I am most indebted to Gunnar
Rekvig at UiT The arctic University of Tromsø for critical
reading and textual improvements of the manuscript. I thank
Ugo Moens and Bjarne Østerud, UiT The arctic University of
Tromsø, for collaboration and continuous support over years. I
am thankful to Rod Wolstenholme, Section for Dissemination
Services, UiT The arctic University of Tromsø, for patient
and never-ending support and expert help to prepare the
figures. His insight and stamina has helped me a lot. I
am finally thankful to Dr. Marie Buchman and the staff at
Fürst Medical Laboratory, Oslo, for triggering and renewing
my interest and engagement in autoimmune diagnostics,
etiology, and pathogenesis in general, but particularly related
to SLE.

REFERENCES

1. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The

1982 revised criteria for the classification of systemic lupus erythematosus.

Arthritis Rheum. (1982) 25:1271–7. doi: 10.1002/art.1780251101

2. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, et al.

Derivation and validation of the systemic lupus international collaborating

clinics classification criteria for systemic lupus erythematosus. Arthritis

Rheum. (2012) 64:2677–86. doi: 10.1002/art.34473

3. Rekvig OP. Systemic lupus erythematosus: definitions, contexts, conflicts,

enigmas. Front Immunol. (2018) 9:387. doi: 10.3389/fimmu.2018.00387

4. Hochberg MC. Updating the american college of rheumatology revised

criteria for the classification of systemic lupus erythematosus. Arthritis

Rheum. (1997) 40:1725. doi: 10.1002/art.1780400928

5. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman

R, et al. 2019 European League Against Rheumatism/American College of

Rheumatology Classification Criteria for Systemic Lupus Erythematosus.

Arthritis Rheumatol. (2019) 71:1400–12. doi: 10.1002/art.40930

6. Winkler TH, Jahn S, Kalden JR. IgG human monoclonal anti-DNA

autoantibodies from patients with systemic lupus erythematosus. Clin Exp

Immunol. (1991) 85:379–85. doi: 10.1111/j.1365-2249.1991.tb05735.x

7. Radic MZ, Weigert M. Genetic and structural evidence for antigen

selection of anti- DNA antibodies. Annu Rev Immunol. (1994) 12:487–

520. doi: 10.1146/annurev.iy.12.040194.002415

8. Stollar BD. The origin and pathogenic role of anti-DNA autoantibodies. Curr

Opin Immunol. (1989) 2:607–12. doi: 10.1016/0952-7915(90)90019-D

9. Wellmann U, Letz M, HerrmannM, Angermuller S, Kalden JR, Winkler TH.

The evolution of human anti-double-stranded DNA autoantibodies. Proc

Natl Acad Sci USA. (2005) 102:9258–63. doi: 10.1073/pnas.0500132102

10. Rekvig OP. Anti-dsDNA antibodies as a classification criterion and a

diagnostic marker for systemic lupus erythematosus: critical remarks. Clin

Exp Immunol. (2015) 179:5–10. doi: 10.1111/cei.12296

11. Rekvig OP. The dsDNA, Anti-dsDNA antibody, and lupus nephritis: what

we agree on, what must be done, and what the best strategy forward could

be. Front Immunol. (2019) 10:1104. doi: 10.3389/fimmu.2019.01104

12. Tsokos GC, Lo MS, Costa RP, Sullivan KE. New insights into the

immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol.

(2016) 12:716–30. doi: 10.1038/nrrheum.2016.186

13. Rekvig OP. The anti-DNA antibody: origin and impact,

dogmas and controversies. Nat Rev Rheumatol. (2015) 11:530–

40. doi: 10.1038/nrrheum.2015.69

14. Pisetsky DS. Anti-DNA antibodies - quintessential biomarkers of SLE. Nat

Rev Rheumatol. (2016) 12:102–10. doi: 10.1038/nrrheum.2015.151

15. Desai DD, KrishnanMR, Swindle JT, Marion TN. Antigen-specific induction

of antibodies against native mammalian DNA in nonautoimmune mice. J

Immunol. (1993) 151:1614–26.

16. Marion TN, Postlethwaite AE. Chance, genetics, and the heterogeneity

of disease and pathogenesis in systemic lupus erythematosus. Semin

Immunopathol. (2014) 36:495–517. doi: 10.1007/s00281-014-0440-x

17. Mostoslavsky G, Fischel R, Yachimovich N, Yarkoni Y, Rosenmann

E, Monestier M, et al. Lupus anti-DNA autoantibodies cross-

react with a glomerular structural protein: a case for tissue

injury by molecular mimicry. Eur J Immunol. (2001) 31:1221–

7. doi: 10.1002/1521-4141(200104)31:4<1221::AID-IMMU1221>3.0.CO;2-P

18. Deocharan B, Qing X, Lichauco J, Putterman C. Alpha-actinin is a cross-

reactive renal target for pathogenic anti-DNA antibodies. J Immunol. (2002)

168:3072–8. doi: 10.4049/jimmunol.168.6.3072

19. Sabbaga J, Line SR, Potocnjak P, Madaio MP. A murine nephritogenic

monoclonal anti-DNA autoantibody binds directly to mouse laminin, the

major non-collagenous protein component of the glomerular basement

membrane. Eur J Immunol. (1989) 19:137–43. doi: 10.1002/eji.1830190122

20. Ben-Yehuda A, Rasooly L, Bar-Tana R, Breuer G, Tadmor B, Ulmansky

R, et al. The urine of SLE patients contains antibodies that bind to the

laminin component of the extracellular matrix. J Autoimmun. (1995) 8:279–

91. doi: 10.1006/jaut.1995.0021

21. Franchin G, Son M, Kim SJ, Ben-Zvi I, Zhang J, Diamond B. Anti-

DNA antibodies cross-react with C1q. J Autoimmun. (2013) 44:34–

9. doi: 10.1016/j.jaut.2013.06.002

22. Mageed RA, Zack DJ. Cross-reactivity and pathogenicity of anti-DNA

autoantibodies in systemic lupus erythematosus. Lupus. (2002) 11:783–

6. doi: 10.1191/0961203302lu317oa

23. Lafer EM, Rauch J, Andrzejewski C Jr., Mudd D, Furie B, et al. Polyspecific

monoclonal lupus autoantibodies reactive with both polynucleotides and

phospholipids. J Exp Med. (1981) 153:897–909. doi: 10.1084/jem.153.4.897

24. Termaat RM, Assmann KJ, van Son JP, Dijkman HB, Koene RA, Berden JH.

Antigen-specificity of antibodies bound to glomeruli of mice with systemic

lupus erythematosus-like syndromes. Lab Invest. (1993) 68:164–73.

25. Zhang W, Dang S, Wang J, Nardi MA, Zan H, Casali P, et al.

Specific cross-reaction of anti-dsDNA antibody with platelet integrin

GPIIIa49-66. Autoimmunity. (2010) 43:682–9. doi: 10.3109/08916934.2010.

