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In stressful situations, catecholamines modulate mammalian immune function, and in
addition, they can be sensed by many bacteria. Catecholamine sensing was also found
in the zoonotic gut pathogen Salmonella Typhimurium, probably contributing to the
stress-induced increased risk of salmonellosis. Virulence traits such as proliferation
and invasiveness are promoted upon bacterial catecholamine sensing, but it is
unknown whether S. Typhimurium may also inhibit mammalian immune function in
stressful situations. We thus investigated whether supernatants from S. Typhimurium
grown in the presence of catecholamines modulate porcine mitogen-induced
lymphocyte proliferation. Lymphocyte proliferation was reduced by supernatants from
catecholamine-exposed Salmonella in a dose-dependent manner. We further examined
whether adrenaline oxidation to adrenochrome, which is promoted by bacteria, could
be responsible for the observed effect, but this molecule either enhanced lymphocyte
functionality or had no effect. We could thereby exclude adrenochrome as a potential
immunomodulating agent produced by S. Typhimurium. This study is the first to
demonstrate that bacteria grown in the presence of catecholamine stress hormones
alter their growth environment, probably by producing immunomodulating substances,
in a way that host immune response is suppressed. These findings add a new dimension
to interkingdom signaling and provide novel clues to explain the increased susceptibility
of a stressed host to Salmonella infection.

Keywords: Salmonella Typhimurium, catecholamines, adrenaline, adrenochrome, pig, stress, interkingdom
signaling, immune function

INTRODUCTION

In acute stress situations, the mammalian body launches a rapid physiologic response, which
enables it to cope with threats imposed on its health. In the course of such a “fight-or-
flight” reaction, substantial amounts of stress hormones, particularly adrenaline (ADR) and
noradrenaline (NA), can be released from the adrenal gland and at sympathetic nerve endings.
These catecholamines (CAs) not only exert effects on blood circulation, respiration, energy
metabolism, and many other functions supporting physical exertion (1–3), but also affect the

Frontiers in Immunology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 572056

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.572056
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fimmu.2020.572056
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.572056&domain=pdf&date_stamp=2020-09-30
https://www.frontiersin.org/articles/10.3389/fimmu.2020.572056/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-572056 September 30, 2020 Time: 14:13 # 2

Reiske et al. Immunosuppression by Catecholamine-Treated Bacteria

immune system (4, 5). The long-held view of general
immunosuppression by stress hormones was increasingly
challenged in recent years, as especially CA actions are rather
diverse and dose-dependent, including both inhibiting and
enhancing actions (5–9). In some organs, such as the spleen or
the gut, stress-related CA release can lead to local concentrations
of up to 10−4 to 10−3 M (10, 11), which is much higher than
in the blood, where levels are between 10−9 and 10−6 M (12,
13). This is caused by NA discharge from synaptic vesicles at
noradrenergic nerve endings (10, 11, 14). In the gut and other
tissues with contact to the external world via epithelial surfaces,
CAs can even cross the epithelial border and interact with
microorganisms living in those ecological niches (15–18). In the
colon, NA can reach a concentration of about 50 ng/g luminal
content (14).

In the last two decades, more and more studies in the field
of microbial endocrinology emerged, investigating the cross-
talk between the endocrine and nervous system of host species
and microorganisms inhabiting or invading them. A plethora
of microorganisms exist naturally as commensals, e.g., in the
gut, oral cavity, and on the skin (19–21). It is therefore no
surprise that both parties evolved mechanisms to communicate
with each other via mammalian hormones and hormone-like
microbial molecules, with mutual benefits supporting symbiosis.
However, many pathogens have been proven to sense stressful
situations with high CA levels and exploit them by boosting
virulence (22, 23). NA can be used by many bacterial species as
an iron donor (24, 25) or activate quorum sensing–a bacterial
cell-to-cell communication–by directly binding to QseC or QseE
(26–28). Elevated ADR and NA concentrations can thus lead
to an increased bacterial growth rate (29, 30), motility (26,
29), or attachment to epithelial surfaces (22)–in short, higher
chances of infection. This interkingdom signaling works in
both directions. Independently of host stress, bacteria produce
molecules for interbacterial communication, some of which have
a hormone-like side effect on host cells (31). For instance,
many Gram-negative bacteria produce substances, which are
chemically analogous to eukaryotic lipid hormones and can
modulate host immune functions such as neutrophil chemotaxis
and lymphocyte proliferation (32–35). Moreover, some quorum-
sensing molecules produced by several regular inhabitants of the
gastrointestinal tract (GIT) probably act as agonists at adrenergic
receptors (ARs) (36).

