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The blockade of immunological negative regulators offered a novel therapeutic approach

that revolutionized the immunotherapy of cancer. Still, a significant portion of patients

fail to respond to anti-PD-1/PD-L1 and/or anti-CTLA-4 therapy or experience significant

adverse effects. We propose that one of the major reasons that many patients do not

respond to this form of therapy is due to the powerful physiological suppression mediated

by hypoxia-adenosinergic signaling. Indeed, both inflamed and cancerous tissues are

hypoxic and rich in extracellular adenosine, in part due to stabilization of the transcription

factor hypoxia-inducible factor 1 alpha (HIF-1α). Adenosine signals through adenosine

A2A receptors (A2AR) to suppress anti-tumor and anti-pathogen immune responses.

Several classes of anti-hypoxia-A2AR therapeutics have been offered to refractory cancer

patients, with A2AR blockers, inhibitors of adenosine-generating enzymes such as CD39

and CD73, and hypoxia-targeting drugs now reaching the clinical stage. Clinical results

have confirmed preclinical observations that blockade of the hypoxia-adenosine-A2AR

axis synergizes with inhibitors of immune checkpoints to induce tumor rejection. Thus,

A2AR blockers provide a new hope for the majority of patients who are nonresponsive

to current immunotherapeutic approaches including checkpoint blockade. Here, we

discuss the discoveries that firmly implicate the A2AR as a critical and non-redundant

biochemical negative regulator of the immune response and highlight the importance of

targeting the hypoxia-adenosine-A2AR axis to manipulate anti-pathogen and anti-tumor

immune responses.
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OVERVIEW OF THE HYPOXIA-ADENOSINE-A2AR AXIS

While hypoxia-dependent generation of extracellular adenosine and subsequent
immunosuppressive signaling through adenosine A2A receptors (A2AR) is deleterious in
the tumor microenvironment (TME), this mechanism normally has an important tissue-protective
function. The suppression of tumor-reactive T cells by hypoxia-adenosine-A2AR signaling in the
TME is a commandeering of this evolutionarily conserved, non-redundant feedback mechanism
to govern inflammation (1–3). Sitkovsky and colleagues were the first to confirm in vivo that this
may explain the paradoxical peaceful coexistence of tumors and antitumor T cells in tumors (4, 5).
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These studies demonstrated that A2AR signaling inhibited
important effector functions of T cells, such as secretion of
pro-inflammatory cytokines (e.g., IFNγ) (6). However, the anti-
inflammatory effects of the hypoxia-adenosine-A2AR axis have
been confirmed and extended to include suppression of T cell
proliferation, cytotoxicity, and induction of anti-inflammatory
cytokine secretion (e.g., IL-10) (7–9).

The hypoxia-adenosine-A2AR axis of immunosuppression
begins with hypoxia and the stabilization of hypoxia-inducible
factor-1alpha (HIF-1α), which increases extracellular adenosine
in part by upregulating adenosine-generating enzymes.
Subsequent signaling through the Gs-coupled/cAMP-
elevating A2ARs induces protein kinase A (PKA)-mediated
inhibition of T-cell receptor signaling and immunosuppressive
transcriptional changes (10). This includes the inhibition of
pro-inflammatory cytokine secretion and an increase in the
levels of anti-inflammatory cytokines that contain a cAMP
response element (CRE) consensus sequence in their respective
promoter regions. While adenosine can also activate cAMP-
elevating adenosine A2B receptors (A2BRs), our research
has focused on A2AR adenosinergic immunosuppression
due to a higher affinity for adenosine and higher expression
on T cells (11–13). Importantly, A2AR expression seems
to be the limiting factor in adenosine-mediated cAMP
generation in T cells since there is no receptor reserve of
A2AR (14). T cells can also possess a memory of A2AR
signaling, allowing the effects of adenosine to persist long after
exposure (15).

Adenosine also exerts immunosuppressive effects through
A2BR, particularly on innate immune cells. Groundwork for
this hypothesis can be found in studies demonstrating that
adenosinergic immunosuppression of IL-12 and TNFα by
macrophages is at least partially A2AR-independent (16). For
example, in lipopolysaccharide-stimulated macrophages, A2BR
activation increases anti-inflammatory IL-10 production by
attenuating translational arrest of IL-10 mRNA (17). Conversely,
A2BR signaling may enhance activation of alternative/Th2
cytokine-activated macrophages, which manifest several anti-
inflammatory functions (18). In group 2 innate lymphoid
cells (IL2C), adenosine has been demonstrated to decrease
IL-5 and IL-13 production through A2BR, but increase IL-
5 production through A2AR. Activation of both A2AR and
A2BR in IL2C results in a net decrease in IL-5 production,
indicating the importance of A2BR on this cell type (19).
Interestingly, HIF-1α-dependent expression of A2BR has also
been shown to induce the enrichment of breast cancer stem
cells (20). Additional studies of preclinical models of acute
lung injury have also demonstrated that an increase in HIF-
1α levels in pulmonary epithelia subjected to cyclic mechanical
stretch resulted in an increase in A2BR expression (21). A2BR-
mediated immunosuppression of a variety of immune cells,
including dendritic cells, has led to the development of dual
A2AR/A2BR antagonists which may prevent adenosinergic
immunosuppression of both innate and adaptive immune
cells (22).

