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Bearing a strong resemblance to the phenotypic and functional remodeling of the immune

system that occurs during aging (termed immunesenescence), the immune response to

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of

Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory

monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and

the presence of highly activated senescent T cells. Alongside advanced age, male gender

and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as

significant risk factors for COVID-19. Interestingly, immunesenescence is more profound

in males when compared to females, whilst accelerated aging of the immune system,

termed premature immunesenescence, has been described in obese subjects and T2D

patients. Thus, as three distinct demographic groups with an increased susceptibility

to COVID-19 share a common immune profile, could immunesenescence be a generic

contributory factor in the development of severe COVID-19? Here, by focussing on

three key aspects of an immune response, namely pathogen recognition, elimination and

resolution, we address this question by discussing how immunesenescencemay weaken

or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects

of immunesenescence could render potential COVID-19 treatments less effective in

older adults and draw attention to certain therapeutic options, which by reversing or

circumventing certain features of immunesenescence may prove to be beneficial for the

treatment of groups at high risk of severe COVID-19.

Keywords: aging, COVID-19, immunesenescence, immune dysfunction, inflammaging, SARS-Cov_2

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel highly-infectious
betacoronavirus originally found in Wuhan, China in December 2019 (1). Transmitted by direct
contact with infected individuals, contaminated surfaces or via respiratory droplets, SARS-CoV-2
is the causative agent of Coronavirus disease 2019 (COVID-19), which as of June 2020 had
infected over 7 million people resulting in over 400,000 deaths (2). Whilst for the majority of
individuals COVID-19 is a self-resolving mild to moderate respiratory tract infection, ∼20% of
infected patients develop severe respiratory complications (e.g., dyspnea and pneumonia), which,
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in extreme cases (∼5%), progress to acute respiratory distress
syndrome (ARDS), respiratory failure, organ damage, and death
(3–6).

Epidemiological analyses of COVID-19 outbreaks have
revealed the disease to be highly prevalent amongst older adults,
with one study of 1,591 patients reporting 87% of cases were in
adults aged 51 years and over (7, 8). Furthermore, older adults are
more prone to developing severe COVID-19 and its associated
poor outcomes (4, 6, 9–15). For example, 91 and 81% of COVID-
19 related deaths have occurred in people aged 65 years and over
in the UK and USA respectively, with the majority of deaths
occurring in those aged 85 years and over (16, 17). Moreover, the
recovery times of older adults who survive COVID-19 are more
protracted, involving more serious clinical manifestations that
often require hospitalization and prolonged therapy (10, 14, 18).

The scientific community has moved rapidly to gain an
understanding of the immune response to SARS-CoV-2 and how
it influences patient outcome. Summarized recently by Vabret
et al. (19) the current literature details a hyper-inflammatory
state in severe COVID-19 patients that is characterized by a
sustained raised level of pro-inflammatory cytokines such as
interleukin (IL)-6, expansion of inflammatory monocytes and
T cells, dysregulated myeloid responses, functional exhaustion
of lymphocytes and impaired innate immune function.
This immunological profile bears a strong resemblance to
the remodeling of the immune system that occurs during
physiological aging. Termed immunesenescence, immune
aging is associated with marked alterations in the composition,
phenotype and functional responsiveness of the innate and
adaptive arms of the immune system that compromises
the older adults ability to combat infections allowing for
pathogen dissemination in a vicious cycle that leads to further
inflammation and ultimately tissue damage. Furthermore,
aging is accompanied by a state of chronic low-grade systemic
inflammation, termed inflammaging, meaning older patients
start with a higher inflammation status prior to infection.
Immunesenescence is viewed as a major contributory factor
in the increased susceptibility of older adults to infection
(20, 21) as well as their poor vaccination responses (22). In
addition to older adults, males (3, 4, 6, 13, 23, 24) as well
as patients with pre-existing co-morbidities such as diabetes
(4, 13–15, 25) and obesity (11, 24, 26–29) are at an increased risk
of severe COVID-19.

Immunologically, immunesenescence and inflammaging
appear to be more profound in older males when compared
to females (30, 31), whilst an accelerated aging phenotype,
termed premature immunesenescence has been described in
obese subjects and patients with type 2 diabetes (T2D) (32–34).
Although 85–90% of T2D patients are overweight or obese, not
all adults who are obese develop T2D and most studies suggest
the prevalence is below 50% (35). For this reason, we have
considered three distinct demographic groups with an increased
susceptibility to COVID-19 that appear to share a common
immune profile, posing the question could immunesenescence
be a generic contributory factor in the development of severe
COVID-19? Here, by focussing on three key aspects of an
immune response, namely pathogen recognition, elimination

and resolution, we will address this question by discussing how
immunesenescence may weaken or exacerbate the immune
response to SARS-CoV-2. We also highlight how aspects
of immunesenescence could render potential COVID-19
treatments less effective in older adults and draw attention to
certain therapeutic options, which by reversing or circumventing
certain features of immunesenescence may prove to be beneficial
for the treatment of groups at high risk of severe COVID-19.