506207

26. Zhang H, Fu R, Guo C, Huang Y, Wang H, Wang S, et al.

Anti-dsDNA antibodies bind to TLR4 and activate NLRP3

inflammasome in lupus monocytes/macrophages. J Transl Med. (2016)

14:156. doi: 10.1186/s12967-016-0911-z

27. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond

B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2

glutamate receptor in systemic lupus erythematosus. Nat Med. (2001)

7:1189–93. doi: 10.1038/nm1101-1189

28. Raz E, Ben Bassat H, Davidi T, Shlomai Z, Eilat D. Cross-reactions of

anti-DNA autoantibodies with cell surface proteins. Eur J Immunol. (1993)

23:383–90. doi: 10.1002/eji.1830230213

Frontiers in Immunology | www.frontiersin.org 14 October 2020 | Volume 11 | Article 569234

https://doi.org/10.1002/art.1780251101
https://doi.org/10.1002/art.34473
https://doi.org/10.3389/fimmu.2018.00387
https://doi.org/10.1002/art.1780400928
https://doi.org/10.1002/art.40930
https://doi.org/10.1111/j.1365-2249.1991.tb05735.x
https://doi.org/10.1146/annurev.iy.12.040194.002415
https://doi.org/10.1016/0952-7915(90)90019-D
https://doi.org/10.1073/pnas.0500132102
https://doi.org/10.1111/cei.12296
https://doi.org/10.3389/fimmu.2019.01104
https://doi.org/10.1038/nrrheum.2016.186
https://doi.org/10.1038/nrrheum.2015.69
https://doi.org/10.1038/nrrheum.2015.151
https://doi.org/10.1007/s00281-014-0440-x
https://doi.org/10.1002/1521-4141(200104)31:4<1221::AID-IMMU1221>3.0.CO;2-P
https://doi.org/10.4049/jimmunol.168.6.3072
https://doi.org/10.1002/eji.1830190122
https://doi.org/10.1006/jaut.1995.0021
https://doi.org/10.1016/j.jaut.2013.06.002
https://doi.org/10.1191/0961203302lu317oa
https://doi.org/10.1084/jem.153.4.897
https://doi.org/10.3109/08916934.2010.506207
https://doi.org/10.1186/s12967-016-0911-z
https://doi.org/10.1038/nm1101-1189
https://doi.org/10.1002/eji.1830230213
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Critical Viewpoints on SLE

29. Takeda I, Rayno K, Wolfson-Reichlin M, Reichlin M. Heterogeneity of

anti-dsDNA antibodies in their cross-reaction with ribosomal P protein. J

Autoimmun. (1999) 13:423–8. doi: 10.1006/jaut.1999.0330

30. van Bavel CC, Fenton KA, Rekvig OP, van der Vlag J, Berden JH. Glomerular

targets of nephritogenic autoantibodies in systemic lupus erythematosus.

Arthritis Rheum. (2008) 58:1892–9. doi: 10.1002/art.23626

31. Putterman C, Limpanasithikul W, Edelman M, Diamond B. The double

edged sword of the immune response: mutational analysis of a murine

anti-pneumococcal, anti-DNA antibody. J Clin Invest. (1996) 97:2251–

9. doi: 10.1172/JCI118666

32. Yadav P, Carr MT, Yu R, Mumbey-Wafula A, Spatz LA. Mapping an

epitope in EBNA-1 that is recognized by monoclonal antibodies to EBNA-

1 that cross-react with dsDNA. Immun Inflamm Dis. (2016) 4:362–

75. doi: 10.1002/iid3.119

33. Krishnan MR, Wang C, Marion TN. Anti-DNA autoantibodies initiate

experimental lupus nephritis by binding directly to the glomerular basement

membrane in mice. Kidney Int. (2012) 82:184–92. doi: 10.1038/ki.2011.484

34. Saxena R, Bygren P, Butkowski R, Wieslander J. Entactin: a possible auto-

antigen in the pathogenesis of non-Goodpasture anti-GBM nephritis.Kidney

Int. (1990) 38:263–72. doi: 10.1038/ki.1990.195

35. Mobarrez F, Svenungsson E, Pisetsky DS. Microparticles as

autoantigens in systemic lupus erythematosus. Eur J Clin Invest. (2018)

48:e13010. doi: 10.1111/eci.13010

36. Pisetsky DS. Evolving story of autoantibodies in

systemic lupus erythematosus. J Autoimmun. (2019)

110:102356. doi: 10.1016/j.jaut.2019.102356

37. Wang X, Xia Y. Anti-double Stranded DNA antibodies: origin,

pathogenicity, and targeted therapies. Front Immunol. (2019)

10:1667. doi: 10.3389/fimmu.2019.01667

38. Starke C, Frey S, Wellmann U, Urbonaviciute V, Herrmann M, Amann K,

et al. High frequency of autoantibody-secreting cells and long-lived plasma

cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol.

(2011) 41:2107–12. doi: 10.1002/eji.201041315

39. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med.

(2008) 358:929–39. doi: 10.1056/NEJMra071297

40. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. (2011) 365:2110–

21. doi: 10.1056/NEJMra1100359

41. Hahn BH. Antibodies to DNA. N Engl J Med. (1998) 338:1359–

68. doi: 10.1056/NEJM199805073381906

42. Oparina N, Martinez-Bueno M, Alarcon-Riquelme ME. An update on the

genetics of systemic lupus erythematosus. Curr Opin Rheumatol. (2019)

31:659–68. doi: 10.1097/BOR.0000000000000654

43. Jiang SH, Athanasopoulos V, Ellyard JI, Chuah A, Cappello J,

Cook A, et al. Functional rare and low frequency variants in BLK

and BANK1 contribute to human lupus. Nat Commun. (2019)

10:2201. doi: 10.1038/s41467-019-10242-9

44. Goulielmos GN, Zervou MI, Vazgiourakis VM, Ghodke-Puranik Y,

Garyfallos A, Niewold TB. The genetics and molecular pathogenesis of

systemic lupus erythematosus (SLE) in populations of different ancestry.

Gene. (2018) 668:59–72. doi: 10.1016/j.gene.2018.05.041

45. Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus

erythematosus and lupus nephritis. Nat Rev Nephrol. (2015) 11:329–

41. doi: 10.1038/nrneph.2015.33

46. Crampton SP, Morawski PA, Bolland S. Linking susceptibility

genes and pathogenesis mechanisms using mouse models

of systemic lupus erythematosus. Dis Model Mech. (2014)

7:1033–46. doi: 10.1242/dmm.016451

47. Doaty S, Agrawal H, Bauer E, Furst DE. Infection and lupus: which causes

which? Curr Rheumatol Rep. (2016) 18:13. doi: 10.1007/s11926-016-0561-4

48. Pisetsky DS, Vrabie IA. Antibodies to DNA: infection or genetics? Lupus.

(2009) 18:1176–80. doi: 10.1177/0961203309106492

49. Sundar K, Jacques S, Gottlieb P, Villars R, Benito ME, Taylor DK, et al.

Expression of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) in the

mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J

Autoimmun. (2004) 23:127–40. doi: 10.1016/j.jaut.2004.06.001

50. Rekvig OP, Moens U, Sundsfjord A, Bredholt G, Osei A, Haaheim H, et al.

Experimental expression in mice and spontaneous expression in human SLE

of polyomavirus T-antigen. A molecular basis for induction of antibodies

to DNA and eukaryotic transcription factors. J Clin Invest. (1997) 99:2045–

54. doi: 10.1172/JCI119373

51. Qiu CC, Caricchio R, Gallucci S. Triggers of autoimmunity:

the role of bacterial infections in the extracellular exposure

of lupus nuclear autoantigens. Front Immunol. (2019)

10:2608. doi: 10.3389/fimmu.2019.02608

52. Brooks WH. Viral impact in autoimmune diseases: expanding the

“x chromosome-nucleolus nexus” hypothesis. Front Immunol. (2017)

8:1657. doi: 10.3389/fimmu.2017.01657

53. Hamilton KJ, Schett G, Reich CF, III, Smolen JS, Pisetsky DS. The binding of

sera of patients with SLE to bacterial and mammalian DNA. Clin Immunol.

