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Background and aim: Gut microbiota (GM) can support colorectal cancer (CRC)
progression by modulating immune responses through the production of both
immunostimulatory and/or immunosuppressive cytokines. The role of IL-9 is
paradigmatic because it can either promote tumor progression in hematological
malignancies or inhibit tumorigenesis in solid cancers. Therefore, we investigate the
microbiota–immunity axis in healthy and tumor mucosa, focusing on the correlation
between cytokine profile and GM signature.

Methods: In this observational study, we collected tumor (CRC) and healthy (CRC-S)
mucosa samples from 45 CRC patients, who were undergoing surgery in 2018 at the
Careggi University Hospital (Florence, Italy). First, we characterized the tissue infiltrating
lymphocyte subset profile and the GM composition. Subsequently, we evaluated the CRC
and CRC-S molecular inflammatory response and correlated this profile with GM
composition, using Dirichlet multinomial regression.

Results: CRC samples displayed higher percentages of Th17, Th2, and Tregs. Moreover,
CRC tissues showed significantly higher levels of MIP-1a, IL-1a, IL-1b, IL-2, IP-10, IL-6, IL-8,
IL-17A, IFN-g, TNF-a, MCP-1, P-selectin, and IL-9. Compared to CRC-S, CRC samples also
showed significantly higher levels of the following genera: Fusobacteria, Proteobacteria,
Fusobacterium, Ruminococcus2, and Ruminococcus. Finally, the abundance of Prevotella
spp. in CRC samples negatively correlated with IL-17A and positively with IL-9. On the
contrary, Bacteroides spp. presence negatively correlated with IL-9.

Conclusions:Our data consolidate antitumor immunity impairment and the presence of a
distinct microbiota profile in the tumor microenvironment compared with the healthy
mucosa counterpart. Relating the CRC cytokine profile with GM composition, we confirm
the presence of bidirectional crosstalk between the immune response and the host’s
org January 2021 | Volume 11 | Article 5731581
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commensal microorganisms. Indeed, we document, for the first time, that Prevotella spp.
and Bacteroides spp. are, respectively, positively and negatively correlated with IL-9,
whose role in CRC development is still under debate.
Keywords: cytokines, colorectal cancer, T cells, immune response, gut microbiota
INTRODUCTION

Colorectal cancer (CRC) is a complex and widespread disease and is
the second cause of cancer-related deaths in the world (1). Usually,
it begins as benign polyps that can become (especially the
adenomatous type) cancerous if not removed: in humans, a
variable percentage of polyps, ranging from 1% to 10%, evolve
into malignancies (2) because multistep colorectal tumorigenesis
does not involve exclusively genetic factors, but also host factors,
such as inflammatory and immune responses (3, 4). Indeed, chronic
inflammation increases cancer risk through a deregulated activation
of the immune system, which causes a loss of tissue architecture and
genotoxic cellular DNA damage (5). In this context, CRC is
considered the best example of a chronic inflammation–associated
tumor, occurring often in patients with inflammatory bowel disease
(IBD): IBD-associated CRC is estimated to be 2% of all CRCs, and
the rate of death resulting from CRC in IBD patients ranges from
10% to 15% (6, 7). Moreover, according to the immunoediting
theory, the adaptive immune system, in addition to protecting the
host from developing tumors (8), can support tumor progression.
Specifically, T cells can develop different functional features during
cancer growth, affecting the disease progression and/or regression.
The protective immunity is mediated by effector cells (Th1 and
Th17/Th1), and “not effector” T lymphocyte subsets (Th2, Tregs,
Tnull) can promote colon cancer progression (9–11). In this
scenario, the microbiota plays an important role as well because it
is essential to modulate immune responses favoring the equilibrium
between protective immunity and tolerance to commensal bacteria
(12). A perturbation of the gut microbiota (GM) composition can
disrupt this balanced ecosystem, determining a chronic/abnormal
immune activation and supporting tumor growth. In fact, over the
past 10 years, both specific bacteria and dysbiotic conditions have
been associated with or implicated in colorectal carcinogenesis (13,
14) and, in some cases, through the interaction with the immune
system (15). In particular, the role of Fusobacterium nucleatum is
paradigmatic because it promotes CRC by either the induction of
epithelial cell proliferation (16), thus generating a proinflammatory
microenvironment propitious to cancer progression (17), or via the
production of proteins able to block the cytotoxic antitumoral
activity of T and NK cells (18, 19).

Moreover, microbes can affect cancer cell antigenicity and
adjuvanticity (20), determining whether an antigen triggers an
immune response and if its nature drives the acquisition of a
specific T cell phenotype (effector or regulator). In addition,
microbiota can elicit the production of cytokines (and other
immune mediators) by influencing the immunostimulatory or
immunosuppressive reactions, such as the tendency to mount
Th1/Tc1 (characterized by IFN-g production), Th2/Tc2 (IL-4
and IL-13), Th17/Tc17 (IL-17), or Th9 (IL-9) responses (21–23)
org 2
that play different roles in colon cancer (11, 24). For example, the
commensal bacteria can stimulate the lamina propria dendritic
cells to produce the IL-6, TGF-b, and IL-23 needed to elicit Th17
and Th9 lymphocyte development (25), and these play a dual
role in CRC promotion (5, 26). Current studies show that Th9
cells play a vital antitumor role in most solid tumors (27), but
IL-9, as a lymphocyte growth factor, can also promote cancer
progression in hematological tumors (23).