PATHOGEN RECOGNITION

Pathogen Recognition Receptor
Expression and the Early Anti-viral
Response
Comprised of four different families, namely the toll-like
receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs), nucleotide-binding oligomerization domain-
like receptors (NLRs) and the C-type lectin receptors (CLRs),
pathogen recognition receptors (PRRs) are evolutionary
conserved germline-encoded receptors responsible for the early
detection of invading pathogens. Located at the cell surface, in
endosomes and in the cytosol, PRRs are expressed predominantly
by cells of the innate immune system, in particular monocytes
and dendritic cells (DCs). As a single-stranded RNA virus,
detection and initiation of the immune response against SARS-
CoV-2 will be mediated by the RNA-sensing endosomal PRRs
TLR 3, 7 and 8, and the cytoplasmic-residing RLRs and NLRs.

Ligation of PRRs activates interferon regulatory factors (IRFs),
a family of transcription factors that drive the production
of type I (α/β) and type III (γ) interferons (IFNs) (36). By
inhibiting viral replication, enhancing innate immune responses
and modulating T cell expansion and memory formation (37),
IFNs provide strong anti-viral effects. SARS-CoV-2 appears
particularly sensitive to IFNs, with in vitro culture studies
revealing viral replication in kidney epithelial cells and primary
human intestinal epithelial cells is potently inhibited by type
I and type III IFNs, respectively (38, 39). In one of the few
studies to have investigated the IFN response to SARS-CoV-2
in patients (40, 41), Hadjadj et al. identified a distinct type I
IFN signature in severe COVID-19 patients (40). Compared to
individuals with mild to moderate disease, critically ill patients
presented with marked downregulation of IFN-stimulated genes
in whole blood leukocytes, significantly lower plasma levels of
IFN-α2 and reduced IFN activity in serum (40).

Studies that have examined the effect of age on the expression
of RNA-sensing PRRs have reported significantly reduced
expression of TLRs 3, 7, and 8 in myeloid DCs (mDCs) or
plasmacytoid DCs (pDCs) isolated from older adults (42, 43).
Accompanying these changes in PRR expression is an age-related
impairment in the generation of type I and III IFNs (44). pDCs or
monocytes from older adults secrete significantly lower amounts
of IFN α, β, or γ in response to specific ligation of TLRs 7/8 and
RIG-I, with the reduction in IFN α and β synthesis post-RIG-
I activation attributed to impaired activation of IRFs (43, 45–
47). Furthermore, and of particular importance in the context of
SARS-CoV-2, age-related impairments in type I IFN production
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have been described for monocytes and pDCs challenged with
influenza A virus and West Nile virus (WNV) (42, 47–50), two
RNA viruses that also cause significant morbidity and mortality
in older adults (51–53). As prompt and efficient type I IFN
responses are critical for preventing poor outcome following
coronavirus infections (54, 55), an age-related impairment in
IFN production may result in more robust virus replication
and higher viral loads. On this note, it has been suggested that
COVID-19 patients with type I IFN deficiency, a criterion we
propose older adults would fulfill, may benefit from IFN α or β

supplementation (40). In an open-label, randomized, phase 2 trial
in COVID-19 patients, Hung and colleagues demonstrated that,
when compared to anti-viral drug treatment alone, a combined
therapy of anti-viral drugs and IFN-β significantly shortened
the duration of viral shedding, time to symptom resolution
and length of hospital stay in patients with mild to moderate
disease (56). Whilst this therapeutic approach is worthy of
consideration for geriatric COVID-19 patients, it should be noted
that in vitro studies with monocytes from older adults have
demonstrated reduced up-regulation of IFN-stimulated genes
following influenza A virus challenge (47). Thus, increasing type
I IFN levels in older adults via IFN supplementationmay be offset
by an age-related impairment in IFN responsiveness.

Ligation of PRRs also triggers the secretion of pro-
inflammatory cytokines via the activation of nuclear factor
kappa B (NF-κB) and mitogen activated protein kinase (MAPK)
signaling pathways. Compared to those with mild-to-moderate
disease, patients with severe COVID-19 infection present with
significantly elevated circulating concentrations of a range of pro-
inflammatory cytokines such as IL-6 and tumor necrosis factor-
alpha (TNF-α) (57–61). Although not observed in all studies
(43, 62), the majority of groups that have investigated cytokine
production triggered by RNA-sensing PRRs have found this
function is maintained with age (42, 43, 46, 47, 62). For example,
in response to stimulation with TLR3, TLR 7/8 and RIG-I specific
ligands, as well as influenza A virus, mDCs or monocytes isolated
from young and older adults generate comparable levels of TNF-
α, IL-6 and/or IL-12 (42, 43, 46, 47, 62). In the context of COVID-
19, these data imply that the pro-inflammatory cytokine response
to SARS-CoV-2 elicited by monocytes and mDCs would be
similar across different age groups. However, this may not be the
case for patients with pre-existing co-morbidities. For instance,
compared to normal-weight controls, monocytes isolated from
obese subjects generate significantly greater amounts of TNF-α
and CCL5 following stimulation with viral ssRNA (63), whilst in
monocytes fromT2D patients, basal expression of components of
the TLR signaling pathway such as the adaptor proteins MyD88
and TRIF as well as the p65 subunit of NF-κB are significantly
increased (64). Thus, we propose that this remodeling of innate
immune cells in obese and T2D patients would lead to a
more robust pro-inflammatory response to SARS-CoV-2 when
compared to that of healthy age-matched controls, culminating
in greater systemic inflammation and more severe disease.

