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Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5
convertase of the complement alternative pathway (AP). Several studies have suggested
that properdin can bind directly to the surface of certain pathogens regardless of the
presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated
killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far.
In this work, we demonstrate that properdin present in normal human serum, purified
properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira.
Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with
our previous findings, AP activation was shown to be important for kiling non-pathogenic
L. biflexa, and properdin plays a key role in this process since this microorganism survives
in P-depleted human serum and the addition of purified properdin to P-depleted human
serum decreases the number of viable leptospires. A panel of pathogenic L. interrogans
recombinant proteins was used to identify putative properdin targets. Lsa30, an outer
membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser
extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in
limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the
leptospiral surface, this positive complement regulatory protein of the AP contributes to
the formation of the C3 convertase on the leptospire surface even in the absence of prior
addition of C3b.

Keywords: properdin, Leptospira, complement system, alternative pathway, bacteria killing ability

INTRODUCTION

Spirochetes of the genus Leptospira may cause leptospirosis, a zoonosis of worldwide distribution.
The Leptospira genus includes pathogenic and saprophytic species, which are classified into more
than 300 serovars (1). Pathogenic leptospires have evolved virulence strategies to successfully
colonize a variety of hosts, but the mechanisms of pathogenesis in leptospirosis are still poorly
defined. While progress has been made in this field, gaps remain in our understanding of how
Leptospira causes disease.
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One of the factors that contribute to a successful infection by
spirochetes is their ability to escape the natural defense mechanisms
of the human host by circumventing complement-mediated killing.
Pathogenic Leptospira spp. control complement activation on their
surfaces or in the surrounding microenvironment by i) hijacking
soluble regulatory proteins from the host; ii) cleaving complement
molecules of the alternative (AP), the lectin and the classical
pathways through the secretion of proteases such as thermolysins;
or, iii) the acquisition of host proteases such as plasminogen
[reviewed in (2)]. In contrast, saprophyte Leptospira spp. are
devoid of complement evasion strategies and so are highly
susceptible to the bactericidal activity of human serum (2-4).

A number of surface-exposed proteins have been shown to
contribute to complement immune evasion by pathogenic
Leptospira. By binding soluble complement regulatory proteins
that avoid complement activation (negative regulators) such as
Factor H, C4b binding protein, and vitronectin, these bacterial
proteins potentially down-regulate all three complement
pathways as well as the terminal step of this cascade (3-5).
While the interaction of these complement regulatory proteins
with different Leptospira species has been well explored over the
last years, binding of properdin, the only positive regulator of the
complement cascade, to the surface of saprophyte and
pathogenic Leptospira has never been evaluated.

Human properdin is a 53 kDa plasma glycoprotein composed
of seven tandem repeats called thrombospondin type 1 modules
(6, 7). In the circulation, identical subunits display a head to tail
arrangement to form dimers, trimers and tetramers in a fixed
ratio, the trimers being the most abundant form (8, 9). Properdin
is synthesized primarily by neutrophils, dendritic cells,
monocytes, macrophages and T cells [reviewed in (10)], and its
serum concentration is approximately 5-25 pg/ml (10, 11). A
number of important functions have been ascribed to properdin
[reviewed in (12). The first studies assessing the role of this
complement regulator date back to the 1950s when Pillemer and
colleagues demonstrated that properdin could bind to a variety
of targets in the absence of specific antibodies and activate the
complement system (13).

In the late 1970s, properdin regained attention when a model
for the assembly of C3 convertase of the AP emerged. According
to this model, today known as the “standard model”, C3b
produced by C3 activation in the fluid-phase binds covalently
to target surfaces. Subsequently, Factor B associates with C3b,
and is then cleaved by Factor D. Factor B amino-terminal
fragment (Ba) is released and the C3bBb complex is
recognized and stabilized by properdin (14, 15). As a
consequence, the C3 convertase half-life is extended by 10-fold
or more (16). More recently, a series of studies indicated that
physiological forms of properdin can initiate complement
activation in vitro by directly attaching non-covalently to
certain target surfaces, including Chlamydia pneumoniae, late
apoptotic and necrotic cells, and activated platelets [reviewed in
(10)]. Consistent with the “properdin-directed model”,
properdin binds to a target surface and recruits C3b. The
C3bBb complex is then formed upon association of Factor B
with C3b, as previously mentioned.