The main metabolic precursor to adenosine is ATP. Under
homeostatic conditions, ATP is magnitudes higher intracellularly
than in the extracellular space (23, 24). However, in inflamed
and cancerous tissues, apoptotic and necrotic cells release ATP
into the extracellular compartment, disrupting this gradient (25).
Excess ATP is then degraded into adenosine by CD39/CD73
(26–29), CD38/CD203a (30–33) and other phosphatases in
certain tissues (28). While the primary mechanism is thought
to be mediated by CD39 and CD73 (34), alternative adenosine-
generating pathways, such as CD38, are an important contributor
to adenosine levels in the TME and inhibit antitumor T cells
via A2AR. Indeed, recent studies have demonstrated that PD-1
blockade can increase CD38 expression, leading to resistance to
αPD-1 therapy (35).

Consistent with findings regarding adenosine-A2AR
immunosuppression, multiple studies from different teams
have confirmed the tissue-protecting roles of CD39 and
CD73. CD39, which converts ATP to AMP, also serves an
anticoagulant function in vasculature (36). Indeed, CD39
has been demonstrated to attenuate both renal ischemia
and acute lung injury (37, 38). CD73, which converts
AMP to adenosine, has also been shown to have a role
in the mediation of cell adhesion to endothelium (39).
Moreover, some tumorigenic functions of CD73 have been
shown to be independent of its enzymatic function, such
as induction of angiogenesis (40). Interestingly, recent
studies have also shown that A2AR signaling can promote
angiogenesis, suggesting a role for the HIF-1α-CD73-adenosine-
A2AR axis in tumor-associated lymphangiogenesis and
metastasis (41).

The upstream portion of the hypoxia-adenosine-A2AR axis
is mediated by hypoxia/HIF-1α. HIF-1α upregulates genes
containing an hypoxia response element (HRE) consensus
sequence that mediates cell survival in hypoxic conditions.
The immunosuppressive role of HIF-1α was first implicated in
studies of HIF-1α−/− Rag-2−/− mice with HIF-1α deletion in T
cells and B cells. These experiments demonstrated that HIF-1α
regulates lymphocyte development and prevents autoimmunity
(42). Subsequent studies of mice with T cell-specific HIF-1α
deletion confirmed an immunosuppressive role for HIF-1α.
These mice exhibited an enhanced antibacterial response due
to the lack of HIF-1α-mediated inhibition of T cells (43).
Studies that prevent HIF-1α stabilization using supplemental
oxygenation have also provided direct mechanistic evidence
for HIF-1α-mediated upregulation of the hypoxia-adenosine-
A2AR axis (44). It must be emphasized that upregulation of
CRE-containing genes and HRE-containing genes may not
be mutually exclusive. The gene encoding the characteristic
regulatory T-cell transcription factor FoxP3, which upregulates
HIF-1α, is induced by CRE activation (45, 46). Thus, it is
suggested that crosstalk exists between CRE and HRE pathways
and they may synergize to strengthen immunosuppression
(47, 48). Physiologically, this is supported by the infectious
tolerance mediated by regulatory T cells in inflamed and
cancerous tissues (49–51).
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PHARMACOLOGICAL TARGETS IN THE

HYPOXIA-ADENOSINE-A2AR AXIS FOR

CANCER IMMUNOTHERAPY

A2ARs
Inquiry into the immunosuppressive functions of adenosine
was catalyzed by the established importance of cAMP as an
immunosuppressive agent (52). cAMP has been demonstrated
to inhibit many effector T cell functions via PKA activation
(53–59). Landmark studies by Sitkovsky provided the first
genetic and pharmacological evidence that the cAMP-elevating
A2AR has a critical and non-redundant immunosuppressive
role in tissue protection during excessive inflammation (6).
These studies also offered insights into why antitumor T cells
often fail to mount an effective response against cancerous
tissue. Indeed, tumors are rich in extracellular adenosine, in
large part due to poor, irregular vasculature resulting in local
hypoxia (60–62). The tumor-protecting role of A2AR was
conclusively established using mice with A2AR gene deletion
(5). This study also complemented genetic evidence with
pharmacological data, demonstrating that A2AR antagonism
or silencing by siRNA enhanced the efficacy of adoptive
cell transfer (ACT) (5). This was supported by follow-up
studies demonstrating that A2AR antagonism during ACT
or adoptive transfer of A2AR-deficient T cells were effective
approaches for enhancing the efficacy of ACT in mice (63).
The therapeutic benefit of A2AR antagonism was shown
to be due in part by increased IFNγ secretion by tumor-
infiltrating adoptively transferred T cells (63). Importantly, this
study also demonstrated that A2AR antagonism improved anti-
tumor immunity independent of the anatomical location of the
tumor and provided long-term tumor-specific memory (63).
Taken together, these studies provided proof of principal for
the use of A2AR antagonists during cancer immunotherapies,
particularly ACT.