Generated via the activation of the NLRP3 inflammasome,
a multi-subunit complex comprising of the NLR protein
NLRP3, the adaptor protein ASC and caspase-1, IL-1β promotes
anti-microbial resistance via the modulation of innate and

adaptive immune responses (65). However, if dysregulated,
production of this pro-inflammatory cytokine can promote lung
injury and severe pulmonary fibrosis (66, 67). Coinciding with
elevated plasma levels of IL-1β (3), single cell transcriptomic
analysis of peripheral blood mononuclear cells (PBMCs) has
shown a greater abundance of classical CD14++ CD16− IL1β+

monocytes in COVID-19 patients when compared to healthy
controls (HCs) (68), whilst analysis of RNA extracted from
whole blood found increased IL-1β gene expression preceded a
decline in respiratory function (69). In terms of patient groups
at high risk of severe COVID-19, significantly increased NLRP3
expression and ssRNA-induced IL-1β generation has been
reported for monocytes and monocyte-derived macrophages
isolated from T2D patients and obese subjects, respectively (63,
70, 71), suggesting potential exaggeration of inflammasome-
mediated immune responses to SARS-CoV-2 in these cohorts.
Conversely, aging appears to be associated with impaired
activation of the inflammasome. Investigated primarily in
animal models, significantly reduced inducible expression of
NLRP3, ASC and/or caspase-1 has been described in lung
homogenates, macrophages and/or DCs from aged mice, with
these changes in expression resulting in decreased synthesis of
IL-1β upon stimulation (72–74). Highlighting the importance
of the inflammasome in host protection, models of influenza
infection and secondary Streptococcus pneumoniae infection have
shown the age-associated decrease in NLRP3 inflammasome
expression and activity results in impaired cell infiltration to
sites of infection, increased pathogenic load in the lung and
higher rates of morbidity and mortality (72, 74). In terms of
human aging and its impact on the inflammasome, no change
(47) or a significant reduction (45) in IL-1β production by
monocytes challenged with influenza A virus or TLR 7/8 ligands,
respectively has been reported. Given the importance of the
inflammasome in host defense against viral infections (75, 76), we
suggest that the older COVID-19 patient with no pre-existing co-
morbidities would elicit an impaired inflammasome-mediated
immune response to SARS-CoV-2 that would increase their
susceptibility to severe disease.

PATHOGEN ELIMINATION

Neutrophils
Currently, few studies have reported upon the neutrophil
response to SARS-CoV-2. These studies have shown neutrophilia
(3, 4), an elevated neutrophil-to-lymphocyte ratio (60, 61, 77–79)
and neutrophil infiltration in the lungs (80, 81) to be features
of severe COVID-19 and poor patient outcomes. In the only
laboratory-based study, Zuo et al., using cell-free DNA (cfDNA),
myeloperoxidase-DNA complexes and citrullinated histone H3
as surrogate markers of in vivo neutrophil extracellular trap
(NET) formation, reported elevated levels of all three markers in
serum samples obtained from hospitalized COVID-19 patients
when compared to HCs (82). Significantly higher cfDNA
and myeloperoxidase-DNA complexes were recorded in those
who required mechanical ventilation, suggesting a potential
relationship between enhanced NET formation and disease
severity (82). Previously linked to the pathogenesis of acute lung
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injury and the onset of ARDS in critically-ill patients (83–86),
the authors suggested robust NET formation may propagate the
inflammatory storm that appears to precede the onset of severe
COVID-19 (3, 82, 87).

In the context of immunesenescence, both murine and
human-based studies have reported a significant age-related
reduction in NET formation (88–90). Thus, in contrast to
younger adults and those with inflammatory co-morbidities
(91–93), we would speculate that in older adults with no pre-
existing health conditions, any elevation in circulating NET
components post SARS-CoV-2 infection would not be a direct
consequence of enhancedNET formation. Rather, we suggest that
reduced clearance may be responsible. Once dismantled by the
endonuclease deoxyribonuclease (DNase)-1, NETs are engulfed
by macrophages and degraded in lysosomes, a process facilitated
by the opsonisation of NET fragments by the complement
protein C1q (94). Whilst no study to our knowledge has
investigated the effect of age on DNase-1 activity, there are
reports that aging is associated with reduced endocytic and
phagocytic activity of macrophages (95–97) as well as reduced
lysosomal activity (98). When viewed alongside data from
critically-ill patients, in whom DNase activity and uptake of
NETs by alveolar macrophages (AM) is significantly reduced
(99, 100), then older adults with severe COVID-19 are a group
that would be predicted to present with a high systemic NET load,
a scenario, which in a cohort of patients with severe influenza A
infection was associated with the development of multiple organ
dysfunction syndrome (101).