Given the importance of the AP in eliminating non-
pathogenic Leptospira, we addressed the following questions in
the present work: i) do pathogenic and non-pathogenic
leptospiral strains interact differentially with properdin? and ii)
does properdin bind directly to the bacterial surface or is
previous binding of C3b required?

MATERIAL AND METHODS

Leptospira Strains

Saprophytic L. biflexa serovar Patoc strain Patoc I (non-
pathogenic), L. interrogans serovar Pomona strain Pomona,
(pathogenic, culture-attenuated), and L. interrogans serovar
Kennewicki strain Fromm (pathogenic, virulent), were
provided by the Laboratory of Bacterial Zoonoses at the
Faculty of Veterinary Medicine and Animal Science, University
of Sao Paulo. Leptospires were cultured at 29°C for 7 days under
aerobic conditions in EMJH (Difco-USA) liquid medium
supplemented with 10% Leptospira enrichment EMJH (BD-
USA) or with 10% pre-enriched inactivated rabbit serum,
L-asparagine (0.015%), sodium pyruvate (0.001%), calcium
chloride (0.001%), magnesium chloride (0.001%), and peptone
(0.03%). Attenuation of the strain Pomona was achieved by
successive passages in culture medium and virulence of the strain
Fromm was maintained by successive passages in hamsters.

Leptospira Survival in the Serum

L. biflexa serovar Patoc strain Patoc I (2-3 x 10® bacteria/ml)
cultured in EMJH medium supplemented with bovine serum
albumin (BSA) was incubated at 37°C for 2 h with 40% normal
human serum (NHS), heat-inactivated NHS (HI-NHS) obtained
after incubation of NHS at 56°C for 30 min; properdin-depleted
(P-DS) serum (Complement Technology, Inc.) or P-DS
supplemented with 5 pg, 10 ug, or 25 pg of commercial
purified human properdin (Complement Technology. Inc.) to
a final volume of 100 pl. After incubation, Leptospira survival
was estimated by counting the number of viable bacteria in
Petroff-Hausser’s chamber using dark field microscopy,
according to (4). The experiments were performed in triplicate.
The survival in the presence of each serum was compared to that
observed in HI-NHS (100%).

Interaction of Leptospira With Properdin

Cultures of L. interrogans serovar Kennewicki strain Fromm, L.
biflexa serovar Patoc strain Patoc I, and L. interrogans serovar
Pomona strain Pomona were washed twice with VBS™ (1.46 mM
sodium barbiturate; 2.5 mM 5,5 diethyl barbituric acid; 144 mM
NaCl, pH 7.4 containing 0.83 mM MgCl, and 0.25 mM CaCl,).
Each suspension containing 5 x 10° Leptospira/ml) was incubated
with 0, 10, 25, and 50% NHS containing 10 mM EDTA (NHS-
EDTA) or equivalent amounts of purified properdin (0, 2.5, 6.2,
and 12.5 pg). Leptospira samples were also incubated with 40%
C3-depleted human serum (C3-DS) (Complement Technology,
Inc.) or with NHS-EDTA for 2 h at 37°C, with stirring, in a final
volume of 500 pl. In parallel, Leptospira suspensions were
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incubated with 5 pg of human properdin (Complement
Technology, Inc.) or 10 pug of human C3b (Complement
Technology, Inc.) for 1 h at 37°C with stirring. After three
washes with VBS™, 10 pg of C3b was added to the bacterial
cultures that had been pre-incubated with properdin, and 5 ug of
properdin was added to those that had been pre-incubated with
C3b. The bacterial suspensions were then washed five times with
VBS™ and centrifuged at 3,000 x g for 10 min at 4°C. The
precipitates were resuspended in 0.1 M NaHCO; pH 9 and 100
ul of each sample were immobilized in duplicate on ELISA plate
wells for 16 h at 4°C. Next, the wells were washed twice with PBS
containing Tween 0.05% (PBS-T) and blocked with 3% BSA in
PBS for 2 h at 37°C. The wells were washed three times with
PBS-T. Properdin or C3b bound to the bacterial surface were
detected with goat anti-properdin (1:2,000) or goat anti-C3
(1:5,000) (both antibodies were purchased from Complement
Technologies, Inc.) diluted in PBS. After incubation for 1 h at
37°C and three washes with PBS-T, peroxidase-conjugated anti-
goat IgG, diluted 1: 10,000 in PBS, was added for 1 h at 37°C. After
three washes the reactions were developed by adding the substrate
o-Phenylenediamine dihydrochloride (OPD; 0.04%) diluted in
citrate-phosphate buffer (pH 5.0) and 0.01% H,O,. The plates
were protected from light for 5 to 10 min and the reaction was
quenched by the addition of 50 pl of 4 N H,SO,. The absorbance
was read at 492 nm.