Finally, fermentative bacterial products, such as short chain
fatty acids, may affect colorectal carcinogenesis by favoring the
expression of the Foxp3 gene and boosting Treg functions
(28, 29).

Given these premises, our study aims to investigate immune
system–microbiota crosstalk in CRC through the cellular and
molecular characterization of immunity and the comparative
evaluation of microbiota composition in healthy and tumor
mucosa, focusing on the correlation between the cytokine
profile and GM composition.
MATERIAL AND METHODS

Patient Recruitment
In this observational study, 45 patients affected by nonmetastatic
colorectal adenocarcinoma at the preoperative stage for
undergoing surgical resection were enrolled in 2018 at the
Careggi University Hospital (Florence, Italy) (see Table 1 for a
summary of patient characteristics). Exclusion criteria were
extraperitoneal rectum localization of the tumor; previous
surgery for cancer; previous chemo-radiotherapy treatment;
immunodeficiency; travel to exotic areas in the last 5 years;
treatment with immunosuppressive drugs, antibiotics, or regular
probiotics during the previous 2 months; acute gastrointestinal
infections in the month prior to enrollment; and associated
presence of established malignancies or chronic intestinal
inflammatory diseases (Crohn’s disease and ulcerative recto
colitis). Tissue samples of tumor (CRC) and surrounding
healthy mucosa (CRC-S) were obtained from the surgical
specimen after surgery. The study has received the local ethics
committee approval (CE: 11166_spe), and informed written
consent has been obtained from each participant.

Immunological Analysis
Analysis of Tissue Infiltrating Lymphocytes (TILs)
Tissue samples were dissociated with the Tumor Dissociation Kit,
human (Miltenyi Biotech, UK) in combination with the
gentleMACS™ Octo Dissociator (Miltenyi Biotech, GmbH) to
obtain a gentle and rapid generation of single-cell suspensions.
Then, TILs were magnetically isolated with antihuman CD3
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microbeads (Miltenyi Biotech, UK) using the AutoMACS Pro
Separator (Miltenyi Biotech, GmbH) and analyzed by
polychromatic flow cytometry. In detail, TILs from dissociated
tissues were characterized for the expression of CD4, CD8, CD25,
CD127, IFN-g, IL-4, IL-17, IL-9, IL-22, and FoxP3 using
intracellular cytokine staining. Briefly, TILs were cultured in
RPMI 1640 culture medium (SERO-Med GmbH, Wien)
supplemented with 10% FCS HyClone (Gibco Laboratories,
Grand Island, NY, USA) and stimulated for 5 h using the
Leukocyte Activation Cocktail with BD GolgiPlug™ (BD
Pharmingen). Cells were stained for surface antigens and then
fixed with 4% (v/v) paraformaldehyde and permeabilized with 0.5%
saponin, followed by intracellular staining with anti-IL-4, anti-IL-
17, anti-IL-22, anti-IL-9, and anti-IFN-g mAbs (BD Biosciences).
Frontiers in Immunology | www.frontiersin.org 3
For the detection of peripheral Tregs, TILs were fixed and
permeabilized using the BD Pharmingen Human FoxP3 Buffer
Set (BD Biosciences). A minimum of 10,000 events were acquired.
Molecular Inflammatory Response Evaluation
In a restricted court of patients (n=14) for whom the tissue was
available, we evaluated the tumor and healthy mucosa–
associated inflammatory response through the evaluation of 26
cytokines by specifically assembled MixMatch Human kits for
Luminex MAGPIX detection system (Affymetrix, eBioscience)
and following the manufacturers’ instructions. More specifically,
we analyzed macrophage inflammatory protein-1a (MIP-1a),
interleukin (IL)-27, IL-1b, IL-2, IL-4, IL-5, interferon gamma-
TABLE 1 | CRC patients’ clinical features.