NET production, whether assessed by a measurement of
circulating markers (e.g., MPO-DNA complexes) or ex vivo
generation, is significantly increased in obese subjects and
individuals with T2D (91–93), patient groups that are not only
at high risk of developing severe COVID-19 (102, 103) but
who experienced poor outcomes in the 2009 H1N1 influenza A
virus pandemic (104). Whilst multiple factors will underlie the
susceptibility of obese and T2D subjects to severe COVID-19, it
is intriguing to speculate that remodeling of the innate immune
response, in this case a heightened sensitivity for NET generation,
could be one such factor, particularly given the cytotoxic and
pro-thrombotic nature of NETs (105, 106).

NETs may represent a potential therapeutic target for the
prevention of poor outcomes such as ARDS in COVID-19. In
a recent article, Barnes et al. discussed the therapeutic options
that are available to manipulate NET formation and how some
of these approaches are already being tested in clinical trials
in COVID-19 patients (80). Improvements in clinical indices
were reported in a cohort of severe COVID-19 patients that
were co-treated with anti-viral agents and dipyridamole, an
adenosine-receptor agonist that inhibits NET formation in vitro
(107, 108). However, whether the observed benefits were related
to the modulation of NET production was not addressed (108).
Nevertheless, the success that enhancing NET degradation has
had in terms of improving clinical markers in patients with
virus-associated bronchiolitis (109, 110) and reducing both lung
injury and mortality rates in murine models of pneumonia (84),
should encourage researchers and clinicians to pursue NETs
as therapeutic strategies. This is particularly pertinent to older

adults, where administration of therapeutic doses of DNase
would completely eradicate NETs (94), thereby bypassing the
need for macrophage clearance, which is a process that is likely
to be impaired with age.

Associated with lymphocytic and neutrophilic infiltrate, post-
mortem histological examination of lung tissue has shown severe
COVID-19 results in extensive diffuse alveolar damage (81). In
response to a panel of inflammatory mediators, which included
IL-8, C5a, leukotriene B4 and sputum, we have shown aging
is associated with impaired migratory accuracy of neutrophils
(111). This defect, which was detected in individuals aged
≥60 years, was accompanied by enhanced degranulation and
neutrophil proteinase activity, leading us to propose that aging
is associated with an increase in neutrophil-mediated bystander
tissue damage (111). Interestingly, a similar situation may
be observed in T2D patients, whose neutrophils also exhibit
impaired migration in vitro (112, 113). Furthermore, compared
to HCs, circulating levels of the protease inhibitor alpha-1
antitrypsin are significantly lower in T2D subjects (114). Thus,
in the context of SARS-CoV-2, we suggest that the meandering
neutrophils of both older adults and T2D patients would, via
excessive proteinase release, promote more widespread tissue
damage and increased systemic inflammation.

Monocytes and Macrophages
Accompanied by an emergence into circulation of large atypical
vacuolated monocytes (115), SARS-CoV-2 infection is associated
with alterations in the composition of the peripheral monocyte
pool. For example, whereas frequencies of CD14++ CD16−

classical monocytes have been reported to be significantly
reduced in COVID-19 patients when compared to HCs (115),
the proportions of intermediate (CD14++16+) and non-classical
(CD14+16++) monocytes are significantly increased (115, 116),
with analysis also revealing the percentage of intermediate
CD14++16+ monocytes to be significantly higher in patients
requiring intensive care unit (ICU) treatment when compared to
those with milder disease (116).

Moreover, single cell analysis of PBMCs has reported the
presence of a monocyte subset unique to severe COVID-19
patients that is enriched in genes encoding a range of cytokine
storm related cytokines such as IL-1β, IL-6, and TNF-α (117).
Phenotypically, mirroring the immunological changes that occur
during sepsis, monocytes from COVID-19 patients exhibit
significantly reduced surface expression of the antigen presenting
molecule HLA-DR (118). Ex vivo examination of intracellular
cytokine levels has revealed an increased frequency of GM-CSF+

and IL-6+ monocytes in both ICU and non-ICU COVID-19
patients, with the percentage of IL-6+ monocytes correlating
with disease severity (116). Similarly, a greater proportion of
CD14++ CD16− IL1β+ monocytes were detected in COVID-
19 patients by RNA sequencing, which found expression
in CD14++ monocytes of pro and anti-inflammatory genes
were up and down-regulated, respectively when compared to
HCs (68). Whilst more studies are required, emerging data
implies a role for IL-6 in driving the SARS-CoV-2-mediated
remodeling of the monocyte pool (117, 118), with one group
demonstrating a significant reduction in the expression of genes
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involved in “leukocyte chemotaxis” and the “acute inflammatory
response” in monocytes obtained from COVID-19 patients
following treatment with the IL-6 receptor monoclonal antibody
Tocilizumab (117).