Interaction of Properdin Oligomers With
Leptospira Strains and With Leptospiral
Outer Membrane Proteins

We assessed binding of pure properdin oligomers, namely high
molecular weight aggregates not present in serum (Pn), properdin
dimer (P2), trimer (P3), and tetramer (P4) to pathogenic and non-
pathogenic leptospires as well as to leptospiral membrane proteins.
L. biflexa serovar Patoc strain Patoc I (non-pathogenic), L.
interrogans serovar Pomona strain Pomona (culture attenuated),
and L. interrogans serovar Kennewicki strain Fromm (virulent)
suspensions containing 1 x 10° leptospires were incubated with 5 ug
of each oligomer or with unfractionated commercial properdin (P),
and the presence of properdin (total volume of 1 ml) was evaluated
by ELISA as described above. In addition, with the aim of
identifying putative ligands for properdin on the leptospiral
membrane, a panel of recombinant proteins from L. interrogans
serovar Copenhageni 10A [produced essentially as described in (17)
was used (Table 1). One microgram of each protein was
immobilized on ELISA plate wells and incubated with 0.5 ug of
properdin. Binding was assessed as described above. Interaction of
Lsa30 with properdin oligomers was also evaluated as already
described. The data correspond to three independent experiments,
using two separate preparations of P2, P3, P4, or Pn. Each
experiment was performed in triplicate.

Detection of C3 Convertase on the
Leptospira Surface

An ELISA-based assay with some modifications was employed.
All incubations were performed in microtubes including the
development of the reactions with OPD. L. biflexa serovar Patoc

TABLE 1 | Recombinant Proteins from L. Interrogans Serovar Copenhageni 10A.

Gene Protein GenBank Recombinant protein
molecular mass (kDa)

LIC10325 HiyX AAS68952.1 43

LIC11947 LcpA AAS70529.1 20

LIC12875 EF-Tu AAS71428.1 43

LIC10301 - AAS68928.1 13

LIC10009 Lp25 AASB8646.1 25

LIC10507 - AAS69128.1 22

LIC10704 - AASB9325.1 23

LIC11352 LipL32 AAS69953.1 32

LIC10465 LigA-C AASB9086.1 63

LIC10464 LigB-C AASB9085.1 56

LIC10464 LigB-N AAS69085.1 64

LIC13305 - AAST71847 1 31

LIC11087 Lsa30 AAS69694.1 30

LIC11030 - AAS69637.1 35

strain Patoc I and L. interrogans serovar Kennewicki strain
Fromm cultures were centrifuged at 4,500 x g for 20 min at
21°C, then washed twice with PBS. Subsequently, the number of
bacteria was estimated using dark field microscopy. 2 x 10°
bacteria/ml were incubated with 5 pg/ml of commercial
properdin for 1 h at 37°C with stirring. The samples were
washed three times with PBS and the pellets were incubated
with 10% P-DS, NHS, HI-NHS diluted in AP-CFTD (VBS buffer
containing 7 mM MgCl,, 10 mM EGTA, pH 7.2) buffer at 37°C
for 30 min with stirring. After five washes, polyclonal goat anti-
Factor B at a 1: 2,000 dilution (Complement Technology, Inc.) in
PBS-T containing 1% BSA was added and incubation proceeded
for 1 h at 37°C. After three washes with PBS, anti-goat IgG (KPL)
diluted 1: 5,000 in PBS-T containing 1% BSA was added to the
bacteria and incubated for 1 h at 37°C. Subsequently, three
washes were performed, and the reaction was developed with
o-phenylenediamine dihydrochloride (OPD) substrate (0.04%)
diluted in citrate-phosphate buffer (pH 5.0) and 0.01% H,O,.
After 5 min the reaction was stopped with 50 pl of 4N H,SOy, the
samples were transferred to a 96-well plate and the absorbance
read at 492 nm.