Regarding this intense cross-talk between kingdoms, it is
conceivable that in stressful situations, pathogens not only
modulate their own properties but may even actively manipulate
immune cells to exploit a weakened host. Upon CA perception,
they might react with the release of bacterial hormone-like
molecules similar to the aforementioned ones. Furthermore,
a microbial alteration of mammalian CAs might lead to
the formation of an immunomodulating substance. CAs are
vulnerable to oxidation (37), and in the presence of superoxide,
the oxidation of ADR to adrenochrome (AC) is promoted (38).
A boost of AC formation by superoxide-producing bacteria
might cause immunomodulation as it was shown that AC can
bind to β-ARs (39), which can be found on most immune
cells (40). Indeed, it was demonstrated in Vibrio cholerae
O395N1 that the bacterial Na+-translocating NADH:quinone

oxidoreductase (NQR) promoted the oxidation of ADR to AC
by superoxide production (41). AC supported the pathogenicity
of V. cholerae by stimulating its growth even stronger than
ADR and in addition exerted immunomodulating effects by
inhibiting tumor necrosis factor α (TNF-α) production in a
human monocytic cell line (41). It can be hypothesized that
V. cholerae is not the only gut pathogen capable of this reaction,
and the promotion of AC formation may be a strategy also used
by other bacteria to manipulate host immune functionality. An
interesting candidate to test this hypothesis is the important
zoonotic gut pathogen, Salmonella enterica ssp. enterica serovar
Typhimurium (S. Typhimurium), which is common in domestic
pigs (Sus scrofa domestica) and difficult to eradicate. It is known
that stress has a negative impact on primary Salmonella infection
in pigs and also on the recrudescence of asymptomatic latent
infections, for example, by transportation to the slaughterhouse
(42). The resulting bacterial shedding by slaughter pigs leads to
increased carcass contamination and thus intensifies the risk of
food-borne transmission to humans (43). However, despite the
importance of this bacterial infection both from a veterinary
and a medical point of view, the underlying mechanisms of
these observations are still not sufficiently resolved. Because
an enhanced motility and growth rate upon CA sensing have
also been found in Salmonella (16, 26), studying interkingdom
signaling is a promising approach to better explain the promotion
of salmonellosis by stress.

The aim of the present study was thus to investigate whether
S. Typhimurium grown in the presence of CAs has the potential
to hamper porcine immune functionality. We examined the
effects of supernatants from S. Typhimurium cultures exposed to
NA or ADR on lymphocyte proliferation and demonstrated an
inhibitory effect. Furthermore, we investigated whether AC is the
causative agent of this inhibition.

MATERIALS AND METHODS

Animals and Sampling
To obtain blood for in vitro studies without stress hormone
release during the sampling procedure, 37 castrated male pigs
(German Landrace × Pietrain, age 7 months) with indwelling
vein catheters were used in total. At least 14 days before the
beginning of blood sampling, Vena cephalica cannulation was
performed under generalized anesthesia. Surgery was performed
as previously described (44) with few modifications (45). The
barrows were housed individually in pens (5.4 m2) with visual
and tactile contact to their conspecifics. Pens were littered with
dust-free wood shavings and cleaned every day after feeding.
Light was on from 06:30 until 20:30. Pigs were fed hay ad libitum
and concentrate (1.5 kg/meal, ME 12 MJ/kg) twice a day in
the morning at 07:30 and in the afternoon at 15:00. To ensure
blood sampling without disturbance of the animals, pigs were
thoroughly habituated to human handling. Catheters were rinsed
with heparinized saline (115 IU/mL; B. Braun Melsungen AG,
Melsungen, Germany) every day during feeding in the morning.
For blood collection via the catheters, 5 mL of blood was drawn
and discarded before 10 mL blood per animal was collected
into lithium heparin tubes (Sarstedt, Nümbrecht, Germany).
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Separation of peripheral blood mononuclear cells (PBMCs)
from whole blood was performed with LeucosepTM Centrifuge
Tubes (Greiner Bio-One, Frickenhausen, Germany) using Biocoll
with a density of 1.077 g/mL (Biochrom, Berlin, Germany)
as previously described (6). In brief, PBMCs were separated
by a density gradient, and after two washing steps; cells were
suspended in RPMI 1640 supplemented with 10% fetal calf serum
(FCS) and 50 µg/mL gentamycin (all Biochrom). Afterward,
cell concentration was determined with a Z2 Coulter Counter
(Beckman Coulter, Krefeld, Germany).