Patient ID Age Diagnosis TNM Stadium Site

CRC.1 60-70 Adenocarcinoma pT2 N0 I Splenic flexure
CRC.3 70-80 Adenocarcinoma pT1 N0 I Sigmoid colon
CRC.4 40-50 Adenocarcinoma pT3a N1a IIIB Sigmoid colon
CRC.5 30-40 Adenocarcinoma pT3 N0 II Splenic flexure
CRC.6 80-90 Adenocarcinoma T1 N0 I Descending colon
CRC.7 60-70 Adenocarcinoma pT3 N2b IIIC Ascending colon + splenic flexure
CRC.8 70-80 Adenocarcinoma pT2 N0 I Hepatic flexure
CRC.9 80-90 Adenocarcinoma pT2 N0 I Sigmoid colon
CRC.10 80-90 Adenocarcinoma pT3 N0 II Sigmoid colon
CRC.11 70-80 Adenocarcinoma pT3 N0 II Sigmoid colon
CRC.13 70-80 Adenocarcinoma pT3 N0 II Rectum
CRC.14 60-70 Adenocarcinoma pT3 N0 II Sigmoid colon
CRC.15 80-90 Adenocarcinoma pT3 N1c IIIB Rectum
CRC.16 70-80 Adenocarcinoma pT3 N0 II Descending colon
CRC.17 80-90 Adenocarcinoma pT1 N0 I Sigmoid colon
CRC.18 70-80 Adenocarcinoma pT2 N1b IIIA Cecum
CRC.20 80-90 Adenocarcinoma pT3 N0 II Rectum
CRC.22 80-90 Adenocarcinoma pT3 N1a IIIB Rectum
CRC.23 60-70 Adenocarcinoma T3 N1a G2 IIIB Splenic flexure
CRC.25 50-60 Adenocarcinoma pT1 N0 I Rectum
CRC.28 70-80 Adenocarcinoma T2 N0 I Ascending colon
CRC.30 70-80 Adenocarcinoma pT3 N0 II Ascending colon
CRC.32 70-80 Adenocarcinoma T3 N0 II Rectum
CRC.34 70-80 Adenocarcinoma pT3 N0 II Cecum
CRC.36 70-80 Adenocarcinoma pT3 N0 II Sigmoid colon
CRC.37 40-50 Adenocarcinoma pT3 N1b IIIB Sigmoid colon
CRC.38 50-60 Adenocarcinoma T0 N0 NA Rectum
CRC.39 70-80 Adenocarcinoma pT3 N0 II Rectum
CRC.41 60-70 Adenocarcinoma pT1 N0 I Rectum
CRC.44 80-90 Adenocarcinoma pT3 N0 II Ascending colon
CRC.46 70-80 Adenocarcinoma pT3 N1c IIIB Rectum
CRC.47 60-70 Adenocarcinoma pT2 N0 I Cecum
CRC.48 40-50 Adenocarcinoma pT3 N0 II Cecum
CRC.50 60-70 Adenocarcinoma pT3 N0 II Recto-sigmoid junction
CRC.51 80-90 Adenocarcinoma pT3 N0 II Descending colon
CRC.52 60-70 Adenocarcinoma pT3 N0 II Hepatic flexure
CRC.54 70-80 Adenocarcinoma pT2 N0 I Hepatic flexure
CRC.55 70-80 Adenocarcinoma pT3 N0 II Rectum
CRC.56 60-70 Adenocarcinoma pT3 N0 II Ascending colon
CRC.59 70-80 Adenocarcinoma pT3 N1b IIIB Recto-sigmoid junction
CRC.65 70-80 Adenocarcinoma pT2 N1c IIIA Rectum
CRC.71 80-90 Adenocarcinoma pT2 N I Ascending colon
CRC.73 50-60 Adenocarcinoma T3 N0 II Sigmoid colon
CRC.75 70-80 Adenocarcinoma T4b N0 II Transverse colon
CRC.76 70-80 Adenocarcinoma pT1 N0 I Recto-sigmoid junction
January 20
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induced protein 10 (IP-10), IL-6, IL-8, IL-10, IL-12p70, IL-13,
IL-17A, granulocyte-macrophage colony stimulating factor
(GM-CSF), tumor necrosis factor-a (TNF-a), interferon
(IFN)-a, IFN-g, monocyte chemotactic protein 1(MCP-1), IL-
9, P-selectin, IL-1a, IL-23, IL-18, IL-21, soluble intercellular
adhesion molecule-1 (sICAM-1), and IL-22. The levels of
cytokines were estimated using a 5-parameter polynomial
curve (ProcartaPlex Analyst 1.0).

The low and upper limit of quantification (LLOQ and ULOQ)
used for the cytokines and chemokines are reported in Table 2. A
value under the LLOQ was considered to be 0 pg/ml.

Statistical Analysis of Immunologic Data
Statistical analysis was performed with SPSS statistical software
(version 24). Differences between T cells subset data obtained
from CRC and CRC-S samples and tissue cytokine levels
evaluated in the same groups were assessed with paired
Wilcoxon signed-rank tests. P values less than 0.05 were
considered statistically significant.
Frontiers in Immunology | www.frontiersin.org 4
Microbiota Characterization
DNA Extraction
Genomic DNAwas extracted using the DNeasy PowerLyzer PowerSoil
Kit (Qiagen, Hilden, Germany) from frozen (-80°C) CRC and CRC-S
according to themanufacturer’s instructions. Briefly, tissues were added
to a bead beating tube and thoroughly homogenized with TissueLyser
II for 5 min at 30 Hz. Total genomic DNA was captured on a silica
membrane in a spin column format and subsequently washed and
eluted. The quality and quantity of extracted DNA was assessed using
the NanoDropND-1000 (Thermo Fisher Scientific,Waltham, US) and
the Qubit Fluorometer (Thermo Fisher Scientific), respectively. Then,
genomic DNA was frozen at -20°C.

Bioinformatic Analysis of 16S rRNA
Extracted DNA samples were sent to IGA Technology Services
(Udine, Italy), where amplicons of the variable V3–V4 region of the
bacterial 16s rRNA gene were sequenced in paired-end (2 × 300)
cycles on the Illumina MiSeq platform, according to the Illumina
16S Metagenomic Sequencing Library Preparation protocol (30).

Raw sequences were processed following the software pipeline
MICCA (31). Paired-end reads were assembled using the
“mergepairs” command, maintaining a minimum overlap of
100 bp and an edit distance in the maximum overlap of 32 bp.
Subsequently, the sequences were cut with the “trim” command
to remove the primers and eventually eliminate the reads with
imperfect primer sequences. All the reads with a length lower
than 350 bp and with an error rate higher than or equal to 0.5
were removed with the “filter” command.