Statistical Analysis

Data was analyzed using ANOVA one-way test, using
Statgraphics Centurion XVI software. Except when indicated,
the variance homogeneity was assessed using Cochran test and
when necessary, data logarithmic transformation was used.

RESULTS

Properdin Contributes to Leptospira
biflexa Killing in the Serum

Considering that the AP is important for the killing of the non-
pathogenic L. biflexa serovar Patoc strain Patoc I (3, 4, 18, 19), we
evaluated survival of this strain in P-DS. Under these conditions,
70% of the bacteria survived. When purified properdin (5-25 pg/
ml) was added to P-DS, bacterial survival decreased significantly
as properdin concentration increased because of stabilization of
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the C3 convertase (C3bBb) (Figure 1). These results further
confirm that L. biflexa activates the AP, and bacterial elimination
depends on the presence of properdin.

Binding of Properdin to Leptospira spp.
Next, we investigated if three different species of Leptospira
including virulent (L. interrogans serovar Kennewicki strain
Fromm), culture-attenuated (L. interrogans serovar Pomona
strain Pomona) and non-pathogenic (L. biflexa serovar Patoc
strain Patoc I) strains, would bind to properdin. To assess this
interaction, bacterial cultures were washed and incubated with
purified properdin or NHS-EDTA as a source of properdin, and
binding was measured by ELISA. Our data shows that properdin,
either purified or present in NHS-EDTA, interacts dose-
dependently with all Leptospira strains tested, regardless of
their virulence status (Figures 2A-B). Purified properdin
binding to leptospires was more pronounced compared to
serum properdin binding suggesting a certain degree of
competition between properdin and other serum molecules.
Another possibility to explain this result would be the presence
of inhibitors that may interfere with the properdin binding
capacity on the surface of bacteria (Figure 2B). Attenuated L.
interrogans serovar Pomona tend to bind less to purified
properdin than L. interrogans serovar Pomona and non-
pathogenic L. biflexa serovar Patoc strain Patoc I. However,
this was not statistically significant.

Leptospira spp. Binds to Purified
Properdin Independently of C3b

To investigate if properdin could bind directly to Leptospira
strains even in the absence of C3b, we incubated L. biflexa
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FIGURE 1 | Survival of L. biflexa serovar Patoc in the presence of properdin.
Leptospires were incubated with normal human serum (NHS), properdin-
depleted serum (P-DS) and P-DS reconstituted with 5, 10, or 25 pg of
purified properdin (P) for 2 h at 37°C. The number of viable leptospires
present after incubation with heat inactivated NHS was considered 100%.
Data are expressed as the mean ( = SD) of three independent experiments
each one performed in triplicate. Statistically significant differences (ANOVA
one-way test) are indicated. ***p < 0.001; confidence interval of 95%.
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FIGURE 2 | Binding of properdin to Leptospira. L. biflexa serovar Patoc strain
Patoc | (non-pathogenic), L. interrogans serovar Pomona strain Pomona
(pathogenic, attenuated), and L. interrogans serovar Kennewicki strain Fromm
(pathogenic, virulent) were incubated with (A) 10, 25, and 50% NHS-EDTA or
(B) 2.5, 6.25, and 12.5 pg of commercial purified properdin which are equivalent
to properdin concentrations found in 10, 25, and 50% NHS used above. The
binding was evaluated by ELISA using polyclonal anti-human properdin. Baseline
values obtained with PBS were subtracted in (A, B), respectively for each type of
leptospire. Data are expressed as the mean ( + SD) of three independent
experiments each one performed in triplicate. Statistically significant differences
(ANOVA one-way test) are indicated. *p < 0.05; confidence interval of 95%.
Variance homogeneity was analyzed using Bartlett.

serovar Patoc strain Patoc I, L. interrogans serovar Pomona
strain Pomona, and L. interrogans serovar Kennewicki strain
Fromm with NHS-EDTA or C3-DS. Bound-properdin was
detected by ELISA using anti-human properdin. As indicated
in Figure 3A, all three Leptospira strains bound to serum
properdin in relatively low amounts. When purified
properdin was used a more pronounced interaction was
observed, and properdin binding was observed in the
presence or absence of C3b (Figures 3B, C). It is worth to
mention that purified C3b is able to bind to the Leptospira
membrane (20, 21).