Physiological aging and obesity are associated with
remodeling of the circulating monocyte pool, with older
adults and obese subjects exhibiting elevated frequencies of
intermediate and non-classical monocytes when compared
to younger adults and lean subjects, respectively (119–126).
Interestingly, Ong et al. have recently assigned a senescent-
like pro-inflammatory phenotype to both non-classical and
intermediate monocytes (123). Associated with high expression
of the phosphorylated p65 subunit of NK-κβ, both monocyte
subsets secreted, in the absence of ex vivo stimulation, an
array of pro-inflammatory cytokines and chemokines, which
included TNF-α, IL-6, and CCL4 (123). Importantly, this basal
increase in monocyte activity was associated with significantly
elevated plasma levels of IL-6 and TNF-α (123). Thus, in
the absence of infection, obese and older adults exhibit a
state of heightened peripheral inflammation upon which the
abovementioned SARS-CoV-2-mediated changes in monocyte
biology would be super-imposed. When combined with the
maintained (42, 43, 46, 47, 62) or increased (63) generation of
pro-inflammatory cytokines by RNA-stimulated monocytes of
older adults and obese subjects respectively, we speculate that
this high level of basal inflammation would predispose these
groups to hyper-inflammation that would hasten the onset of
severe COVID-19.

Single cell RNA sequencing (scRNA-seq) of bronchoalveolar
lavage fluid (BALF) has revealed the composition of macrophages
within the lungs of COVID-19 patients differs based on disease
severity. Categorizing macrophages as monocyte-derived, pro-
fibrotic or alveolar, Liao et al. found BALF obtained from patients
with severe disease was dominated by monocyte-derived and
pro-fibrotic macrophages, with the former subset expressing a
strong pro-inflammatory gene signature (127). Offering potential
insights into the secondary complications that may develop in
severe COVID-19 patients as a consequence of this remodeling
of lung-resident macrophages, two studies have implicated
monocyte-derived AMs in the development of post-injury lung
fibrosis and viral-induced pneumonia (128, 129). In the context
of immunesenescence, it has been proposed that as a consequence
of life-long exposure to environmental challenges, monocyte
recruitment to the lung increases with age, such that over time,
monocyte-derived macrophages become the predominant subset
within the lungs (130). If correct, then a more robust pulmonary
inflammatory response to SARS-CoV-2 in older adults may
increase their susceptibility to developing severe COVID-19.

Natural Killer Cells
Natural killer (NK) cells are innate immune cells that play
a major role in the early recognition and elimination of
virally-infected cells. In a murine model of severe SARS-CoV-1
pulmonary infection, Glass et al. demonstrated viral clearance
in the absence of NK cells (131), a finding that suggests these
innate lymphocytes are not required for host protection against
coronaviruses. However, the significant number of studies that

have demonstrated marked alterations in the composition and
function of the circulating NK cell pool of COVID-19 patients
(19) makes a discussion of the NK cell response to SARS-CoV-2,
particularly in the context of immunesenescence, necessary.

COVID-19 patients with mild-to-moderate disease present
with significantly reduced circulating numbers of total NK cells,
driven by a reduction in both CD56DIM16+ and CD56BRIGHT

NK cell subsets (40, 41, 79, 118, 132–134). Accompanying
these numerical changes are significant alterations in NK
cell phenotype, with scRNA-seq and flow cytometric analyses
revealing the peripheral NK pool of COVID-19 patients is
dominated by immature, highly activated and functionally
compromised cells (40, 41, 134). Focussing on the latter,
increased frequencies of NK cells expressing the inhibitory
receptors TIM3 and NKG2A have been detected in patients with
mild/moderate and severe COVID-19 (40, 134) with the increase
in NKG2A expression potentially reflecting the stimulation of
NK cells by pro-inflammatory cytokines (135). Upon recognition
of its ligand HLA-E, signaling through NKG2A inhibits NK cell
cytotoxicity (NKCC) (136, 137). Thus, one would predict that
NK cells isolated fromCOVID-19 patients would exhibit reduced
functional responses. Indeed, albeit to a non-viral stimulus,
Zheng and colleagues found the frequencies of CD107a+, IFNγ+,
TNFα+, and IL-2+ NK cells in PBMC samples acquired from
COVID-19 patients were significantly lower following PMA
and ionomycin challenge when compared to HCs (134). As
blood samples were acquired at the time of hospital admission,
these results imply an immediate breakdown of NK-mediated
anti-viral immunity (134). Interestingly, when patients were
reanalysed following anti-viral therapy, a marked reduction in
the percentage of NKG2A+ NK cells was noted, leading to the
suggestion that downregulation of NKG2A may correlate with
disease control (134).