Preparation of Bacterial Supernatants
To acquire supernatants from bacteria grown in vitro in presence
and absence of 0.1 mM ADR, 0.1 mM NA, or 0.02 mM
AC (Sigma-Aldrich, Taufkirchen, Germany), S. enterica serovar
Typhimurium Zoosaloral his−155/ade−4 (S. Typhimurium;
DSM-No: 11320), auxotroph for histidine and adenine was
chosen. S. Typhimurium was first allowed to grow on LB agar
overnight at 37◦C [1% (wt/vol) tryptone, 0.5% (wt/vol) yeast
extract, 1% (wt/vol) NaCl, and 1.5% (wt/vol) bacto agar]. A single
colony was used to inoculate 25 mL of LB medium [1% (wt/vol)
tryptone, 0.5% (wt/vol) yeast extract, 1% (wt/vol) NaCl]. After
incubation overnight at 37◦C and 180 rpm shaking (Infors HT
Ecotron), S. Typhimurium cells were harvested by centrifugation
(3 min, 10,000 × g), washed, and resuspended in heat-treated
serum-SAPI cultivation medium (29) to obtain an optical cell
density at 600 nm of 2 (Diode Array HP 8462A, Hewlett
Packard, Palo Alto, CA, United States). Heat-treated serum-
SAPI cultivation medium contains SAPI solution [6.25 mM
NH4NO3, 1.84 mM KH2PO4, 3.35 mM KCl, autoclaved; 1.01 mM
MgSO4, 2.77 mM glucose, 10 mM HEPES pH 7.5 sterile filtered
(0.22 µm)], 30% (vol/vol) FCS (Sigma-Aldrich), which was heat
inactivated at 55◦C for 20 min prior to use and supplementation
of 0.12 mM adenine monohydrochloride and 0.13 mM L-
histidine. Serum-SAPI was used as it is the medium of choice
for analysis of CA effects on bacteria (15, 29, 30). Cultivation
medium was inoculated with the cell suspension to obtain an
OD600 of 0.01. To triplicates of 20 mL inoculated serum-SAPI
either 10−4 M ADR, 10−4 M NA, or 2 × 10−5 M AC (Sigma-
Aldrich), or no further compound was added and incubated at
37◦C and shaking (180 rpm). As control, cultivation medium
without bacterial cells and without CAs or AC was also incubated
under the same conditions. After 8 h of growth, when cells
were in the exponential growth phase, cells were harvested by
centrifugation (15 min, 7,000 rpm) and the supernatant was
sterile filtered (0.22 µm), frozen in liquid nitrogen, and stored
at -80◦C. Cells were harvested for collection of supernatants at
OD600 = 0.34 (no addition), 0.47 (ADR), 0.49 (NA), and 0.36
(AC).

Determination of CA Contents in
Bacterial Supernatants via
High-Performance Liquid
Chromatography
High-performance liquid chromatography (HPLC) with
electrochemical detection was conducted to determine the

concentration of CAs in bacterial supernatants grown in the
presence of NA or ADR. The HPLC system (ISO-3100BM,
Thermo Fisher Scientific) was connected to an electrochemical
detector [Coulochem III, conditioning cell (model 50210A),
analytical cell (model 5011A), Thermo Fisher Scientific]. The
potentials of the cells were set at 300, 50, and -250 mV. The
system was equipped with the column Reprosil Pur 120 C18-AQ
(4.6 × 75 mm) (A. Maisch, Ammerbuch, Germany). Cat-A-
Phase II was used as the mobile phase, with a flow rate of
1.1 mL/min. The sample preparation with alumina extraction
were adapted from the method first described by Anton
and Sayre (46). Bacterial supernatants were diluted (1:10,000
and 1:20,000) to be in the range of the applied calibration
curve. In brief, 1 mL of sample and 500 pg of an internal
standard (dihydroxybenzylamine; Thermo Fisher Scientific,
Darmstadt, Germany) were added to extraction tubes containing
20 mg aluminum oxide previously activated with 600 µL 2 M
Tris/EDTA buffer (pH 8.7). Samples were thoroughly mixed in
an overhead shaker for 10 min and centrifuged at 1,000 × g for
1 min (4◦C). Samples were washed three times with 1 mL of
16.5 mM Tris/EDTA buffer (pH 8.1), followed by centrifugation.
The CAs were eluted by addition of 120 µL eluting solution
(Recipe, Munich, Germany), short mixing, and centrifugation
at 1,000 × g for 1 min (4◦C). Aliquots of 50 µL were injected
into the HPLC system. The internal standard method using peak
areas was applied to evaluate the concentration of the samples.