(2006) 118:209–18. doi: 10.1016/j.clim.2005.10.009

54. Madrid FF, Maroun MC, Olivero OA, Long M, Stark A, Grossman

LI, et al. Autoantibodies in breast cancer sera are not epiphenomena

and may participate in carcinogenesis. BMC Cancer. (2015)

15:407. doi: 10.1186/s12885-015-1385-8

55. Mohammed ME, Abdelhafiz K. Autoantibodies in the sera of breast cancer

patients: antinuclear and anti-double stranded DNA antibodies as example.

J Cancer Res Ther. (2015) 11:341–4. doi: 10.4103/0973-1482.157314

56. Ngalamika O, Zhang Y, Yin H, Zhao M, Gershwin ME, Lu Q. Epigenetics,

autoimmunity and hematologic malignancies: a comprehensive review. J

Autoimmun. (2012) 39:451–65. doi: 10.1016/j.jaut.2012.09.002

57. Martin DN, Mikhail IS, Landgren O. Autoimmunity and hematologic

malignancies: associations and mechanisms. Leuk Lymphoma. (2009)

50:541–50. doi: 10.1080/10428190902780677

58. Last JM. A Dictionary of Epidemiology. 4th ed. Oxford: Oxford University

Press. (2000).

59. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ,

James JA, et al. Development of autoantibodies before the clinical

onset of systemic lupus erythematosus. N Engl J Med. (2003) 349:1526–

33. doi: 10.1056/NEJMoa021933

60. Lahita RG, Tsokos G, Buyon BP, Koike T. Systemic Lupus Erythematosus. 5

ed. New York, NY: Academic Press (2010).

61. Touma Z, Cervera R, Brinks R, Lorenzoni V, Tani C, Hoyer BF, et al.

Associations among classification criteria items within systemic lupus

erythematosus. Arthritis Care Res. (2019) doi: 10.1002/acr.24078. [Epub

ahead of print].

62. Witebsky E, Rose NR, Paine Jr, Egan RW. Thyroid-

specific autoantibodies. Ann N Y Acad Sci. (1957) 69:669–

77. doi: 10.1111/j.1749-6632.1957.tb49707.x

63. Rose NR, Bona C. Defining criteria for autoimmune diseases

(Witebsky’s postulates revisited). Immunol Today. (1993)

14:426–30. doi: 10.1016/0167-5699(93)90244-F

64. Smith CD, Cyr M. The history of lupus erythematosus. From Hippocrates to

Osler. Rheum Dis Clin North Am. (1988) 14:1–14.

65. Norman RA. The history of lupus erythematosus and discoid

lupus: from hippocrates to the present. Lupus Open Access. (2016)

1:1. doi: 10.35248/2684-1630.16.1.102

66. Hickman RJ. A historical look at the characterization of lupus as a systemic

disease. Rheumatologist. (2018).

67. Isenberg D. Thirty years, five hundred patients: some lessons

learned from running a lupus clinic. Lupus. (2010) 19:667–

74. doi: 10.1177/0961203309358600

68. Ludwik F. Entstehung und Entwicklung einer wissenschaftlichen Tatsache.

Einführung in die Lehre vom Denkstil und Denkkollektiv. (1980) Frankfurt

am Main: Suhrkamp.

69. Kuhn TS. The Structure of Scientific Revolutions. Chicago, IL: University of

Chicago Press (1962).

70. Holubar K, Fatovic-Ferencic S. Cazenave, Kaposi and lupus erythematosus.

A centennial and a sesquicentennial. Dermatology. (2001) 203:118–

20. doi: 10.1159/000051724

71. Kaposi KM. Neue beiträge zur kenntnis des lupus erythematosus.

Arch Dermatol Syphilis. (1872) 4:36–78. doi: 10.1007/BF019

21090

72. Osler W. On the visceral complications of erythemaexudativummultiforme.

Am JMed Sci. (1895) 1110:629–46. doi: 10.1097/00000441-189512000-00001

73. Osler W. On the visceral manifestations of erythema group of skin diseases.

Am J Med Sci. (1904) 127:1–23. doi: 10.1097/00000441-190401000-00001

Frontiers in Immunology | www.frontiersin.org 15 October 2020 | Volume 11 | Article 569234

https://doi.org/10.1006/jaut.1999.0330
https://doi.org/10.1002/art.23626
https://doi.org/10.1172/JCI118666
https://doi.org/10.1002/iid3.119
https://doi.org/10.1038/ki.2011.484
https://doi.org/10.1038/ki.1990.195
https://doi.org/10.1111/eci.13010
https://doi.org/10.1016/j.jaut.2019.102356
https://doi.org/10.3389/fimmu.2019.01667
https://doi.org/10.1002/eji.201041315
https://doi.org/10.1056/NEJMra071297
https://doi.org/10.1056/NEJMra1100359
https://doi.org/10.1056/NEJM199805073381906
https://doi.org/10.1097/BOR.0000000000000654
https://doi.org/10.1038/s41467-019-10242-9
https://doi.org/10.1016/j.gene.2018.05.041
https://doi.org/10.1038/nrneph.2015.33
https://doi.org/10.1242/dmm.016451
https://doi.org/10.1007/s11926-016-0561-4
https://doi.org/10.1177/0961203309106492
https://doi.org/10.1016/j.jaut.2004.06.001
https://doi.org/10.1172/JCI119373
https://doi.org/10.3389/fimmu.2019.02608
https://doi.org/10.3389/fimmu.2017.01657
https://doi.org/10.1016/j.clim.2005.10.009
https://doi.org/10.1186/s12885-015-1385-8
https://doi.org/10.4103/0973-1482.157314
https://doi.org/10.1016/j.jaut.2012.09.002
https://doi.org/10.1080/10428190902780677
https://doi.org/10.1056/NEJMoa021933
https://doi.org/10.1002/acr.24078
https://doi.org/10.1111/j.1749-6632.1957.tb49707.x
https://doi.org/10.1016/0167-5699(93)90244-F
https://doi.org/10.35248/2684-1630.16.1.102
https://doi.org/10.1177/0961203309358600
https://doi.org/10.1159/000051724
https://doi.org/10.1007/BF01921090
https://doi.org/10.1097/00000441-189512000-00001
https://doi.org/10.1097/00000441-190401000-00001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Critical Viewpoints on SLE

74. Jadassohn J. Lupus erythematodes. In: Mracek F, editor. Handbuch der

Hautkrankheiten. Wein, Alfred Holder. (1904). p. 298–404.

75. Scofield RH, Oates J. The place of william osler in the description

of systemic lupus erythematosus. Am J Med Sci. (2009) 338:409–

12. doi: 10.1097/MAJ.0b013e3181acbd71

76. Isenberg D, Sturgess I, Allen E, Aranow C, Askanase A, Sang-Cheol C, et al.

Study of flare assessment in systemic lupus erythematosus based on paper

patients. Arthritis Care Res. (2017) 70:98–103. doi: 10.1002/acr.23252

77. Pisetsky DS, Clowse MEB, Criscione-Schreiber LG, Rogers JL. A novel

system to categorize the symptoms of systemic lupus erythematosus.

Arthritis Care Res. (2019) 71:735–41. doi: 10.1002/acr.23794

78. Petri M, Goldman DW, Alarcon GS, Gordon C, Merrill JT, Fortin PR,

et al. A comparison of 2019 EULAR/ACR SLE classification criteria with

two sets of earlier SLE classification criteria. Arthritis Care Res. (2020).

doi: 10.1002/acr.24263. [Epub ahead of print].