Clean reads were eventually merged into a single file with the
“merge” command and transformed into a FASTA format file.
The operational taxonomic units (OTUs) were generated using
the “otu” command in “denovo_greedy” mode, setting a 97%
identity and performing an automatic removal of chimeras with
the “-c” option. The longest sequence of each OTU was used for
taxonomic assignment using the “classify” command in “rdp”
mode, i.e., using the RDP Bayesian classifier that is able to obtain
classification and confidence for taxonomic ranks up to genus.

Statistical Analysis of Bacterial Communities
Statistical analyses on the bacterial communities were performed
in R (R Core Team, 2014) with the help of the packages phyloseq
1.26.1 (32), DESeq2 1.22.2 (33), breakaway 4.6.16 (34, 35), and
other packages satisfying their dependencies—in particular,
vegan 2.5-5 (36). Rarefaction analysis on OTUs was performed
using the function rarecurve (step 50 reads) and further
processed to highlight saturated samples (arbitrarily defined as
saturated samples with a final slope in the rarefaction curve with
an increment in OTU number per reads < 1e-5).

For the cluster analysis (complete clustering on Euclidean
distance) of the entire community, the OTU table was first
normalized using the total OTU counts of each sample and
then adjusted using square root transformation.

The coverage was calculated by Good’s estimator (37) using
the formula: (1 - n/N) × 100, where n is the number of sequences
found once in a sample (singletons) and N is the total number of
sequences in that sample.
TABLE 2 | Low and Upper Limit of Quantification (LLOQ and ULOQ) for each
evaluated cytokine/chemokine.

Cytokine/chemokine ULOQ (pg/ml) LLOQ (pg/ml)

MIP-1a 1880 1,84

IL-27 82000 20

IL-1b 8250 2,01

IL-2 26900 6,57

IL-5 30400 7,42

IP-10 7750 1,89

IL-6 37800 9,23

IL-8 9850 2,4

IL-17A 9550 2,33

IFN- g 12675 12

GM-CSF 41000 10

TNF-a 29500 7,2

MCP-1 14800 3,61

IL-9 31000 7,57

IL-1a 3000 0,73

IL-18 49500 12

IL-21 39700 9,69

IL-22 82500 20

P-selectin 5051600 1233

sICAM1 870200 212

IL-4 36200 8,84

IL-10 9250 2,26

IL-12p70 28100 6,86

IL-13 13400 3,27

IL-23 68500 17

IFN-a 2250 0,55
MIP, Macrophage Inflammatory Proteins; IL, Interleukin; IP, Interferon gamma-induced
protein; IFN, Interferon; GM-CSF, Granulocyte-Macrophage Colony-Stimulating Factor;
TNF, Tumor necrosis factor; MCP, Monocyte Chemoattractant Protein; sICAM1, soluble
Intercellular Adhesion Molecule.
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Richness, Shannon, Chao 1, and Evenness indices were used
to estimate bacterial diversity in each sample using the function
estimate_richness from phyloseq (31). The evenness index (38)
was calculated using the formula E = S/log(R), where S is the
Shannon diversity index and R is the number of OTUs in the
sample. Differences in all indices between CRC and CRC-S were
tested using a paired Wilcoxon signed-rank test. Sample richness
was further measured using the estimator and its associated error
introduced in the breakaway package (32). The function
betta_random of the breakaway package was further used to
evaluate the statistical differences in richness between paired-by-
patient CRC and CRC-S samples.

The differential analysis of abundance was performed with
DESeq2 (31) at the OTUs and at the different taxonomic ranks
(created using the tax_glom function in phyloseq) by using a
two-group blocked-by-patient design to perform a paired test.

Statistical Analysis of the Association
Between Tissue Microbiota and Cytokines
The association between tissue microbiota and cytokines was
investigated with a 2-step analysis separately for the mucosa
and tumor tissues. In the first step, we implemented a modified
version of the sure independence screening (SIS) procedure (39).
SIS uses the notion of marginal correlation—in our case, the
correlation of a single cytokine with the dependent variable—to
rank the cytokines. The cytokines with the smallest p-value from a
Dirichlet regression (40) with that given cytokine as the only
predictor are included in step 2. For each cytokine, the p-value is
obtained testing the model with the considered cytokine and the
intercept against a model with only the intercept with a likelihood-
ratio test. Step 1 is necessary only when the list of cytokines is too
long compared with the sample size; in our analysis, we selected
the three most relevant cytokines from step 1.