Lymphocyte Proliferation Assay
For investigation of lymphocyte proliferative capacity, a
mitogen-induced lymphocyte proliferation assay was performed
as previously described (47). In short, PBMCs were seeded
into 96-well round-bottom cell culture plates (Neolab,
Heidelberg, Germany) with 1.5 × 105 cells/well and either
stimulated with 5 µg/mL concanavalin A (ConA) or 5 µg/mL
pokeweed mitogen (PWM) (both Sigma-Aldrich) or left without
stimulation. Subsequently, supernatants from the differently
treated S. Typhimurium cultures were added in concentrations
of either 5, 10, or 15% of the total cell culture volume. To
guarantee similar growth conditions throughout the wells,
pure serum-SAPI was applied to control wells as well as for
volume compensation, resulting in 15% serum–SAPI–based
additive in every well. Each treatment was done in triplicates.
Cells were incubated at 39◦C, and 5% CO2 for 48 h before
0.25 µCi 3H-thymidine/well (PerkinElmer, Rodgau, Germany)
was added, followed by a further incubation for 24 h. PBMCs
were harvested using glass fiber filters (Sigma-Aldrich), and the
incorporated radioactivity was measured by a liquid scintillation
analyzer (PerkinElmer). For each treatment, the mean of counts
per minute (cpm) was calculated, and the mean cpm of the
unstimulated control was subtracted to gain 1 cpm.

HPLC analysis of the Salmonella supernatants showed that
substantial amounts of CAs were still present in CA-treated
cultures. We thus performed an additional experiment to ensure
that probable bacterial effects were not in fact caused by CAs or by
mere synergistic effects of bacterial products and CAs. Therefore,
previously frozen PBMCs of three animals were thawed and
seeded with 1.5 × 105 cells/well in 96-well round-bottom cell

Frontiers in Immunology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 572056

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-572056 September 30, 2020 Time: 14:13 # 4

Reiske et al. Immunosuppression by Catecholamine-Treated Bacteria

culture plates in RPMI 1640 supplemented with 10% FCS and
50 µg/mL gentamycin. Cells were incubated at 39◦C and 5%
CO2 as described for the first experiment after adding one of
the following treatments: PBMCs were either left unstimulated
after addition of 15% serum-SAPI medium or stimulated with
5 µg/mL ConA. Stimulated cells were supplemented with one
of the following additives: 15% serum-SAPI alone, 15% serum-
SAPI and 10−5 M NA, 15% serum-SAPI and 10−5 M ADR, 15%
supernatants from S. Typhimurium grown without hormone,
15% supernatants from S. Typhimurium grown in the presence
of 10−4 M NA or 10−4 M ADR, or 15% supernatants from
S. Typhimurium grown without hormone with retrospective
addition of 10−5 M NA or 10−5 M ADR.

In a third experiment, lymphocyte proliferation was assessed
again as described previously but with addition of AC (Sigma–
Aldrich). As the effective concentration (and the amount of
presumed ADR oxidation in Salmonella cultures) was unknown,
we investigated a wide range of concentrations (10−10 to 10−5

M). After addition of AC and stimulation with 5 µg/mL ConA
or 5 µg/mL PWM, cells were incubated, and proliferation was
determined as described above.

Statistical Analysis
For statistical analysis, we used the software SAS, version
9.4 (SAS institute Inc., Cary, NC, United States), applying
the MIXED procedure. Degrees of freedom were determined
with the Kenward–Roger method (48); normal distribution
and variance homogeneity were confirmed visually by normal
probability plots and plots of residuals versus fitted values (49).
For estimation of variance components, we used the restricted
maximum likelihood method. The models included the factors
“treatment” and “trial,” as well as their interaction as fixed
effects and “sampling day” and “sampling day × treatment”
as random effects. To take into account the individual level
of the pigs, “animal” was included as a repeated effect. If
data were not normally distributed, logarithmic or square root
transformation was performed to attain normality. The results
are presented as least square (ls)-means + standard error of the
mean (SEM). Statistically significant differences were determined
by Fisher’s least significant difference test. Significance limits
were set as follows: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and
tp < 0.1 (tendency).