A prominent feature of NK cell immunesenescence is
reduced NKCC, a defect we have previously attributed to
impaired polarization of the pore forming protein perforin to
the immunological synapse (138). Accompanying this decline
in lytic activity is an age-related reduction in cytokine and
chemokine production (139–141). NK cell function is regulated
by the balance of signals transmitted through surface expressed
activatory and inhibitory receptors (142). As discussed by others
(19), it is currently unknown as to which ligands for activatory
receptors are expressed on the surface of SARS CoV-2 infected
cells. Possible candidates are stress-inducible ligands, which are
recognized by the activatory receptors NKG2D, NKp30, and
NKp46. Whilst age has no effect upon the expression of NKG2D
(138, 143), a number of studies have described an age-associated
decline in the frequency of NKp30+ and NKp46+ NK cells
(138, 144, 145). Thus, in the older adult with severe COVID-19,
superimposed on a baseline reduction in NKCC and activatory
receptor expression would be a SARS-CoV-2 driven induction
of functional exhaustion via the up-regulation of NKG2A (134).
Moreover, with in vitro studies having shown that exposure
to IL-6 and TNF-α, two cytokines whose circulating levels are
elevated in COVID-19 patients (3, 77, 146) impairs NKCC and
reduces perforin, NKp30 and NKp46 expression (147–149), then
the SARS-CoV-2-induced cytokine storm would exacerbate the
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abovementioned functional and phenotypical features of NK cell
immunesenescence, which would be predicted to further reduce
NK cell anti-viral activity.

Recent studies in the field of cancer immunotherapy have
shown that manipulation of NKG2A signaling can restore NKCC
and promote anti-tumor immunity (136, 150, 151). Based on its
success, Yaqinuddin and colleagues have proposed mirroring this
therapeutic approach for the treatment of COVID-19 patients,
where administration of the humanized anti-NKG2A antibody
Monalizumab would rejuvenate the anti-viral immune response
of COVID-19 patients by counteracting the NKG2A-driven
inhibition of NKCC (152). However, for older adults with severe
COVID-19, any therapeutic value of this approach may be offset
by the age-related impairments in perforin polarization, NKCC
and the reduced expression of NK cell activating receptors.

T Cell Responses
Lymphopenia is a common hematological observation in patients
infected with SARS-CoV-2. CD3+, CD4+, and CD8+ T cell
counts are significantly lower in patients with severe COVID-
19 when compared to those with mild disease (57, 60, 133,
134, 153), with numbers increasing significantly in subjects
who respond clinically to anti-viral treatment (133). Elevated
circulating concentrations of pro-inflammatory cytokines (133,
154), induction of apoptosis (40) and pulmonary infiltration
(5, 127) are some of the mechanisms that have been proposed
to underlie SARS-CoV-2-induced lymphopenia. Indicative of in
vivo activation, increased proportions of CD4+ and CD8+ T
cells expressing CD69, CD38, CD44, or HLA-DR have been
reported in COVID-19 patients (5, 116, 155–158) as has the
presence of pathogenic GM-CSF+/IL-6+ and GM-CSF+/IFN+

CD4+ T cells, with those experiencing severe disease presenting
with significantly increased frequencies when compared to those
with mild COVID-19 (116). Pointing toward a state of functional
exhaustion or senescence, markedly higher percentages of CD4+

or CD8+ T cells expressing a variety of molecules such as
NKG2A, PD-1, TIGIT, TIM-3 and CD57 have been detected
in SARS-CoV-2-infected patients (116, 134, 154, 159), with
their presence coinciding with significantly reduced intracellular
cytokine generation upon ex vivo stimulation (134, 158).

Characterized by the gradual replacement of functional
epithelial cells with fat and fibrous tissue (160), thymic involution
is a defining feature of T cell immunesenescence, which results
in a decline in the production of naïve T lymphocytes (161).
This reduction in thymic output is offset by the homeostatic
proliferation of pre-existing naïve and memory T cells, a scenario
that results in a contraction in the diversity of the circulating
T cell receptor (TCR) repertoire of older adults (162). As well
as aging, obesity is associated with reduced thymic function.
Yang and co-workers found the generation of naïve T cells was
significantly lower in obese younger adults when compared to
age-matched lean controls (163). As a broad TCR repertoire
is crucial for the detection of novel pathogens, the reduced
diversity within the T cell pool of older adults and obese subjects
may contribute to their increased susceptibility to SARS-CoV-
2 infection and put them at risk of eliciting a blunted immune
response to any future COVID-19 vaccine.

Owing to impaired metabolism, shortened telomeres
and aberrant intracellular signaling (33, 164, 165), reduced
proliferation, cytokine production, cytotoxicity and migration
are examples of some of the functional impairments that have
been reported for T cells isolated from older adults and those
with inflammatory co-morbidities (33, 166, 167). The peripheral
T cell pools of these adults are enriched with functionally
exhausted (TIGIT+, PD-1+), highly activated (TIGIT+ HLA-
DR+ CD38+), senescent (CD28−57+, CCR7−45RA+) and
terminally differentiated (CD27−28−) CD4+ or CD8+ T cells
(33, 168–170). The most profound changes are witnessed within
the CD8+ T cell subset, with the accumulation of CD8+28−

T cells of particular significance (171). Saurwein-Teissl et al.
found an expansion of CD8+28− T cells was associated with
reduced antibody responses in older adults following influenza
vaccination (172). The efficiency of T cell responses are also
hampered by age-associated alterations in the expression of
co-stimulatory molecules on the surface of antigen presenting
cells. Relevant to SARS-CoV-2, monocytes isolated from older
adults have been shown to exhibit reduced expression of CD80
and CD86 following ligation of the RNA-sensing PRRs TLR7/8
(173). In subsequent vaccination studies, it was shown that
expression of these co-stimulatory molecules was positively
associated with antibody responses (173).