In the second step, we used Dirichlet multinomial regression to
determine the joint effect of cytokines on the tissue microbiota. We
implemented a Bayesian variable selection (BVS) method based on
a thresholding function (41). This approach is based on a Monte
Carlo Markov chain algorithm that explores the space of possible
models. The method’s output is a list of posterior probability of
inclusion (PPI) and the posterior mean of the nonzero regression
coefficients. PPI is the probability, between 0 and 1, that a given
association cytokine-genera is nonzero, accounting for the effect of
all other cytokines. The posterior mean is an estimate of a nonzero
association. Each estimated regression coefficient evaluates the
taxon–cytokine association, whose sign and magnitude measure
the effect of the cytokine on the taxon.
RESULTS

Assessment of Tissue Infiltrating T Cell
Subset Distribution in Healthy and Cancer
Mucosa
We performed polychromatic flow cytometry analysis of TILs
isolated from the dissociated CRC and CRC-S. The percentage of
CD4+ and CD8+ TILs in the mucosa sample group did not differ
Frontiers in Immunology | www.frontiersin.org 5
significantly. In detail, the mean percentages (SD) of CD4+ cells
were 58.03 (6.88) in CRC vs. 58.15 (6.32) in CRC-S and the mean
percentages of CD8+ T cells were 17.42 (5.65) in CRC vs. 14.39
(4.14) in CRC-S.

The analysis of the T cell subsets revealed that the tumormucosa
sample group displayed higher percentages of Th17 (CRC vs. CRC-
S: 10.02 (4.32) vs. 5.13 (1.39); p=0.0008), Th2 (CRC vs. CRC-S: 3.45
(1.31) vs. 1.41 (0.93); p=0.0011), and Treg (CRC vs. CRC-S: 4.08
(1.44) vs. 2.10 (0.57); p=0.0040) as shown in Figures 1A, C.
Regarding the T cytotoxic cells, the CRC group showed higher
percentages of Tc17 (CRC vs. CRC-S: 6.33 (3.98) vs. 1.77 (1.00),
p=0.0036), Tc1/Tc17 (CRC vs. CRC-S: 6.25 (4.74) vs. 1.88
(1.48), p=0.0022), and Tcreg (CRC vs. CRC-S: 1.08 (0.81) vs. 0.06
(0.08), p=0.0055) (Figure 1B). Notably, the number of Th9s is
major (but not significant) in CRC tissue, and the Tc9s are similar in
the two different sites.

Molecular Inflammatory Profile in CRC-
Associated Tissues
We compared the molecular inflammatory profile of the
homogenized CRC and CRC-S of 14 cancer patients through
the evaluation of 26 pro- and anti-inflammatory cytokines. Six of
the evaluated cytokines (IL-4, IL-10, IL12p70, IL-13, IL-23, and
IFN-a) were under the LLOQ (Table 2) in all samples either
because levels were very low (not detectable) or these molecules
are not produced. The other 20 cytokines showed a common trend
in all patients, characterized by higher levels in CRC compared to
CRC-S. In particular, IL-1b, IL-2, IFN-g, P-selectin, MIP-1a, IL-6,
IL-17A, TNF-a, MCP-1, IL-9, IL-1a, IP-10, and IL-8 were
increased significantly in CRC compared to CRC-S (Figure 2),
whereas IL-27, IL-21, IL-22, IL-18, IL-5, GM-CSF, and sICAM1
showed a similar but not significant trend (p > 0,05).

Comparison of Mucosal Microbiota
Composition in CRC and CRC-S
Our sequencing efforts in assessing microbiota composition
encompassed a total of 12,475,251 reads for 40 sample pairs.
After all the preprocessing steps, which included pair merging,
trimming, quality filtering, and chimera detection, a total of
8,458,126 (67.8%) were available for further analysis.

Saturation curves (Figure 3) revealed that most specimens
were sufficiently sampled. Samples showed a Good’s coverage
ranging from 99% to 100%, indicating that less than 1% of the
reads in a given sample came from OTUs that appeared only
once in that sample.

As shown in Figure 4, the alpha diversity of samples did not
display significant differences for Shannon index and Evenness.
On the contrary, a significant (p = 0.011) Chao1 index evidenced
that rare OTUs are enriched in CRC-S vs. CRC, denoting a
higher diversity.

Taxonomic analysis detailed in Table 3 reveals for the 2454
OTUs formed the confident (<20% error) presence of 29 phyla
(>99% reads), 50 classes (>98% reads), 87 orders (>98% of reads),
176 families (>96% reads), and 372 genera (>86% reads).

To investigate and confirm the paired nature of sampling (i.e.,
tumor tissue vs. surrounding healthy tissue), we performed a cluster
January 2021 | Volume 11 | Article 573158
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analysis on normalized OTU counts. As shown in Figure 5, we
verified that 36/40 paired samples were, in effect, also paired in
terms of microbial composition, a result robust to changes in
distance metrics (e.g., Bray-Curtis) and the clustering method
(data not shown). The analysis of the taxonomic composition
reported that 6 phyla dominated the data set (98% sequences),
namely Firmicutes (41.24%), Bacteroidetes (35.89%), Proteobacteria
(13.37%), Fusobacteria (4.68%), Verrucomicrobia (2.10%), and
Actinobacteria (1.56%) as shown in Figure 6. Stacked boxplots of
taxa abundance at different taxonomic ranks are available as
(Supplementary Figures S1–S4).
Frontiers in Immunology | www.frontiersin.org 7
The paired comparison of the abundance of single OTUs
revealed significant (adj. p<0.05, abs (logFC)>=1) differences
between CRC and CRC-S sample groups with 6.6% OTUs
involved. At the phylum level, Fusobacteria and Proteobacteria
were significantly higher in CRC compared to CRC-S (logFC =
-2.92, adj. p = 6.17e-15 and logFC = -0.95, adj. p = 1.92e-05,
respectively). At the genus level, 14.7% genera were observed as
significantly (adj. p<0.05, abs (logFC)>=1) different, the most
abundant being Fusobacterium (average OTUs 6199, log2FC =
-2.93, adj. p = 1.06e-08), Ruminococcus2 (Lachnospiraceae
family, average OTUs 2911, log2FC = 1.31, adj. p = 1.38e-3),
FIGURE 2 | Tissue cytokine levels in 14 CRC patients. The histogram reports the mean (+SEM) cytokine levels (pg/ml) of the evaluated cytokines in CRC-S and
CRC of 14 CRC patients. Wilcoxon signed-rank test was performed to test the differences between CRC-S and CRC paired samples. A p-value < 0.05 is
considered statistically significant. The asterisks (*) represent p-values, *p < 0.05, **p < 0.01, ***p < 0.001. CRC-S= healthy mucosa; CRC= tumor mucosa.
FIGURE 3 | Rarefaction curves showing the level of saturation of OTUs.
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and Ruminococcus (Ruminococcaceae family, average OTUs
1640, log2FC = 1.82, adj. p = 4.12e-05).