79. Almaani S, Meara A, Rovin BH. Update on lupus nephritis. Clin J Am Soc

Nephrol. (2017) 12:825–35. doi: 10.2215/CJN.05780616

80. Goilav B, Putterman C. The role of Anti-DNA antibodies in the development

of lupus nephritis: a complementary, or alternative, viewpoint? Semin

Nephrol. (2015) 35:439–43. doi: 10.1016/j.semnephrol.2015.08.005

81. Madaio MP. The relevance of antigen binding to the pathogenicity of lupus

autoantibodies. Kidney Int. (2012) 82:125–7. doi: 10.1038/ki.2012.159

82. Fismen S, Rekvig OP, Mortensen E. Pathogenesis of SLE Dermatitis – A

Reflection of the Process in SLE Nephritis? Current Rheumatol Rev. (2007)

3:1–7. doi: 10.2174/157339707780619412

83. Faust TW, Chang EH, Kowal C, Berlin R, Gazaryan IG, Bertini E,

et al. Neurotoxic lupus autoantibodies alter brain function through

two distinct mechanisms. Proc Natl Acad Sci USA. (2010) 107:18569–

74. doi: 10.1073/pnas.1006980107

84. Wu ZQ, Drayton D, Pisetsky DS. Specificity and immunochemical properties

of antibodies to bacterial DNA in sera of normal human subjects and

patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. (1997)

109:27–31. doi: 10.1046/j.1365-2249.1997.4301328.x

85. Rekvig OP, Bendiksen S, Moens U. Immunity and autoimmunity induced by

polyomaviruses: clinical, experimental and theoretical aspects. Adv Exp Med

Biol. (2006) 577:117–47. doi: 10.1007/0-387-32957-9_9

86. Cerutti ML, Zarebski LM, de Prat GG, Goldbaum FA. A viral DNA-binding

domain elicits anti-DNA antibodies of different specificities. Mol Immunol.

(2005) 42:327–33. doi: 10.1016/j.molimm.2004.09.003

87. Yadav P, Tran H, Ebegbe R, Gottlieb P, Wei H, Lewis RH, et al. Antibodies

elicited in response to EBNA-1 may cross-react with dsDNA. PLoS ONE.

(2011) 6:e14488. doi: 10.1371/journal.pone.0014488

88. Wozencraft AO, Staines NA. DNA-binding antibodies and parasitic diseases.

Parasitol Today. (1990) 6:254–9. doi: 10.1016/0169-4758(90)90185-7

89. Lv S, Zhang J, Wu J, Zheng X, Chu Y, Xiong S. Origin and anti-tumor effects

of anti-dsDNA autoantibodies in cancer patients and tumor-bearing mice.

Immunol Lett. (2005) 99:217–27. doi: 10.1016/j.imlet.2005.03.019

90. Califf RM. Biomarker definitions and their applications. Exp BiolMed. (2018)

243:213–21. doi: 10.1177/1535370217750088

91. Fismen S, Hedberg A, Fenton K, Jacobsen S, Krarup E, Kamper A, et al.

Circulating chromatin-anti-chromatin antibody complexes bind with high

affinity to dermo-epidermal structures inmurine and human lupus nephritis.

Lupus. (2009) 18:597–607. doi: 10.1177/0961203308100512

92. Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B. Immunity

and behavior: antibodies alter emotion. Proc Natl Acad Sci USA. (2006)

103:678–83. doi: 10.1073/pnas.0510055103

93. van Bavel CC, van der Vlag J, Berden JH. Glomerular binding of anti-

dsDNA autoantibodies: the dispute resolved? Kidney Int. (2007) 71:600–

1. doi: 10.1038/sj.ki.5002126

94. Berden JH, Licht R, Van Bruggen MC, Tax WJ. Role of

nucleosomes for induction and glomerular binding of autoantibodies

in lupus nephritis. Curr Opin Nephrol Hypertens. (1999)

8:299–306. doi: 10.1097/00041552-199905000-00005

95. Ashton NW, Bolderson E, Cubeddu L, O’Byrne KJ, Richard DJ. Human

single-stranded DNA binding proteins are essential for maintaining genomic

stability. BMCMol Biol. (2013) 14:9. doi: 10.1186/1471-2199-14-9

96. Edgington SM, Stollar BD. Immunogenicity of Z-DNAdepends on the size of

polynucleotide presented in complexes with methylated BSA.Mol Immunol.

(1992) 29:609–17. doi: 10.1016/0161-5890(92)90197-6

97. Brigido MM, Stollar BD. Two induced anti-Z-DNA monoclonal antibodies

use VH gene segments related to those of anti-DNA autoantibodies. J

Immunol. (1991) 146:2005–9.

98. Lafer EM, Sousa R, Ali R, Rich A, Stollar BD. The effect of anti-

Z-DNA antibodies on the B-DNA-Z-DNA equilibrium. J Biol Chem.

(1986) 261:6438–43.

99. Stollar BD. Why the difference between B-DNA and Z-DNA? Lupus. (1997)

6:327–8. doi: 10.1177/096120339700600327

100. Griffith J, Bleyman M, Rauch CA, Kitchin PA, Englund PT. Visualization

of the bent helix in kinetoplast DNA by electron microscopy. Cell. (1986)

46:717–24. doi: 10.1016/0092-8674(86)90347-8

101. Pasi M, Lavery R. Structure and dynamics of DNA loops on nucleosomes

studied with atomistic, microsecond-scale molecular dynamics. Nucleic

Acids Res. (2016) 44:5450–6. doi: 10.1093/nar/gkw293

102. Nadel J, Athanasiadou R, Lemetre C, Wijetunga NA, Broin O, Sato H,

et al. RNA:DNA hybrids in the human genome have distinctive nucleotide

characteristics, chromatin composition, and transcriptional relationships.

Epigenetics Chromatin. (2015) 8:46. doi: 10.1186/s13072-015-0040-6

103. Paull TT. RNA-DNA hybrids and the convergence with DNA repair. Crit Rev

Biochem Mol Biol. (2019) 54:371–84. doi: 10.1080/10409238.2019.1670131

104. Shlyakhtenko LS, Potaman VN, Sinden RR, Lyubchenko YL. Structure

and dynamics of supercoil-stabilized DNA cruciforms. J Mol Biol. (1998)

280:61–72. doi: 10.1006/jmbi.1998.1855

105. Frappier L, Price GB, Martin RG, Zannis-Hadjopoulos M. Monoclonal

antibodies to cruciform DNA structures. J Mol Biol. (1987) 193:751–

8. doi: 10.1016/0022-2836(87)90356-1

106. Gilkeson GS, Ruiz P, Howell D, Lefkowith JB, Pisetsky DS. Induction

of immune-mediated glomerulonephritis in normal mice immunized

with bacterial DNA. Clin Immunol Immunopathol. (1993) 68:283–

92. doi: 10.1006/clin.1993.1129

107. Pisetsky DS. Specificity and immunochemical properties of antibodies to

bacterial DNA.Methods. (1997) 11:55–61. doi: 10.1006/meth.1996.0387

108. Rekvig OP, Moens U, Fredriksen K, Traavik T. Human polyomavirus BK and

immunogenicity of mammalian DNA: a conceptual framework. Methods.

(1997) 11:44–54. doi: 10.1006/meth.1996.0386

109. Colson P, De L, X, Yutin N, Asgari S, Bigot Y, Bideshi DK, et al. “Megavirales,”

a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses.