Based on scRNA-seq data that has shown the presence of
highly expanded and functionally-competent CD8+ T cells in
the BALF of mild COVID-19 patients, it has been suggested
that a robust adaptive immune response is critical to controlling
SARS-CoV-2 infection (127). If correct, then combined with
the aforementioned remodeled T cell pool of older adults and
individuals with inflammatory co-morbidities, the SARS-CoV-2
driven induction of lymphocyte exhaustion (116, 134, 154, 159)
would hamper both the initiation and maintenance of such
a response. Furthermore, due to the reduced vaccine efficacy
that occurs as a consequence of both innate and adaptive
immune dysfunction, alternative therapeutic strategies such as
administration of the immunomodulatory drugs metformin and
pioglitazone, have been proposed to protect these high risk
groups against severe COVID-19 (174).

B Cells
Marked alterations have been described in the composition of the
circulating B cell pool of SARS-CoV-2 infected patients. Relative
to HC’s, significantly reduced frequencies of naïve IgM+CD27−,
memory CD21+27+ and CD5+ B cells have been reported
(175, 176), and are accompanied by a concurrent elevation in
the proportion of CD38+27+ plasmablasts (175–177). When
analyzed by disease severity, significant alterations in plasmablast
and memory CD21+27+ B cell frequencies were observed only
in patients with severe COVID-19 disease, with the proportions
of both subsets returning to levels comparable to those of HCs
upon recovery (175, 176). Demonstrating a rapid and robust B
cell response to SARS-CoV-2 infection, elevated circulating levels
of virus specific IgM, IgG, and IgA antibodies have been detected,
with this seroconversion evident within 7–14 days post-symptom
onset (19, 68, 175, 176, 178). Interestingly, in a small pilot study of
five critically-ill COVID-19 patients, transfusion of convalescent
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plasma containing neutralizing SARS-CoV-2 specific antibodies
was shown to improve clinical status (179). In terms of the
longevity of the antibody response, SARS-CoV-2 specific IgG
antibodies have been detected in serum samples acquired from
COVID-19 patients 7 weeks post-infection (180). However, due
to the infancy of the current pandemic, it is currently unknown
as to whether this initial antibody response and generation of
memory B cells will protect against re-infection. That said, data
from previous coronavirus outbreaks, in which a progressive
decline in both SARS-CoV-1 specific IgGmemory B cells and IgG
antibodies were reported (181, 182), suggests that SARS-CoV-2
antibody responses will wane over time.

Attributed to a range of factors such as changes in the bone
marrow microenvironment and skewing of haematopoietic stem
cell differentiation toward the myeloid lineage, murine-based
studies have shown aging is associated with a reduction inmature
B cell production (183). In line with this observation, human
aging is accompanied by a reduction in the size of the peripheral
B cell pool, with both the frequency and absolute numbers of
CD19+ B cells significantly lower in older adults (183–185).
However, whether human aging is associated with changes in the
composition of the peripheral B cell pool is unclear. For example,
whilst some groups have reported an age-related increase in the
percentage or number of circulating CD27+ memory B cells
(185), others have demonstrated an age-associated decline in this
subset (183, 184). Similarly, the frequency of IgMmemory B cells
have been reported to be either decreased (186) or unchanged
with age (184).

Results of human and animal-based studies have revealed
that aging is associated with reduced B cell proliferation and
differentiation into plasma cells, which secrete antibodies that are
weaker and of lower affinity when compared to those produced
by plasma cells of younger subjects (186–189). Critical steps
in a humoral immune response are class switch recombination
(CSR) and somatic hypermutation (SHM). Taking place in
germinal centers, these two processes are responsible for the
generation of isotype-switched high-affinity antibodies. Essential
for both CSR and SHM is activation-induced cytidine deaminase
(AID), a DNA-editing enzyme, whose expression is regulated
by the transcription factor E47. Culminating in defective class
switching, the expression of both AID and E47 has been shown
to be significantly lower in B cells from aged mice and humans
(184, 190, 191). Alongside these intrinsic defects, B-cell extrinsic
factors also contribute to the age-related impairment in humoral
immunity. For example, attributed to reduced surface expression
of Fc receptors, follicular dendritic cells of aged mice exhibit
reduced antigen trapping and presentation (192), whilst the age-
related decline in CD40L expression on the surface of activated
CD4+ T cells would reduce the delivery of co-stimulatory signals
to antigen-expressing B cells (193).

B cell immunesenescence is considered a major underlying
factor in the reduced efficacy of vaccination in older adults.
Characterized by decreased antibody concentrations, delayed
peak antibody titres and lower seroprotection (194–196), the
humoral response to a range of vaccinations such as influenza
(197) and Hepatitis A (196) is significantly reduced in older
adults. Furthermore, accompanying this impairment in initial

antibody responses is an age-associated decline in antibody
persistence, with one study reporting non-protective antibody
titres to be present in older adults 6–10 years following
vaccination with tetanus toxoid (198). In the context of COVID-
19, these studies highlight the need for research groups involved
in designing a SARS-CoV-2 vaccine to consider the impact
that age will have on its efficacy, and whether one vaccine will
confer protection amongst all groups of society. With this in
mind, it may be that a vaccination strategy specific for older
adults is required. This could involve the co-administration of an
adjuvant or delivery of a booster vaccine, two strategies that have
previously proven successful in augmenting antibody titres and
conferring seroprotection in aged rhesus monkeys and humans
(199, 200).