Correlation of the Cytokine Profile With
the Microbiota Composition in CRC-
Associated Tissues
To evaluate this critical and crucial point, we first applied the SIS
screening procedure (step 1). We considered the OTU counts of
the three most abundant genera and aggregated all other genera
in a residual category. Our dependent variable was then defined
by four categories: Bacteroides spp., Prevotella spp., and
Escherichia/Shigella spp. (plus the residual category). The four
Frontiers in Immunology | www.frontiersin.org 8
top-ranked cytokines were IL-18, IFN-g, IL-5, and IL-2. Using
these four cytokines (plus the intercept), we ran the BVS method
(step 2). In the tumor tissues, we detected the association
between IL-5 and Prevotella spp. with a PPI=0.81; the same
association was found to be supported by the data collected
from the mucosa tissues as well (PPI=0.77). The effect of IL-5
on Prevotella is estimated to be positive and equal to 0.64
(posterior mean) and 0.86 for tumor and mucosa tissues,
respectively. However, this analysis hardly describes the entire
picture because many cytokines with very small p-values in
the first step were not included in the second step due to
computational constraints.
FIGURE 4 | Boxplots showcasing alpha diversity indices (Chao1 index, Shannon index, Evenness, and Breakaway) in CRC and CRC-S samples. Statistical
differences were evaluated using paired Wilcoxon signed-rank test for Chao, Shannon, and Evenness indices and using the paired betta analysis implemented in the
Breakaway R package. P-values less than 0.05 were considered statistically significant.
TABLE 3 | Summary of the taxonomic analysis of the obtained OTUs.

Rank Count Reads Reads. OTU OTU%

Phylum 29 8205619 99.58 2325 94.74
Class 50 8146401 98.86 2234 91.04
Order 87 8114962 98.48 2177 88.71
Family 176 7919409 96.11 1934 78.81
Genus 372 7107700 86.26 1290 52.57
Januar
y 2021 | Volume 11 | Article
FIGURE 5 | Cluster analysis on normalized OTU counts.
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Moreover, we decided to perform a second analysis that includes
directly into step 2 the cytokines that showed differential
abundances in comparative analysis between CRC and CRC-S
samples. However, due to the computational constraints that
impose a limit on the sample size, we selected some of the
cytokines that were significantly increased in CRC compared to
CRC-S samples, according to their relevance in the current
literature. In particular, we chose IFN-g, IL-17A, IL-8, IL-1b, IL-
1a, IP-10, MIP-1a, and IL-9. The results of the BVS Dirichlet
multinomial regression (step 2) are reported in Tables 4 and 5.
From the results, we notice that Prevotella spp. is associated with
both IL-17A and IL-9. The first association is negative, and the effect
is 1.08 (posterior mean), whereas the second is positive, with a
posterior mean of 1.37. Bacteroides spp. and Escherichia/Shigella
spp. show a negative association with IL-9 and IP-10, respectively,
with posterior means equal to -0.91 and -0.89, respectively.
DISCUSSION

In this study, we first explored the immunity–microbiota axis in
human CRC, comparing the distribution of TILs, the cytokine
profile, and the GM composition in cancerous and surrounding
mucosa. In agreement with our previous findings (11), the TIL
assessment revealed higher percentages of tumor-supporting T
cell subsets (Th17, Th2, Th9, and Tregs) in CRC samples
compared to CRC-S. Contextually, a Th2 shift in the tumor
microenvironment, especially for CRC, strongly contributes to
Frontiers in Immunology | www.frontiersin.org
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cancer relapse, metastasis, and worse prognosis (42, 43)
although, according to existing contradictory evidence, excess
inflammation caused by CD4+ and CD8+ IL-17-producing T
cells or the immunosuppression induced by Tregs may lead to
carcinogenesis (44, 45). Indeed, tumor-infiltrating Th17 and
Tc17 cells have been found in various human cancers,
confirming their protumorigenic properties (46, 47). According
to our results, different studies found higher percentages of Th17
and Tc1/Tc17 cells in tumor tissues compared to adjacent
nontumor tissues (48–50). Through their immunosuppressive
properties, Tregs can favor immune escape mechanisms of
tumor cells, and that is why high amounts of peripheral or
tumor-infiltrating Tregs are often associated with poor clinical
outcome in gastrointestinal cancer (51, 52). According to our
findings, a high number of tumor-infiltrating Tregs is widely
documented (53–55).