Arch Virol. (2013) 158:2517–21. doi: 10.1007/s00705-013-1768-6

110. Fredriksen K, Osei A, Sundsfjord A, Traavik T, Rekvig OP. On the biological

origin of anti-double-stranded (ds) DNA antibodies: systemic lupus

erythematosus-related anti-dsDNA antibodies are induced by polyomavirus

BK in lupus-prone (NZBxNZW) F1 hybrids, but not in normal mice. Eur J

Immunol. (1994) 24:66–70. doi: 10.1002/eji.1830240111

111. Stollar BD. Immunochemistry of DNA. Int Rev Immunol. (1989) 5:1–

22. doi: 10.3109/08830188909086987

112. Stollar BD. Antibodies to DNA. CRC Crit Rev Biochem. (1986) 20:1–

36. doi: 10.3109/10409238609115899

113. Widom J. Chromatin: the nucleosome unwrapped. Curr Biol. (1997) 7:R653–

5. doi: 10.1016/S0960-9822(06)00327-7

114. Widom J. A relationship between the helical twist of DNA and the ordered

positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci USA.

(1992) 89:1095–9. doi: 10.1073/pnas.89.3.1095

115. de Graaf CA, van Steensel B. Chromatin organization: form to function. Curr

Opin Genet Dev. (2012) 23:185–90. doi: 10.1016/j.gde.2012.11.011

116. van Steensel B. Chromatin: constructing the big picture. EMBO J. (2011)

30:1885–95. doi: 10.1038/emboj.2011.135

117. Woodcock CL, Ghosh RP. Chromatin higher-order structure

and dynamics. Cold Spring Harb Perspect Biol. (2010)

2:a000596. doi: 10.1101/cshperspect.a000596

118. Pohl FM, Jovin TM. Salt-induced co-operative conformational change

of a synthetic DNA: equilibrium and kinetic studies with poly

(dG-dC). J Mol Biol. (1972) 67:375–96. doi: 10.1016/0022-2836(72)

90457-3

119. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, Van der Marel

G, et al. Molecular structure of a left-handed double helical DNA fragment

at atomic resolution. Nature. (1979) 282:680–6. doi: 10.1038/282680a0

120. Matthew JB, Richards FM. Differential electrostatic stabilization

of A-, B-, and Z-forms of DNA. Biopolymers. (1984) 23:2743–

59. doi: 10.1002/bip.360231205

Frontiers in Immunology | www.frontiersin.org 16 October 2020 | Volume 11 | Article 569234

https://doi.org/10.1097/MAJ.0b013e3181acbd71
https://doi.org/10.1002/acr.23252
https://doi.org/10.1002/acr.23794
https://doi.org/10.1002/acr.24263
https://doi.org/10.2215/CJN.05780616
https://doi.org/10.1016/j.semnephrol.2015.08.005
https://doi.org/10.1038/ki.2012.159
https://doi.org/10.2174/157339707780619412
https://doi.org/10.1073/pnas.1006980107
https://doi.org/10.1046/j.1365-2249.1997.4301328.x
https://doi.org/10.1007/0-387-32957-9_9
https://doi.org/10.1016/j.molimm.2004.09.003
https://doi.org/10.1371/journal.pone.0014488
https://doi.org/10.1016/0169-4758(90)90185-7
https://doi.org/10.1016/j.imlet.2005.03.019
https://doi.org/10.1177/1535370217750088
https://doi.org/10.1177/0961203308100512
https://doi.org/10.1073/pnas.0510055103
https://doi.org/10.1038/sj.ki.5002126
https://doi.org/10.1097/00041552-199905000-00005
https://doi.org/10.1186/1471-2199-14-9
https://doi.org/10.1016/0161-5890(92)90197-6
https://doi.org/10.1177/096120339700600327
https://doi.org/10.1016/0092-8674(86)90347-8
https://doi.org/10.1093/nar/gkw293
https://doi.org/10.1186/s13072-015-0040-6
https://doi.org/10.1080/10409238.2019.1670131
https://doi.org/10.1006/jmbi.1998.1855
https://doi.org/10.1016/0022-2836(87)90356-1
https://doi.org/10.1006/clin.1993.1129
https://doi.org/10.1006/meth.1996.0387
https://doi.org/10.1006/meth.1996.0386
https://doi.org/10.1007/s00705-013-1768-6
https://doi.org/10.1002/eji.1830240111
https://doi.org/10.3109/08830188909086987
https://doi.org/10.3109/10409238609115899
https://doi.org/10.1016/S0960-9822(06)00327-7
https://doi.org/10.1073/pnas.89.3.1095
https://doi.org/10.1016/j.gde.2012.11.011
https://doi.org/10.1038/emboj.2011.135
https://doi.org/10.1101/cshperspect.a000596
https://doi.org/10.1016/0022-2836(72)90457-3
https://doi.org/10.1038/282680a0
https://doi.org/10.1002/bip.360231205
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Critical Viewpoints on SLE

121. Dumat B, Larsen AF, Wilhelmsson LM. Studying Z-DNA and B- to Z-DNA

transitions using a cytosine analogue FRET-pair. Nucleic Acids Res. (2016)

44:e101. doi: 10.1093/nar/gkw114

122. McGrath H, Jr., Biundo JJ, Jr. A longitudinal study of high and low

avidity antibodies to double-stranded DNA in systemic lupus erythematosus.

Arthritis Rheum. (1985) 28:425-30. doi: 10.1002/art.1780280411

123. Derksen RH, Bast EJ, Strooisma T, Jacobs JW. A comparison between the Farr

radioimmunoassay and a new automated fluorescence immunoassay for the

detection of antibodies against double stranded DNA in serum. Ann Rheum

Dis. (2002) 61:1099–102. doi: 10.1136/ard.61.12.1099

124. Smeenk RJ, van den Brink HG, Brinkman K, Termaat RM, Berden JH, Swaak

AJ. Anti-dsDNA: choice of assay in relation to clinical value. Rheumatol Int.

(1991) 11:101–7. doi: 10.1007/BF00304496

125. Hazan NP, Tomov TE, Tsukanov R, Liber M, Berger Y, Masoud

R, et al. Nucleosome core particle disassembly and assembly kinetics

studied using single-molecule fluorescence. Biophys J. (2015) 109:1676–

85. doi: 10.1016/j.bpj.2015.07.004

126. O’Brien R, DeDecker B, Fleming KG, Sigler PB, Ladbury JE. The effects of salt

on the TATA binding protein-DNA interaction from a hyperthermophilic

archaeon. J Mol Biol. (1998) 279:117–25. doi: 10.1006/jmbi.1998.1743

127. Privalov PL, Dragan AI, Crane-Robinson C. Interpreting protein/DNA

interactions: distinguishing specific from non-specific and electrostatic

from non-electrostatic components. Nucleic Acids Res. (2011) 39:2483–

91. doi: 10.1093/nar/gkq984

128. Haugbro K, Nossent JC, Winkler T, Figenschau Y, Rekvig OP. Anti-

dsDNA antibodies and disease classification in antinuclear antibody positive

patients: the role of analytical diversity. Ann Rheum Dis. (2004) 63:386–

94. doi: 10.1136/ard.2003.016303

129. Madaio MP, Hodder S, Schwartz RS, Stollar BD. Responsiveness of

autoimmune and normal mice to nucleic acid antigens. J Immunol.

(1984) 132:872–6.

130. Stollar BD. An overview of the anti-DNA antibody workshop:

expansion of molecular structural analysis. Lupus. (1997)

6:346–8. doi: 10.1177/096120339700600333

131. Chen C, Nagy Z, Radic MZ, Hardy RR, Huszar D, Camper SA, et al.

The site and stage of anti-DNA B-cell deletion. Nature. (1995) 373:252–

5. doi: 10.1038/373252a0

132. Sandel PC, Monroe JG. Negative selection of immature B cells by receptor

editing or deletion is determined by site of antigen encounter. Immunity.