RESULTS

Supernatants From CA-Treated
S. Typhimurium Cultures Inhibit
Lymphocyte Proliferation
We first evaluated the effects of supernatants from
S. Typhimurium cultures on lymphocyte proliferation.
Compared to the media control, the addition of supernatants
from hormone-free Salmonella cultures enhanced ConA-
induced lymphocyte proliferation (Figure 1A). In comparison
to supernatants from hormone-free Salmonella cultures,
lymphocyte proliferation was reduced significantly if 10% or 15%

FIGURE 1 | Lymphocyte proliferation after stimulation with either (A)
concanavalin A (ConA) or (B) pokeweed mitogen (PWM), as well as addition
of either serum-SAPI medium (white) or supernatants from Salmonella
Typhimurium cultures grown for 8 h at 37◦C without hormones (light gray) or in
the presence of 10−4 M noradrenaline (NA; medium gray) or 10−4 M
adrenaline (ADR; dark gray). Supernatants were added in concentrations of
either 5%, 10%, or 15% of the cell culture volume as indicated on the x axis.
Treatments that are statistically significant from each other are indicated by
different letters on top of their bars, whereas bars that share a common letter
do not differ significantly. Data are presented as ls-means + SEM (bars) and
single values of each animal (circles), n = 16.

of supernatants from Salmonella grown in the presence of ADR
or NA were added and already tended to be lower (p = 0.053)
if 5% of supernatants from Salmonella grown in the presence
of ADR were added. In PWM-stimulated PBMCs, already
the addition of supernatants from hormone-free Salmonella
cultures reduced proliferation compared to the media control
(Figure 1B). But similar to ConA-stimulated cells, addition
of 10% or 15% of supernatants from Salmonella grown in the
presence of NA further reduced proliferation significantly.
The addition of supernatants from Salmonella grown in the
presence of ADR caused a less pronounced suppression of
PWM-stimulated cells with a significant effect if 15% and a
tendency (p = 0.058) if 10% were added.

Suppression of Lymphocyte Function Is
Not Due to CA Action
Because CAs themselves are well-described to modulate immune
cell functionality, we determined whether CAs were still present
in S. Typhimurium cultures incubated for 8 h in the presence
of either NA or ADR by HPLC analysis. Thereby, an ADR
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FIGURE 2 | Lymphocyte proliferation after stimulation with 5 µg/mL concanavalin A and upon addition of 15% serum-SAPI (white), 15% supernatants from
Salmonella Typhimurium cultures grown without hormones (light gray) or grown with either 10−4 M noradrenaline (NA; middle gray) or 10−4 M adrenaline (ADR; dark
gray) for 8 h at 37◦C, or addition of 15% supernatants from S. Typhimurium cultures grown without hormones simultaneous to catecholamine addition [10−5 M NA
(light gray hatched in middle gray) or 10−5 M ADR (light gray hatched in dark gray)] (A); or upon addition of 15% serum-SAPI without further additives (white) or
additional supplementation with 10−5 M NA (white hatched in middle gray) or 10−5 M ADR (white hatched in dark gray) (B). Data are presented as ls-means + SEM,
n = 3. Asterisks and t in superscript indicate significant differences and tendencies compared to supernatants from hormone-free Salmonella culture (A) or the
hormone-free control (B), respectively.

concentration of 19.67 µg/mL (1.07 × 10−4 M) was found,
representing the same level as applied at the start of incubation
(1 × 10−4 M). NA showed a slight decrease compared to the
initial concentration of 1 × 10−4 M, but was still present in the
supernatants at a concentration of 8.08 µg/mL (4.8 × 10−5 M).
Thus, to verify that probable bacterial effects were not “ordinary”
immunomodulating effects of CAs or caused by mere synergistic
effects of bacterial products and CAs, we tested the effects of
simultaneous addition of supernatant from S. Typhimurium
grown without hormones and either NA or ADR in the same
range as found within the culture supernatants tested in the initial
experiment (cf. Figure 1).