Finally, Th9 cells, a relatively new subset, seem to have a dual
role in tumor progression. Generally, the Th9 cells (activating both
the innate and adaptive immune responses) and the Tc9s play an
important role in antitumor immunity (56, 57), but IL-9 can exert
a tumorigenic role in both hematological and solid tumors (58).

In addition to the TIL analysis, although many studies
investigate the levels of several plasma cytokines in CRC
patients (59–62), we assessed for the first time the molecular
inflammatory profile of CRC mucosa through the evaluation of
an exhaustive panel of 26 cytokines of which 20 were increased in
CRC compared to CRC-S. In particular, CRC samples revealed
significantly higher levels of MIP-1a, IL-1b, IL-2, IP-10, IL-6, IL-
8, IL-17A, IFN-g, TNF-a, MCP-1, IL-1a, P-selectin, and IL-9.
FIGURE 6 | Stacked boxplots of microbial composition at phylum level of CRC and CRC-S samples.
TABLE 4 | Posterior probabilities of inclusion (PPIs).

Prevotella
spp.

Bacteroides
spp.

Escherichia/
Shigellaspp.

Residua
category

intercept 1.00 1.00 1.00 1.00
IFN-g 0.10 0.00 0.45 0.00
IL-17A 0.82 0.00 0.00 0.00
IL-8 0.00 0.00 0.00 0.00
IL-1b 0.00 0.00 0.00 0.00
IL-1a 0.00 0.00 0.00 0.00
MIP-1a 0.00 0.00 0.00 0.00
IP-10 0.00 0.00 0.77 0.00
IL-9 0.95 0.83 0.00 0.00
TABLE 5 | Posterior mean of the regression coefficients.

Prevotella
spp.

Bacteroides
spp.

Escherichia/
Shigellaspp.

Residual
category

intercept -1.10 0.41 -0.93 1.90
IFN-g -0.05 0.00 0.31 0.00
IL-17A -1.08 0.00 0.00 0.00
IL-8 0.00 0.00 0.00 0.00
IL-1b 0.00 0.00 0.00 0.00
IL-1a 0.00 0.00 0.00 0.00
MIP-1a 0.00 0.00 0.00 0.00
IP-10 0.00 0.00 -0.89 0.00
IL-9 1.37 -0.91 0.00 0.00
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The relevant higher percentages of chemokines MCP-1, MIP-
1a, IL-8, and IP-10 reflect the high colonic inflammation, and
many studies demonstrate their role in the development of a
tumor-favoring microenvironment due to their abilities to favor
angiogenesis and to stimulate macrophages and CD8+ T cell
recruitment in situ (63–65). In accordance with our results,
different studies found high levels of these chemokines in CRC
tissues (66–68).

In addition, the cytokines IL-1a, IL-1b, IL-6, IL-17A, and
TNF-a promote tumor initiation, progression, angiogenesis, and
metastasis in many human malignancies, including CRC (69–
71), and our findings are consistent with previous studies
(72–75).

Finally, although the overexpression of IFN-g in CRC tissues
can be considered positive (for its established robust antitumor
activity) (76, 77), IL-2 and IL-9 display both pro- and
antitumor potentials (78, 79). About IL-9, in contrast with
our results, Wang et al. show that IL-9 is less expressed in
human colon carcinoma (80). Nevertheless, Huang et al. report
low IL-9 amounts in CRC patients, but these low levels are
associated with tumor progression (81). Interestingly, Tian and
colleagues show that IL-9 expression in colitis-associated
cancer tissue is significantly higher than that in adjacent
tissues, and Lentiviral vector–mediated IL-9 overexpression in
the colon cancer cells lines RKO and Caco2 could promote their
proliferation (82).

The relationship between CRC development and GM
imbalance has been well established in past years (83–85),
and numerous studies document distinct fecal and mucosal
microbiota profiles in CRC patients compared with healthy
subjects (86–88). Indeed, CRC-associated microbiota profiles
differ from those in healthy subjects (87), and a brilliant meta-
analysis of eight geographically and technically diverse fecal
shotgun metagenomic studies of CRC identifies a peculiar colon
cancer signature (88). Hence, we characterized the microbiota
composition of tumor and adjacent healthy mucosa in the
enrolled CRC patients, and according to previous findings, a
significant Chao1 index evidences that rare OTUs are enriched
in CRC-S vs. CRC (89, 90). We also confirm our recent data
(86), demonstrating that Fusobacteria and Fusobacterium spp.
are associated with CRC and are amplified during colorectal
carcinogenesis (91–93), and we find a significantly higher
percentage of Proteobacteria in CRC, according to evidence
that an imbalanced GM is often associated with a sustained
increase in Proteobacteria phylum members (94, 95).
Consistent with Weir et al (96), we find that Ruminococcus
spp. are more represented in CRC even if some authors report
that, in CRC patients, Ruminococcus spp. have low prevalence
(97, 98).