The progress in methods of ACT and the studies reviewed
above offered justification to test whether CAR-T cells might also
be susceptible to hypoxia-adenosinergic immunosuppression.
It has been hypothesized that A2AR blockade may improve
efficacy of CAR-T therapies against cancers. This may prove
essential for CAR-T that target solid tumors, which are known
to be hypoxic and extracellular adenosine-rich. Indeed, early
evidence was provided by Albelda’s group demonstrating that
genetic engineering to prevent PKA trafficking to the CAR-
T cell membrane enhanced antitumor function in vivo and
conferred resistance to adenosinergic immunosuppression in
vitro (64). Critical studies by Darcy’s Team demonstrated that
both pharmacological and genetic inhibition of A2AR enhanced
CAR-T efficacy in two distinct murine models of syngeneic
breast cancer. Of clinical relevance, addition of αPD-1 to
the CAR-T/A2AR blockade protocol further enhanced CAR-T
efficacy, as indicated by increased IFNγ production by CAR-T
(65). These findings confirm and extend the observations that
A2AR antagonism enhances production of IFNγ by polyclonal
adoptively transferred T cells in the TME to improve tumor
regression (63).

Pioneering studies by Powell’s Team established that A2AR
agonism can upregulate negative regulators of the immune
response such as LAG-3 (8). Subsequent studies using the A2AR
antagonist CPI-444 have also provided strong justification for
A2AR blockade during cancer immunotherapies. These studies
confirmed and extended observations of improved antitumor
efficacy of ACT in combination with A2AR blockade. Additional
mechanistic evidence justifying A2AR blockade was provided by
demonstrations that A2AR blockade reduced PD-1 and LAG-
3 expression on effector and regulatory T cells, as well as
reduced expression of these immune checkpoint molecules in
tumor-draining lymph nodes (66). Taken together, these findings
indicate that A2AR blockade can prevent inhibition of already
active antitumor T cells, and also prevent inhibition during
initial activation (66). Consistent with this finding, it has also
been demonstrated that A2AR deletion increases terminally
mature natural killer cells in the TME, implicating adenosine
as a negative regulator of innate immune cell maturation as
well (67). Important studies by Miller and Willingham in
multiple preclinical cancer models confirmed that combining
A2AR antagonism with checkpoint blockade improved tumor
regression, strengthening mechanistic evidence to justify clinical
testing of this approach (68). In vitro assays also demonstrated
that CPI-444 prevented adenosinergic inhibition of IL-2 and
IFNγ production by T cells (68). Through analysis of gene
expression, these studies were also able to identify a Th1
expression signature that was associated with positive responses
to dual blockade of A2AR/PD-L1 (68).

These preclinical studies have led to the clinical testing of
A2AR antagonists as a cancer therapy and have yielded promising
results. Against renal cell cancer, A2AR antagonism using CPI-
444 induced durable responses both as a monotherapy and
when combined with the PD-L1 inhibitor atezolizumab. Patients
experiencing positive responses included individuals who had
previously shown resistance to αPD-L1 therapy. Consistent with
preclinical data, alleviation of adenosinergic immunosuppression
resulted in higher cytotoxic T cell tumor infiltration. This study
also elucidated a gene-expression signature that was associated
with positive response (69). In another clinical study, the A2AR
antagonist NIR178 administered both as a monotherapy and in
combination with the PD-1 inhibitor spartalizumab to 24 non-
small lung cancer patients resulted in stable disease in fifteen
patients in addition to one partial response and one complete
response (70). Furthermore, the A2AR antagonist AZD4635
used as a monotherapy and in combination with the PD-
L1 inhibitor durvalumab induced strong responses in three of
eight metastatic castration-resistant prostate cancer patients (71).
These tumors may be naturally adenosine-rich due to prostatic
acid phosphatase activity and therefore a good candidate for
A2AR blockade (71).