These data suggest that properdin can bind directly to yet
unknown leptospiral ligands regardless of the presence of C3b,
which allows us to suspect that this complement regulatory
protein may interact with pathogen molecular patterns and
directly trigger AP activation, in addition to its known ability
to act as a C3 convertase stabilizing molecule.
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FIGURE 3 | Binding of properdin to Leptospira occurs even in the absence of
C3b. The binding of properdin (P) on L. biflexa serovar Patoc strain Patoc | (non-
pathogenic), L. interrogans serovar Pomona strain Pomona (pathogenic,
attenuated), and L. interrogans serovar Kennewicki strain Fromm (pathogenic,
virulent) was quantified by ELISA using polyclonal anti-human properdin (A, B) or
anti-human C3 (C). (A) Leptospira strains were incubated with 40% normal human
serum-treated with EDTA (NHS-EDTA) or with C3 depleted serum (C3-DS). (B)
Leptospira strains were incubated with purified properdin (P) for 1h at 37°C,
washed, and then with C3b (C3b+P) or PBS. (C) Leptospira strains were
incubated with purified C3b for 1h at 37°C, washed, and then incubated with P
(P + C3b) or PBS. Baseline values obtained without any addition of P or C3b were
subtracted respectively for each type of leptospire. Data are expressed as the
mean ( + SD) of three independent experiments each one performed in triplicate.

Binding of Different Properdin

Oligomers to Leptospira

The interaction of Leptospira spp. with purified properdin
oligomers (P2, P3, P4, and Pn) was investigated by comparing
bacterial binding to each oligomer to that observed with
commercial purified properdin. The results showed that all
forms of properdin interact with the three strains of Leptospira
tested. Virulent L. interrogans serovar Kennewicki strain Fromm

binds less to P2 and P3 as compared to unfractionated
commercial properdin (Figure 4). On the other hand, non-
pathogenic L. biflexa serovar Patoc strain Patoc I and
attenuated L. interrogans serovar Pomona strain Pomona bind
similarly to unfractionated commercial properdin and to the
properdin oligomers present in human serum.

Interaction of Properdin With Leptospira
OMPs

A panel of recombinant proteins from pathogenic L. interrogans
serovar Copenhageni 10A was used in an attempt to identify
possible bacterial candidates for binding to properdin (Table 1).
Regrettably, recombinant proteins from L. biflexa were not
available. Among the proteins tested, Lsa30 (former LIC11087)
was the only one which significantly bound to unfractionated
commercial purified properdin (Figure 5A) as well as to P2, P3,
P4, and Pn oligomers (Figure 5B). Binding of Lsa30 to Pn and to
commercial purified properdin is more pronounced and
significantly different from its binding to P2, P3 and P4.

Formation of C3 Convertase on the

L. biflexa Surface Requires the

Presence of Properdin

To assess if the formation of the C3 convertase (C3bBb) was
stabilized by properdin (PC3bBb) on the leptospiral surface, L.
biflexa serovar Patoc strain Patoc I and L. interrogans serovar
Kennewicki strain Fromm were incubated under different serum
conditions and the C3 convertase formation was detected by ELISA
using anti-human Factor B antibody. As expected, C3 convertase
formation on non-pathogenic L. biflexa serovar Patoc strain Patoc I
treated with P-DS was limited and not significantly different when
in the presence of HI-NHS (negative control) (Figure 6). However,
when purified properdin was added to P-DS, a significant increase
in the formation of C3bBb was observed, albeit at lower levels than
that observed with NHS. With regard to the virulent L. interrogans
serovar Kennewicki strain Fromm, no significant C3bBb formation
was observed. This is probably because pathogenic leptospires bind
quite well to Factor H and are able to evade complement activation
(3, 5, 19).

DISCUSSION

The positive regulatory protein properdin stabilizes the C3
convertase and C5 convertase formed by the AP [(15, 16), and
reviewed in (10)]. Its relevance is even more evident in
immunodeficient patients that lack properdin since they are
more susceptible to repeated infections caused by Neisseria
meningitidis (22) and often results in pneumonia and otitis
media (23, 24).