Moreover, to explore the mucosal microbiota–local immune
response axis, we correlate—for the first time—the cytokine
profile and GM composition using BVS Dirichlet multinomial
regression. The application of the SIS screening procedure and
the OTU counts of the three most abundant genera (Bacteroides
spp., Prevotella spp., Escherichia/Shigella spp., and all other
genera aggregated in a residual category), allowed us to
Frontiers in Immunology | www.frontiersin.org 10
identify the four top-ranked cytokines (IL-18, IFN-g, IL-5, and
IL-2) that we used to run the BVS method. Although these
analyses cannot adequately describe the complex scenario of the
relationship between secreted cytokines and intestinal
composition, we observed a positive association between IL-5
and Prevotella spp. in both tumor and mucosa tissues.

As is well known, IL-5 is essential for eosinophil
differentiation, and eosinophilia has been observed in various
cancers, including CRC, with a controversial prognosis link.
Eosinophil infiltration is considered unfavorable in Hodgkin’s
lymphoma but positive in breast and prostate cancers (99). As
recently reviewed (100), higher numbers of infiltrating
eosinophils detected in CRC tissue were repeatedly shown to
be prognostically favorable (101–103), but the mechanisms of
CRC growth inhibition remain poorly understood. A recently
developed CRC mouse model shows that tumor-homing
eosinophils secrete chemoattractants for CD8+ effector T cells,
eventually causing tumor rejection (104).

Furthermore, abundant IL-5 levels are documented in the
synovium of rheumatoid arthritis patients (105), and notably,
Scher et al. show that the presence of Prevotella copri is strongly
correlated to rheumatoid arthritis (106). Therefore, taking into
account all these reported data, our results—showing a positive
correlation between IL-5 and Prevotella spp.—and the IL-5 anti-
inflammatory role, we can assume an attempt to restore a eubiotic
ecosystem in the colon mucosa contrasting the CRC development.

In the BVS method, we include all cytokines that show
differential abundances in the comparative analysis of CRC
and CRC-S: IFN-g, IL-17A, IL-8, IL-1b, IL-1a, IP-10, MIP-1a,
and IL-9. For the first time, we find that, again, Prevotella spp. is
negatively associated with IL-17A but positively related to IL-9.
In addition, Bacteroides spp. and Escherichia/Shigella spp. show a
negative association with IL-9 and IP-10, respectively.

Despite the negative correlation between Prevotella spp. and
IL-17A, it has recently been discovered that Prevotellaceae are
able to promote Th17 cell differentiation, and Prevotella spp. are
associated with Th17-mediated diseases, including periodontitis
and rheumatoid arthritis (107). These conflicting data could be
explained by speculating that the same bacterial taxa, in different
environmental conditions, may exert contrasting effects.
However, we cannot exclude that contrasting results may
derive from the relatively low level of taxonomic resolution of
16S rRNA gene metagenomics, which cannot fully discriminate
between different species of the same genus (as Prevotella spp.).
Indeed, different Prevotella species colonize the human body
districts. The periodontal Prevotella spp. related to Th17 cell
stimulation could not be subdued to a dysbiotic environment,
such as the inflamed CRC mucosa. In addition, in a study in
which Prevotella histicola was used to modulate immune
response and treat arthritis in a humanized mouse model,
Marietta et al. report that treated mice showed significantly
lower levels of IL-17 in agreement with our data. The authors
also report decreased level of IL-9 as compared to placebo-
treated mice in contrast with our results (108). Finally,
Campisciano (109) detected an increase of the relative vaginal
abundance of Prevotella timonensis in women infected with
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HPV, which showed a decreased concentration of the IL-15, IL-
7, and IL-9 that they associated with the virus infection.

Regarding the negative correlation between Bacteroides spp.
and IL-9, we have not found studies documenting this
association, but because it is well known that IL-9 is produced
by Th17, we have indirect evidence of this correlation. Round
et al. find that Bacteroides fragilis inhibits Th17 development,
inducing Treg accumulation, and Vaahtovuo et al. demonstrate
the lower abundance of Bacteroides spp. in rheumatoid arthritis
patients (110, 111).

Our results also show that Escherichia/Shigella spp. are
negatively correlated with the IP-10 that is induced in many
viral, bacterial, and parasite infections, i.e., shigellosis and E. coli
infection (112, 113). Because IP-10 is increased in CRC samples,
the negative correlation between Escherichia/Shigella spp. also
can be supported.

In conclusion, our data describe a clear dissimilarity of the
cellular and molecular inflammatory profile and intestinal
microbiota composition between the tumor and the adjacent
healthy tissue, displaying the generation of a peculiar CRC
microenvironment. The infiltrating T cell features and the
higher percentages of several cytokines produced in the tumor
tissue document that, among all different types of immune cells
involved in the complex anticancer responses, some may even
encourage neoplastic progression. In addition, the distinct
microbiota CRC profi le may suggest that microbial
communities can drive and modulate the antitumor immune
response. In fact, we show—for the first time in human CRC—
that Prevotella and Bacteroides species are correlated positively
and negatively, respectively, with the IL-9 that has an intriguing
and still debated role in tumor immunity. We are aware that
other studies in humans and in animal models are needed, but
the observed correlation of the cytokine signature with the GM
composition confirm the presence of bidirectional crosstalk
between the immune response and the host’s commensal
microorganisms, which may influence cancer development.
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