(1999) 10:289–99. doi: 10.1016/S1074-7613(00)80029-1

133. Radic MZ, Zouali M. Receptor editing, immune diversification, and self-

tolerance. Immunity. (1996) 5:505–11. doi: 10.1016/S1074-7613(00)80266-6

134. Khan SN, Witsch EJ, Goodman NG, Panigrahi AK, Chen C, Jiang Y, et al.

Editing and escape from editing in anti-DNA B cells. Proc Natl Acad Sci USA.

(2008) 105:3861–6. doi: 10.1073/pnas.0800025105

135. Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach

by autoreactive B cells to escape tolerance. J Exp Med. (1993) 177:999–

1008. doi: 10.1084/jem.177.4.999

136. Sukumar S, Schlissel MS. Receptor editing as amechanism of B cell tolerance.

J Immunol. (2011) 186:1301–2. doi: 10.4049/jimmunol.1090129

137. Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic

models to naturally occurring anergic B cells? Nat Rev Immunol. (2007)

7:633–43. doi: 10.1038/nri2133

138. Gauld SB, Benschop RJ, Merrell KT, Cambier JC. Maintenance of B cell

anergy requires constant antigen receptor occupancy and signaling. Nat

Immunol. (2005) 6:1160–7. doi: 10.1038/ni1256

139. Kalekar LA, Schmiel SE, Nandiwada SL, Lam WY, Barsness LO, Zhang N,

et al. CD4(+) T cell anergy prevents autoimmunity and generates regulatory

T cell precursors. Nat Immunol. (2016) 17:304–14. doi: 10.1038/ni.3331

140. Andreassen K, Moens U, Nossent H, Marion TN, Rekvig OP.

Termination of human T cell tolerance to histones by presentation

of histones and polyomavirus T antigen provided that T antigen

is complexed with nucleosomes. Arthritis Rheum. (1999) 42:2449–

60. doi: 10.1002/1529-0131(199911)42:11<2449::AID-ANR24>3.0.CO;2-P

141. Andreassen K, Bendiksen S, Kjeldsen E, Van Ghelue M., Moens U, Arnesen

E, et al. T cell autoimmunity to histones and nucleosomes is a latent

property of the normal immune system. Arthritis Rheum. (2002) 46:1270–

81. doi: 10.1002/art.10254

142. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative

selection of the T cell repertoire: what thymocytes see (and

don’t see). Nat Rev Immunol. (2014) 14:377–91. doi: 10.1038/nr

i3667

143. Bluestone JA, Bour-Jordan H, Cheng M, Anderson M. T cells in the

control of organ-specific autoimmunity. J Clin Invest. (2015) 125:2250–

60. doi: 10.1172/JCI78089

144. Mohan C, Adams S, Stanik V, Datta SK. Nucleosome: a major immunogen

for pathogenic autoantibody- inducing T cells of lupus. J Exp Med. (1993)

177:1367–81. doi: 10.1084/jem.177.5.1367

145. Fournel S, Muller S. Anti-nucleosome antibodies and T-cell response

in systemic lupus erythematosus. Ann Med Interne (Paris). (2002)

153:513–9.

146. Voll RE, Roth EA, Girkontaite I, Fehr H, Herrmann M, Lorenz HM,

et al. Histone-specific Th0 and Th1 clones derived from systemic

lupus erythematosus patients induce double-stranded DNA antibody

production. Arthritis Rheum. (1997) 40:2162–71. doi: 10.1002/art.17804

01210

147. Moens U, Seternes OM, Hey AW, Silsand Y, Traavik T, Johansen

B, et al. In vivo expression of a single viral DNA-binding protein

generates systemic lupus erythematosus-related autoimmunity to double-

stranded DNA and histones. Proc Natl Acad Sci USA. (1995) 92:12393–

7. doi: 10.1073/pnas.92.26.12393

148. Kaliyaperumal A, Mohan C,WuW, Datta SK. Nucleosomal peptide epitopes

for nephritis-inducing T helper cells of murine lupus. J Exp Med. (1996)

183:2459–69. doi: 10.1084/jem.183.6.2459

149. Fournel S, Neichel S, Dali H, Farci S, Maillere B, Briand JP, et al. CD4+ T

cells from (New Zealand Black x New Zealand White)F1 lupus mice and

normal mice immunized against apoptotic nucleosomes recognize similar

Th cell epitopes in the C terminus of histone H3. J Immunol. (2003)

171:636–44. doi: 10.4049/jimmunol.171.2.636

150. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De MF, et al.

Induction of inflammatory and immune responses by HMGB1-nucleosome

complexes: implications for the pathogenesis of SLE. J Exp Med. (2008)

205:3007–18. doi: 10.1084/jem.20081165

151. Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism

of autoimmune disease. Clin Rev Allergy Immunol. (2012) 42:102–

11. doi: 10.1007/s12016-011-8294-7

152. James JA, Robertson JM. Lupus and Epstein-Barr. Curr Opin Rheumatol.

(2012) 24:383–8. doi: 10.1097/BOR.0b013e3283535801

153. Beger E, Deocharan B, Edelman M, Erblich B, Gu Y, Putterman

C. A peptide DNA surrogate accelerates autoimmune manifestations

and nephritis in lupus-prone mice. J Immunol. (2002) 168:3617–

26. doi: 10.4049/jimmunol.168.7.3617

154. Wang HC, Ho CH, Hsu KC, Yang JM, Wang AH. DNA mimic proteins:

functions, structures, and bioinformatic analysis. Biochemistry. (2014)

53:2865–74. doi: 10.1021/bi5002689

155. Jacqueline C, Tasiemski A, Sorci G, Ujvari B, Maachi F, Misse D, et al.

Infections and cancer: the “fifty shades of immunity” hypothesis. BMC

Cancer. (2017) 17:257. doi: 10.1186/s12885-017-3234-4

156. zur Hausen H. Viruses in human cancers. Science. (1991) 254:1167–

73. doi: 10.1126/science.1659743

157. zur Hausen H. The search for infectious causes of human cancers: where

and why (Nobel lecture). Angew Chem Int Ed Engl. (2009) 48:5798–

808. doi: 10.1002/anie.200901917

158. Munoz LE, Janko C, Schulze C, Schorn C, Sarter K, Schett G,

et al. Autoimmunity and chronic inflammation - two clearance-related

steps in the etiopathogenesis of SLE. Autoimmun Rev. (2010) 10:38–

42. doi: 10.1016/j.autrev.2010.08.015

159. Herrmann M, Zoller OM, Hagenhofer M, Voll R, Kalden JR.

What triggers anti-dsDNA antibodies? Mol Biol Rep. (1996)

23:265–7. doi: 10.1007/BF00351179

160. Dieker JW, van der Vlag J, Berden JH. Triggers for anti-

chromatin autoantibody production in SLE. Lupus. (2002)

11:856–64. doi: 10.1191/0961203302lu307rr

161. Gupta S, Kaplan MJ. The role of neutrophils and NETosis

in autoimmune and renal diseases. Nat Rev Nephrol. (2016)