As seen in Figure 2A, ConA-induced lymphocyte proliferation
was significantly lower if supernatants from Salmonella grown
in the presence of NA or ADR were added compared to
supernatants from hormone-free Salmonella culture. Thus, the
results presented above (cf. Figure 1) could be confirmed.
Notably, in contrast to this effect, no suppression occurred on
ConA-induced lymphocyte proliferation if supernatants from
hormone-free Salmonella cultures were added simultaneously
with ADR or NA (Figure 2A). Opposite to the effect of
supernatants from Salmonella grown in the presence of NA or
ADR, proliferation was slightly increased if cells were treated with
NA (p = 0.073) or ADR (p = 0.068) alone (Figure 2B).

The ADR Oxidation Product AC Is Not the
Active Inhibitory Agent in Supernatants
From CA-Treated Salmonella Cultures
To assess whether the oxidation of CAs by Salmonella might
cause the observed suppressive effect of supernatants from
CA-treated bacterial cultures, we performed the lymphocyte

proliferation assay under the same conditions as in the first
experiment (cf. Figure 1) but added AC instead of bacterial
supernatants (Figures 3A,B). If PBMCs were stimulated with
ConA, all tested concentrations led to an enhancement of
proliferation compared to the AC-free control (Figure 3A),
whereas no effect was observed upon stimulation with
PWM (Figure 3B).

Because AC can also have a direct effect on bacteria, like
in V. cholerae (41), we assumed that its effect on PBMCs
might possibly be mediated indirectly, by modulating the
behavior of S. Typhimurium upon sensing. In addition to the
treatment of Salmonella cultures with NA or ADR, we thus
also cultured S. Typhimurium with 2 × 10−5 M AC for 8 h at
37◦C before centrifugation and microfiltration. If supernatant
from these cultures was added to ConA-stimulated PBMCs,
proliferation was enhanced compared to the serum–SAPI–
control but not significantly different from the proliferation upon
addition of supernatants from hormone-free Salmonella cultures
(Figure 3C). If PWM was used, proliferation was lower than
upon serum-SAPI addition and on the same level as with the
supernatant from hormone-free Salmonella cultures (Figure 3D).

DISCUSSION

The results of the present study indicate a close host–pathogen
cross-talk in situations with elevated stress hormone levels in
pigs. Based on pioneering work demonstrating the ability of
many bacteria to increase pathogenicity in response to CAs (23,
50), we here show that interkingdom signaling also works the
other way. Our data indicate that there is a direct action of
CA-treated bacteria on host immune cells. Lymphocytes treated
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FIGURE 3 | Lymphocyte proliferation upon addition of adrenochrome (A,B) or serum-SAPI medium or supernatants from Salmonella Typhimurium cultures grown
without additive or in the presence of 2 × 10−5 M adrenochrome for 8 h at 37◦C (C,D), and stimulation with either 5 µg/mL concanavalin A [ConA; (A,C)] or
5 µg/mL pokeweed mitogen [PWM; (B,D)]. Significant differences are marked by asterisks, tendencies are indicated by a t in superscript. Data are presented as
ls-means + SEM, n = 19 (A,B), n = 16 (C,D).

with cell-free supernatants from S. Typhimurium grown in the
presence of ADR or NA showed a decreased proliferation, which
is probably not the only hampered immune function. Future
studies should investigate further important immune functions
such as the production of pro-inflammatory cytokines, which are
also involved in Salmonella control (51).

We demonstrate that the inhibition of lymphocyte
proliferation does not simply reflect an immunomodulating
effect of CAs, as retrospective addition of ADR or NA in
combination with supernatant of non-treated S. Typhimurium
did not inhibit mitogen-induced proliferation of porcine
immune cells. This is also supported by our previous study,
showing that under the same cell culture conditions, the
sole addition of ADR or NA led to an increased lymphocyte
proliferation instead of its reduction (6). This implies that
the proposed immunosuppressive substance produced by
CA-treated S. Typhimurium must be very potent if it even
diminishes the enhancing effect of the CAs that were still present
in the supernatants.

To the best of our knowledge, this is the first study to
report that bacteria grown in the presence of stress hormones
alter their growth environment—probably by producing
immunomodulating substances—in a way that host immune
response is impaired.