CD39/CD73
It has been established that CD39/CD73 also have a major role
in facilitating immune escape by tumors. Indeed, Robson’s Team
established the field of CD39 and were the first to demonstrate
that CD39 deletion alleviated tumor burden in a preclinical
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model of hepatic metastatic cancer (72). Parallel studies by
Smyth’s Team also demonstrated that administration of a CD73
monoclonal antibody (mAb) decreased tumor burden in two
distinct murine tumor models. This approach also suggested that
not only did CD73 inhibit antitumor leukocytes via adenosine
generation, but affected tumor metastasis as well (73). Moreover,
Stagg’s Team demonstrated that CD73 overexpression in human
triple-negative breast cancer correlated with poor prognosis
and resistance to chemotherapy in a preclinical model of
breast cancer (74). Important studies by Smyth’s Team also
demonstrated improved anti-tumor efficacy using an A2AR
antagonist in combination with a CD73 inhibitor to alleviate
tumor burden (75). These findings also highlight the importance
of targeting multiple components of the hypoxia-adenosine-
A2AR axis. Indeed, small molecule inhibitors or monoclonal
antibodies against CD39 and CD73 are emerging as potent
anti-cancer therapies (49, 74, 76–82). Furthermore, αCD73
therapy has been demonstrated to improve the therapeutic
benefit of αPD-1/αCTLA-4 therapy in multiple preclinical cancer
models (80).

Several mAb CD73 inhibitors have exhibited strong antitumor
efficacy in clinical trials with findings consistent with preclinical
data. In 66 pancreatic or colorectal cancer patients, the αCD73
mAb MEDI9447 as monotherapy and in combination with
durvalumab decreased CD73 expression on peripheral T cells.
In addition, MEDI9447 decreased CD73 expression in five out
of nine tumors, which correlated with increased cytotoxic T cell
infiltration (83). The αCD73 mAb BMS986179 as a monotherapy
and in combination with the PD-1 inhibitor nivolumab also
induced partial responses or stable disease in 17 of 59 patients
with various malignancies (84).

HIF-1α

Given the hypoxia-HIF-1α-mediated upregulation of
adenosine-generating enzymes, Sitkovsky’s Team established
in decades-long studies that hypoxia-HIF-1α inhibits T cells
(10). It was then hypothesized and confirmed that the reversal
of hypoxia could prevent the inhibition of antitumor T cells
by hypoxia-adenosine-A2AR-mediated immunosuppression.
Indeed, preclinical studies demonstrated that supplemental
oxygen (60% O2) decreased levels of hypoxia, HIF-1α, and
extracellular adenosine in the TME (44). This was supported by
data demonstrating oxygenation-mediated reduction in CD39,
CD73, A2AR, A2BR, and COX-2 expression (44). Importantly,
supplemental oxygen was also shown to upregulate MHC class I
expression by tumor cells, allowing for increased recognition and
subsequent elimination by antitumor T cells (44). Parallel studies
demonstrated the immunological effects of supplemental oxygen

by showing that oxygenation converts an immunosuppressive
TME to an immunopermissive TME. This resulted in an increase
in many pro-inflammatory cytokines as well as recruitment of
endogenous and adoptively transferred antitumor T cells into
the TME. This was also accompanied by a reduction in many
anti-inflammatory molecules such as TGFβ, CTLA-4, and FoxP3,
as well as an overall reduction in regulatory T cells in the TME
(85). This resulted in significant tumor regression and long-term
survival in preclinical tumor models. Importantly, these studies
also established that the reversal of hypoxia improved the efficacy
of immune checkpoint blockade with αCTLA-4/αPD-1 (85).

HIF-1α can also be pharmacologically targeted using small
molecule drugs such as digoxin, acriflavine, and ganetespib.
Indeed, these drugs have shown efficacy in preclinical
tumor models (86–88). While the immunosuppressive
effects of HIF-1α have been shown to be mediated in part
by hypoxia-adenosinergic signaling, HIF-1α also has other non-
adenosinergic immunosuppressive effects (89). Additionally,
immunosuppression via adenosine-A2AR signaling may not
be completely reversed by only targeting hypoxia/HIF-1α.
Therefore, an ideal approach for completely abrogating the
immunosuppressive effects of the hypoxia-adenosine-A2AR
axis might be the co-administration of both anti-hypoxia-
HIF-1α therapies and A2AR antagonists during cancer
immunotherapy (90).

CONCLUSION

The hypoxia-adenosine-A2AR axis is a potent inhibitor
of antitumor T cells. This pathway presents multiple
pharmacological targets. Of particular importance and
translational value are A2ARs, CD39/CD73, and HIF-1α.
Inhibition of this pathway has been shown to enhance the
efficacy of current cancer immunotherapy approaches, including
αCTLA-4/αPD-1. Multiple studies have reported synergism
between checkpoint inhibitors and several classes of anti-
hypoxia-adenosine-A2AR therapeutics. Our preclinical studies
provided the rationale and justification for combining A2AR
blockade and supplemental oxygen/oxygenation agents during
cancer immunotherapies. We postulate that this approach will
maximize the efficacy of the antitumor immune response in
clinical studies.
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