Since Pillemer’s early work in 1954 (13), it is known that
properdin can recognize pathogenic targets and thus activates
the complement system (14). We are unaware of studies in the
literature that decipher the role of properdin during infection
with leptospires. The relevance of properdin in the elimination of
non-pathogenic leptospires was confirmed in this study. As
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previously described (3, 4), L. biflexa serovar Patoc strain Patoc I
is rapidly lysed in the presence of NHS. Here we have shown that
approximately 70% of the cells of strain Patoc I survived in P-DS.
Recently, we have demonstrated that both the Alternative and
Lectin Pathways contribute to the killing of L. biflexa serovar
Patoc (19). This could explain why, even in the absence of
PC3bBb, a residual killing activity is still observed in the
presence of P-DS. As purified properdin was added (up to
physiological levels) to this depleted serum, the complement-
mediated bactericidal activity was restored in a dose-dependent
manner, confirming the importance of this regulatory protein for
the control of saprophytic Leptospira infection. On the other
hand, pathogenic Leptospira are more resistant to complement
activation since they exhibit several immune evasion mechanisms
[reviewed in (25)].

Properdin binds with similar affinity to non-pathogenic
leptospires and as well to virulent or attenuated pathogenic
species. In addition, purified properdin binds more efficiently
to these bacteria compared to human serum properdin possibly
because of competition with other serum molecules that could
target the same interaction sites on the Leptospira surface.

Interestingly, properdin can bind directly to the surface of
Leptospira, even in the absence of C3b fragments, suggesting that
properdin may interact directly with molecular patterns present
on the surface of this spirochete. Our results reinforce the
existence of two models (direct and indirect) of properdin to
participate in the activation of the AP, since properdin can bind
to Leptospira before and after generation of activated C3b
fragments. This observation is in agreement with previous
results published by various investigators that demonstrated
that properdin can directly bind to Neisseria gonorrhoeae,
Chlamydia pneumoniae, apoptotic and necrotic cells, rabbit
erythrocytes, and zymosan particles (26-31). Thus, we suggest
that properdin may participate in the recognition of certain
microorganism patterns through surface receptors not yet
identified. However, this hypothesis is controversial and not
completely endorsed by the work of Agarwal and colleagues
(32) who did not observe direct binding to Neisseria when using
physiological forms of properdin. In addition, the binding of
physiological forms of properdin to erythrocytes or zymosan was
not observed (27). No significant binding of properdin to human
endothelial cells (HUVECs), zymosan from Saccharomyces
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FIGURE 5 | Interaction of outer membrane proteins of Leptospira with
properdin. (A) Recombinant proteins of pathogenic L. interrogans serovar
Copenhageni 10A (listed in Table 1) were immobilized on ELISA plate wells
and incubated with 0.5 pg of unfractionated properdin (P). Binding was
assessed by ELISA using polyclonal anti-human properdin. (B) Recombinant
Lsa30 from pathogenic L. interrogans was immobilized and incubated with
0.5 pg of properdin (P), P2, P3, or P4. Binding was assessed as described
above in (A). These data represent the average ( + SD) of three independent
experiments, after subtracting the basal values obtained with PBS. Each
experiment was performed in triplicate, using two independent preparations
of P2, P3, P4, and Pn. Statistically significant differences (ANOVA one-way
test) are indicated. *p < 0.05, confidence interval of 95%.

cerevisae and Escherichia coli was detected in the presence of
compstatin Cp40 (which inhibits C3 cleavage) or C3-DS (33).
Previous studies emphasized the importance of using isolated
forms of properdin present in serum, since after the purification
process there is formation of high molecular weight properdin
(Pn) aggregates that are absent under physiological conditions,
and these aggregates could per se induce complement activation
in the fluid phase (26, 27). In this study, we demonstrate that
non-pathogenic and pathogenic leptospires can bind to all
properdin oligomers, as well as to unfractionated properdin
and Pn form. However, pathogenic leptospires interacted less
strongly with P2, P3, and P4 oligomers than with unfractionated
properdin and its Pn form. We emphasize that the binding of P2
and P3 to pathogenic leptospires was not significantly different
when compared to the negative control. Since P2 and P3 are the
most abundant forms of circulating properdin, reduced binding
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FIGURE 6 | Properdin is required for AP activation on the surface of L.
biflexa serovar Patoc strain Patoc |. Non-pathogenic L. biflexa serovar Patoc
strain Patoc | or pathogenic L. interrogans serovar Kennewicki strain Fromm
were incubated with properdin-depleted human serum (P-DS), normal human
serum (NHS), or heat-inactivated NHS (HI-NHS). Where indicated, leptospires
were previously treated with 5 pg of purified properdin (P) before incubating
with P-DS [(P + (P-DS)]. The presence of the C3 convertase was evaluated
by ELISA using polyclonal anti-Factor B Data are expressed as the mean