12:402–13. doi: 10.1038/nrneph.2016.71

Frontiers in Immunology | www.frontiersin.org 17 October 2020 | Volume 11 | Article 569234

https://doi.org/10.1093/nar/gkw114
https://doi.org/10.1002/art.1780280411
https://doi.org/10.1136/ard.61.12.1099
https://doi.org/10.1007/BF00304496
https://doi.org/10.1016/j.bpj.2015.07.004
https://doi.org/10.1006/jmbi.1998.1743
https://doi.org/10.1093/nar/gkq984
https://doi.org/10.1136/ard.2003.016303
https://doi.org/10.1177/096120339700600333
https://doi.org/10.1038/373252a0
https://doi.org/10.1016/S1074-7613(00)80029-1
https://doi.org/10.1016/S1074-7613(00)80266-6
https://doi.org/10.1073/pnas.0800025105
https://doi.org/10.1084/jem.177.4.999
https://doi.org/10.4049/jimmunol.1090129
https://doi.org/10.1038/nri2133
https://doi.org/10.1038/ni1256
https://doi.org/10.1038/ni.3331
https://doi.org/10.1002/1529-0131(199911)42:11<2449::AID-ANR24>3.0.CO
https://doi.org/10.1002/art.10254
https://doi.org/10.1038/nri3667
https://doi.org/10.1172/JCI78089
https://doi.org/10.1084/jem.177.5.1367
https://doi.org/10.1002/art.1780401210
https://doi.org/10.1073/pnas.92.26.12393
https://doi.org/10.1084/jem.183.6.2459
https://doi.org/10.4049/jimmunol.171.2.636
https://doi.org/10.1084/jem.20081165
https://doi.org/10.1007/s12016-011-8294-7
https://doi.org/10.1097/BOR.0b013e3283535801
https://doi.org/10.4049/jimmunol.168.7.3617
https://doi.org/10.1021/bi5002689
https://doi.org/10.1186/s12885-017-3234-4
https://doi.org/10.1126/science.1659743
https://doi.org/10.1002/anie.200901917
https://doi.org/10.1016/j.autrev.2010.08.015
https://doi.org/10.1007/BF00351179
https://doi.org/10.1191/0961203302lu307rr
https://doi.org/10.1038/nrneph.2016.71
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Critical Viewpoints on SLE

162. Pieterse E, van der Vlag J. Breaking immunological tolerance

in systemic lupus erythematosus. Front Immunol. (2014)

5:164. doi: 10.3389/fimmu.2014.00164

163. Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F,

Alhashmi N, et al. Loss-of-function variant in DNASE1L3 causes a

familial form of systemic lupus erythematosus. Nat Genet. (2011) 43:1186–

8. doi: 10.1038/ng.975

164. Sisirak V, Sally B, D’Agati V, Martinez-Ortiz W, Ozcakar ZB, David J,

et al. Digestion of Chromatin in apoptotic cell microparticles prevents

autoimmunity. Cell. (2016) 166:88–101. doi: 10.1016/j.cell.2016.05.034

165. Sevag MG, Lackman DB, Smolen J. The isolation of the components

of streptococcal nucleoproteins in serologically active form. J Biol Chem.

(1938) 124:425–36.

166. Winkenwerder WL, Buell MV, Howard JE. The sensitizing

properties of the nucleic acids and their derivatives. Science. (1939)

90:356. doi: 10.1126/science.90.2337.356

167. Menzel AEO, Heidelberger M. Cell protein fractions of bovine and avian

tubercle bacillus strains and of the timothy-grass bacillus. J Biol Chem.

(1938) 124:301–7.

168. Ceppellini R, Polli E, Celada F. A DNA-reacting factor in serum of a

patient with lupus erythematosus diffusus. Proc Soc Exp Biol Med. (1957)

96:572–4. doi: 10.3181/00379727-96-23544

169. Robbins WC, Holman HR, Deicher H, Kunkel HG. Complement fixation

with cell nuclei and DNA in lupus erythematosus. Proc Soc Exp Biol Med.

(1957) 96:575–9. doi: 10.3181/00379727-96-23545

170. Miescher P, Strassle R. New serological methods for the detection of the L.E.

factor. Vox Sang. (1957) 2:283–7. doi: 10.1159/000478330

171. Seligman M. Serology-evidence in serum from patients with disseminated

lupus erythermatosus of a substance determining a precipitation reac tion

with desoxyribonucleic acid]. Compt Rend Acad Sci. (1957) 245:243–5.

172. Pisetsky DS. The complex role of DNA, histones and HMGB1

in the pathogenesis of SLE. Autoimmunity. (2014) 47:487–

93. doi: 10.3109/08916934.2014.921811

173. Van Bruggen MC, Kramers C, Hylkema MN, Smeenk RJ, Berden JH.

Pathophysiology of lupus nephritis: the role of nucleosomes. Neth J Med.

(1994) 45:273–9.

174. Van Bruggen MC, Kramers C, Berden JH. Autoimmunity against

nucleosomes and lupus nephritis. Ann Med Interne. (1996) 147:485–9.

175. Lefkowith JB, Gilkeson GS. Nephritogenic autoantibodies in lupus: current

concepts and continuing controversies. Arthritis Rheum. (1996) 39:894–

903. doi: 10.1002/art.1780390605

176. Van Bruggen MC, Kramers C, Walgreen B, Elema JD, Kallenberg CG, van

den Born J, et al. Nucleosomes and histones are present in glomerular

deposits in human lupus nephritis. Nephrol Dial Transplant. (1997) 12:57–

66. doi: 10.1093/ndt/12.1.57

177. Weening JJ, D’agati VD, Schwartz MM, Seshan SV, Alpers CE,

Appel GB, et al. The classification of glomerulonephritis in

systemic lupus erythematosus revisited. J Am Soc Nephrol. (2004)

15:241–50. doi: 10.1097/01.ASN.0000108969.21691.5D

178. Fenton K, Fismen S, Hedberg A, Seredkina N, Fenton C,

Mortensen ES, et al. Anti-dsDNA antibodies promote initiation,

and acquired loss of renal Dnase1 promotes progression of lupus

nephritis in autoimmune (NZBxNZW)F1 mice. PLoS ONE. (2009)

4:e8474. doi: 10.1371/journal.pone.0008474

179. Seredkina S, Rekvig OP. Acquired loss of renal nuclease activity is restricted

to DNaseI and is an organ-selective feature in murine lupus nephritis. Am J

Pathol. (2011) 179:1120–8. doi: 10.1016/j.ajpath.2011.05.011

180. Mjelle JE, Rekvig OP, Fenton KA. Nucleosomes possess a high affinity for

glomerular laminin and collagen IV and bind nephritogenic antibodies

in murine lupus-like nephritis. Ann Rheum Dis. (2007) 66:1661–

8. doi: 10.1136/ard.2007.070482

181. Hedberg A, Fismen S, Fenton KA, Fenton C, Osterud B, Mortensen

ES, et al. Heparin exerts a dual effect on murine lupus nephritis by

enhancing enzymatic chromatin degradation and preventing chromatin

binding in glomerular membranes. Arthritis Rheum. (2011) 63:1065–

75. doi: 10.1002/art.30211

182. Rekvig OP, Thiyagarajan D, Pedersen HL, Horvei KD, Seredkina N.

Future perspectives on pathogenesis of lupus nephritis: facts, problems,

and potential causal therapy modalities. Am J Pathol. (2016) 186:2772–

82. doi: 10.1016/j.ajpath.2016.06.026

183. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, et al. A volcanic

explosion of autoantibodies in systemic lupus erythematosus: a diversity

of 180 different antibodies found in SLE patients. Autoimmun Rev. (2015)

14:75–9. doi: 10.1016/j.autrev.2014.10.003

184. Qureshi F, Yang Y, Jaques SM, Johnson MP, Naparstek Y, Ulmansky

R, et al. Anti-DNA antibodies cross-reacting with laminin inhibit

trophoblast attachment and migration: implications for recurrent

pregnancy loss in SLE patients. Am J Reprod Immunol. (2000)

44:136–42. doi: 10.1111/j.8755-8920.2000.440302.x

185. Amital H, Heilweil M, Ulmansky R, Szafer F, Bar-Tana R, Morel L, et al.

Treatment with a laminin-derived peptide suppresses lupus nephritis. J

Immunol. (2005) 175:5516–23. doi: 10.4049/jimmunol.175.8.5516

186. Zhao Z, Weinstein E, Tuzova M, Davidson A, Mundel P, Marambio P,

et al. Cross-reactivity of human lupus anti-DNA antibodies with alpha-

actinin and nephritogenic potential. Arthritis Rheum. (2005) 52:522–

30. doi: 10.1002/art.20862

187. Furuyama A, Mochitate K. Assembly of the exogenous extracellular matrix

during basement membrane formation by alveolar epithelial cells in vitro. J

Cell Sci. (2000) 113:859–68.

188. Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane:

the foundation of epidermal integrity–BM functions and diverse roles

of bridging molecules nidogen and perlecan. Biomed Res Int. (2013)

2013:179784. doi: 10.1155/2013/179784

189. Gulati K, McAdoo SP. Anti-glomerular basement membrane disease.

Rheum Dis Clin North Am. (2018) 44:651–73. doi: 10.1016/j.rdc.2018.

06.011

190. Pedchenko V, Kitching AR, Hudson BG. Goodpasture’s autoimmune

disease - a collagen IV disorder. Matrix Biol. (2018) 71-72:240–

9. doi: 10.1016/j.matbio.2018.05.004

191. Stevens NE, Cowin AJ, Kopecki Z. Skin barrier and autoimmunity-

mechanisms and novel therapeutic approaches for autoimmune

blistering diseases of the skin. Front Immunol. (2019)

10:1089. doi: 10.3389/fimmu.2019.01089

192. Genovese G, Di ZG, Cozzani E, Berti E, CugnoM,Marzano AV. New insights

into the pathogenesis of bullous pemphigoid: 2019 update. Front Immunol.

(2019) 10:1506. doi: 10.3389/fimmu.2019.01506

193. Kruegel J, Miosge N. Basement membrane components are key players

in specialized extracellular matrices. Cell Mol Life Sci. (2010) 67:2879–

95. doi: 10.1007/s00018-010-0367-x

194. Kalaaji M, Mortensen E, Jorgensen L, Olsen R, Rekvig OP. Nephritogenic

lupus antibodies recognize glomerular basement membrane-associated

chromatin fragments released from apoptotic intraglomerular

cells. Am J Pathol. (2006) 168:1779–92. doi: 10.2353/ajpath.2006.0

51329

195. Kalaaji M, Sturfelt G, Mjelle JE, Nossent H, Rekvig OP. Critical

comparative analyses of anti-alpha-actinin and glomerulus-bound

antibodies in human and murine lupus nephritis. Arthritis Rheum.

(2006) 54:914–26. doi: 10.1002/art.21622

196. Kalaaji M, Fenton KA, Mortensen ES, Olsen R, Sturfelt G, Alm P,

et al. Glomerular apoptotic nucleosomes are central target structures for

nephritogenic antibodies in human SLE nephritis.Kidney Int. (2007) 71:664–

72. doi: 10.1038/sj.ki.5002133

197. Ishiko A, Shimizu H, Kikuchi A, Ebihara T, Hashimoto T, Nishikawa T.

Human autoantibodies against the 230-kD bullous pemphigoid antigen

(BPAG1) bind only to the intracellular domain of the hemidesmosome,

whereas those against the 180-kD bullous pemphigoid antigen (BPAG2)

bind along the plasma membrane of the hemidesmosome in normal

human and swine skin. J Clin Invest. (1993) 91:1608–15. doi: 10.1172/JCI1

16368

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Rekvig. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 18 October 2020 | Volume 11 | Article 569234

https://doi.org/10.3389/fimmu.2014.00164
https://doi.org/10.1038/ng.975
https://doi.org/10.1016/j.cell.2016.05.034
https://doi.org/10.1126/science.90.2337.356
https://doi.org/10.3181/00379727-96-23544
https://doi.org/10.3181/00379727-96-23545
https://doi.org/10.1159/000478330
https://doi.org/10.3109/08916934.2014.921811
https://doi.org/10.1002/art.1780390605
https://doi.org/10.1093/ndt/12.1.57
https://doi.org/10.1097/01.ASN.0000108969.21691.5D
https://doi.org/10.1371/journal.pone.0008474
https://doi.org/10.1016/j.ajpath.2011.05.011
https://doi.org/10.1136/ard.2007.070482
https://doi.org/10.1002/art.30211
https://doi.org/10.1016/j.ajpath.2016.06.026
https://doi.org/10.1016/j.autrev.2014.10.003
https://doi.org/10.1111/j.8755-8920.2000.440302.x
https://doi.org/10.4049/jimmunol.175.8.5516
https://doi.org/10.1002/art.20862
https://doi.org/10.1155/2013/179784
https://doi.org/10.1016/j.rdc.2018.06.011
https://doi.org/10.1016/j.matbio.2018.05.004
https://doi.org/10.3389/fimmu.2019.01089
https://doi.org/10.3389/fimmu.2019.01506
https://doi.org/10.1007/s00018-010-0367-x
https://doi.org/10.2353/ajpath.2006.051329
https://doi.org/10.1002/art.21622
https://doi.org/10.1038/sj.ki.5002133
https://doi.org/10.1172/JCI116368
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Autoimmunity and SLE: Factual and Semantic Evidence-Based Critical Analyses of Definitions, Etiology, and Pathogenesis
	Introduction
	Systemic Lupus Erythematosus—the Syndrome
	SLE: Syndrome, Etiology, and Pathogenicity—Clarifying the Terms (Lexical and Logic Semantics and Simplifications)
	SLE: A Short History of Non-linear Periodic Paradigm Shifts Leading to Our Times Syndrome
	SLE: A Primary or Secondary Autoimmune Syndrome; Etiology vs. Pathogenesis
	SLE: A Cumulative Model for the Classification of SLE Raises Problems Linked to the Terms Etiology and Pathogenesis

	Current Approaches to Study the Nature of SLE
	What may Emerge From These Theoretical Tribulations and Considerations?
	``The Anti-DSDNA Antibody'' - an Account to its Nature and Structural DNA Specificities
	Anti-dsDNA Antibodies: Appearing in Principally Different Clinical Conditions
	Anti-dsDNA Antibodies: Recognition of Disparate Unique dsDNA Structures and Not Simply dsDNA (a Review of Relevant Literature)

	Anti-dsDNA Antibodies: Assay Conditions do Not per se Determine Levels of Antibody Avidities, but Reflect Disparate Unique dsDNA Specificities
	Anti-dsDNA Antibodies: Immunogenic Origin—Facts and Controversial Hypotheses
	Anti-dsDNA Antibodies: In vivo Expression of Virus-Derived, DNA-Binding Proteins Render Chromatin Immunogenic— Evidence for the Hapten-Carrier Model
	Anti-dsDNA Antibodies: Tolerance to Chromatin and the Role of Autologous Chromatin-HMGB1 Complex and of DNase 1L3 Gene Deficiency in Promoting Anti-dsDNA Antibody Responses

	Anti-dsDNA Antibodies and Lupus Nephritis
	SLE and ``The Anti-dsDNA Antibody'' —Clinical and Biological Contexts
	Anti-dsDNA Antibodies—Specificity Critically Determines Nephrogenicity and May Also Affect Alveolitis and Dermatitis?
	Concluding Remarks and Four Concise Hypotheses

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