Based on own previous studies, AC was a promising candidate
for the observed immunosuppression by S. Typhimurium. These
experiments demonstrated that AC was formed during bacterial
culture of V. cholerae (29, 41) upon ADR addition, and AC
treatment of the human monocytic cell line THP-1 caused a
hampered TNF-α production (41). Also, it is already known that
AC can bind to ARs (39), which are present on all immune
cells (4). We thus investigated whether this oxidation product
of ADR may be responsible for the observed effects on porcine
primary immune cells. However, AC either added directly to
porcine lymphocytes or added to S. Typhimurium cultures did
not decrease porcine lymphocyte functionality but instead had no
effect or even increased it. Based on these results, it can be ruled
out that AC is the immunomodulating substance responsible
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for the observed inhibition. Thus, S. Typhimurium must have
produced different signaling molecule(s). At this point, it can
only be speculated as to what substance might be responsible for
the findings by comparing the demonstrated effects with those
attributed to already identified molecules that are produced by
S. Typhimurium or other bacteria.

It was shown that NA triggers the release of autoinducers
(AIs) in many Gram-negative bacteria including Salmonella (16).
This group of quorum-sensing molecules not only enhances
the growth and virulence of the bacteria themselves but may
also influence the host immune system. The most prominently
mentioned and potentially immunomodulatory AI in the
literature is AI-3, which is also produced by S. Typhimurium
(36, 52). Although the exact structure still remains unknown,
it has an aminated aromatic compound and seems to have a
high similarity to CAs because it can be blocked by α- and β-
adrenergic antagonists (53–55), and both NA and AI-3 can bind
to QseC (27). It is thus likely that AI-3 can bind to mammalian
ARs. However, we have previously shown by in vitro culture with
CAs that AR binding leads to increased proliferation of porcine
PBMCs, contrary to the effects of supernatants from ADR- or
NA-treated Salmonella presented here (6). Also, an α-adrenergic
action of AI-3 is unlikely as binding to these receptors generally
causes an enhanced immune functionality (4, 9). Nevertheless,
it cannot be precluded at this point that AI-3 might specifically
bind to β2-ARs in mammalian immune cells, which are mostly
immunosuppressive (56).

There is a second important AI molecule produced by
S. Typhimurium in the exponential growth phase, named AI-
2 (57). It plays a role in invasion and intracellular survival in
macrophages (58, 59), but indications for a direct modulation of
host immune cells have not been found so far. Whether this is
a candidate for immunosuppression by Salmonella in a stressed
host may be subject of future studies.

Another interesting class of bacterial hormone-like molecules
is the lipophilic acyl homoserine lactones (AHLs). They are
chemically analogous to eukaryotic lipid hormones and can either
impair or exacerbate immune functions, depending on their
concentration. It has even been shown that they have the ability
to inhibit lymphocyte proliferation and TNF-α production in
macrophages and TH cells (32, 60, 61). Although this very much
resembles the findings of the present study, an AHL production
was so far not described in Salmonella species (62).

Also, it was shown that S. Typhimurium can deacylate the lipid
A portion of their lipopolysaccharide, which results in a lower
activation of Toll-like receptor 4 on antigen-presenting cells. As a
consequence, the immune-activating intracellular nuclear factor
κB signaling, as well as the release of pro-inflammatory cytokines,
is hampered (63). It is conceivable that the effects observed in the
present study may at least partly be caused by an activation of this
mechanism upon CA sensing of the bacteria.

Conclusively, this study added further novel clues to explain
the increased susceptibility of a stressed host to infection. It
has been shown earlier that stress has a negative impact on
Salmonella recrudescence in pigs by increasing intracellular
Salmonella proliferation in macrophages (64). A direct effect on
invasiveness and intracellular survival rate of S. Typhimurium by
binding of NA to the histidine kinase QseC was demonstrated in

another study in mice (65). S. Typhimurium infection in calves
was also aggravated by an increase of bacterial proliferation by
NA, probably through acting as an iron donor for the bacteria
(66). The present work shows for the first time that bacteria
grown under the influence of NA or ADR are even able to
hamper mammalian lymphocyte functionality. Thus, valuable
information is added to the phenomenon of increased Salmonella
susceptibility of stressed pigs. Pigs represent an important meat-
producing agricultural species and are relevant carriers of the
widely distributed zoonotic agent S. Typhimurium (67). At the
same time, pigs are an excellent model for human salmonellosis
because porcine nutritional physiology and gut anatomy as well
as the immune system are very similar to that of humans (68–71).
Upon this basic study, it is thus possible to make presumptions
about effects of stress on the risk of salmonellosis in humans,
i.e., increased risk of infection due to immunosuppression by CA-
primed bacteria, while at the same time gaining knowledge about
porcine immunology that may have impacts on pig husbandry
and food hygiene at the slaughterhouse.
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