(+ SD) of three independent experiments each one performed in triplicate.
Statistically significant differences (ANOVA one-way test) are indicated.

*p < 0.05; *p < 0.001, confidence interval of 95%.

of these two forms to pathogenic L. interrogans would diminish
AP activation on the surface of these bacteria, thus allowing them
to evade complement-mediated host defense.

The kidneys are one of the main target organs for leptospiral
colonization, and it has been shown that properdin binds to renal
proximal tubule HK-2 cells (34). Thus, we speculate that
properdin binding to pathogenic leptospires and to renal cells
could be in some extent important for invasion and subsequent
dissemination through contaminated urine. This hypothesis
remains to be investigated.

As we have been focusing our research efforts on characterizing
Leptospira virulence factors over the last years, we had a panel of L.
interrogans serovar Copenhageni 10A recombinant proteins at our
disposal. Their possible interaction with properdin was then
evaluated. Only Lsa30, a ~32 kDa membrane protein, also
known as LIC11087, bound to properdin.

Lsa30 interacted with properdin P2, P3, and P4 as well as to
the Pn form. However, the Lsa30 interaction with properdin
oligomers P2, P3, and P4 was significantly lower when compared
to its interaction with properdin in unfractionated form and Pn.
These results are consistent with those observed for pathogenic
leptospires, which did not bind significantly to fractionated
properdin forms.

Once we had confirmed a direct interaction of properdin with
different leptospiral strains, we evaluated whether the properdin
bound on the spirochete surface would be able to promote
activation of the AP. Pathogenic leptospires showed little or no
activation of the AP in the presence of properdin on its surface.
This effect can be attributed to: i) pathogenic leptospires and
Lsa30 do not bind consistently to serum properdin oligomers
and, ii) pathogenic bacteria interact with Factor H, and
negatively regulate complement activation on their surface (3-5).
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In response to host defense mechanisms, pathogenic
microorganisms express various virulence mechanisms.
Leptospira evasion mechanisms that directly inhibit properdin
function are not yet known. However, a new mechanism was
described by Tsao et al. (35) who demonstrate that exotocin B
(SPE B), a pyrogenic streptococcal cysteine protease, was able to
degrade properdin, impairing the activation of the AP. As a
consequence, opsophagocytosis by neutrophils was affected,
preventing the death of bacteria by neutrophils. This protease
also contributes to the degradation of fibronectin, vitronectin
and fibrinogen, and helps the pathogen to evade host defenses
and increase its replication. Furthermore, S20NS protein, a tick
salivary protein, interacts with properdin and, upon binding, this
positive regulator dissociates from C3 convertase, inhibiting
complete activation of the AP (36). Evasion of complement by
pathogenic leptospires by secretion of proteases that cleave
important complement components (C3, C3b, iC3b, C2, and
C4) was also observed by our group (37). We evaluated whether
such proteases would be able to cleave properdin, and we
observed that properdin degradation only occurred under
conditions of low specificity with an unsuitable substrate
enzyme ratio (data not shown).

Neutrophils are phagocytes rapidly attracted in large numbers
to infection sites and are considered an important source of
properdin release after inflammatory stimuli such as LPS, C5a
and inflammatory cytokines (28, 38). We wondered if
neutrophils could internalize more leptospires when coated
with properdin, effectively contributing to their elimination at
the site of infection. Some studies suggest that the evasion by
pathogenic bacteria of the human macrophage cell line (THP-1)
from the phagolysosome may be another mechanism presented
by these spirochetes to evade innate immunity and later colonize
target organs of the cell host (39).

The results presented here contribute to our understanding of
the role of properdin in direct interactions with leptospires.
Properdin interacts directly or indirectly with pathogenic,
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