Inflammaging
Physiological aging is accompanied by a sub-clinical chronic
low-grade state of systemic inflammation, inflammaging. This
phenomenon is characterized by elevated serum levels of acute
phase proteins (e.g., C-reactive protein) and pro-inflammatory
cytokines (e.g., TNF-α, IL-6, and IL-8) (201). Previous papers
that have discussed COVID-19 in the context of aging and
immunesenescence have speculated that inflammaging would
predispose the older adult to severe infection by fuelling an
exaggerated pro-inflammatory response to SARS-CoV-2 (202,
203). However, based on emerging data that suggests excessive
pro-inflammatory responses in older adults negatively regulates
their immune responses (204, 205), we propose the following
alternative hypothesis: inflammaging predisposes older adults to
severe COVID-19 by suppressing the immune response to SARS-
CoV-2. Whilst in vitro and in vivo studies have demonstrated
that exposure to pro-inflammatory cytokines can modulate the
phenotype and/or function of innate and adaptive immune cells
(147–149, 206), it is the work of Akbar et al. that have specifically
linked hyper-inflammation to impaired antigen specific immune
responses during aging. Using a human experimental system
that investigates antigen-specific immunity in vivo, the group
has consistently demonstrated an age-related impairment in the
delayed type hypersensitivity (DTH) response to varicella zoster
virus (VSV) antigen (204, 205, 207). Attributed to aberrant
activation of P38 MAPK signaling, the decreased VZV antigen
responsiveness of older adults is associated with an accumulation
of CCR2+ monocytes that inhibit T cell proliferation via the
production of prostaglandin E2 (PGE2) (204, 205).

In terms of COVID-19, it is interesting that the aging lung
is characterized by a state of heightened basal inflammation,
with levels of IL-6, amongst other cytokines, significantly higher
in the BALF of healthy older adults when compared to their
younger counterparts (208–210). It has been suggested that a
life-long accumulation of senescent cells may be responsible for
this age-associated increase in pulmonary inflammation (210).
Whilst data from murine models support this assumption (211),
it is currently unknown in humans as to whether aging is
associated with an increased senescent cell burden in the lungs.
However, it is interesting that metatranscriptomic sequencing of
BALF from COVID-19 patients aged 40-61 years detected an
up-regulation of CCL2 (212), a chemokine produced in large
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amounts by senescent cells (213, 214). Moreover, CCL2 is the
chemoattractant for CD14++ CCR2+ classical and intermediate
monocytes, which in the abovementioned VZV models were
more abundant at sites of antigenic challenge in older adults
and negatively regulated the adaptive immune response (204).
Thus, in response to SARS-CoV-2, the pulmonary immune
response of older adults may share features reminiscent of the
impaired cutaneous immune response described in DTHmodels,
in that, via the CCL2-mediated recruitment of PGE2-secreting
monocytes, a hyper-inflammatory response would impede T
cell function.

Residing in a state of permanent cell cycle arrest, yet
remaining metabolically active, senescent cells are a rich source
of pro-inflammatory cytokines, chemokines, growth factors and
proteases (215). Due to this inflammatory profile, termed the
senescent associated secretory phenotype (SASP), and their
presence in various tissues of older adults and T2D patients
(216–218), senescent cell accumulation is considered to be one
factor underlying the heightened systemic inflammatory status
of these individuals. Recently, it was demonstrated that certain
viruses such as influenza virus exhibit enhanced replication
efficiency in senescent cells (219). In terms of coronavirus, entry
of SARS-CoV-1 into host cells has been shown to be dependent
upon surface expression of vimentin, a filament protein that
interacts directly with the spike protein of SARS-CoV-1 (220).
Since vimentin was recently found to be expressed on the
surface of senescent lung fibroblasts (221), and the fact that
SARS-CoV-1 and SARS-CoV-2 utilize the same mechanism of
attachment to host cells, a number of groups have proposed
increased SARS-CoV-2 replication would occur in individuals
with a high senescent cell burden (222–224). Thus, an increased
presence of senescent cells may predispose to the development of
severe COVID-19 via two mechanisms: (1) reduced immune cell
clearance by contributing to the aforementioned inflammation-
induced suppression of innate and adaptive immunity (204, 205,
225) and (3) increasing viral load by acting as a site of enhanced
SARS-CoV-2 replication. Interestingly, a number of clinical trials
assessing the therapeutic benefit of drugs that directly eliminate
senescent cells or suppress their SASP are already underway in
patients with COVID-19 (223, 226). Results of such studies will
help researchers address whether a high senescent cell burden is
indeed a risk factor for the development of severe COVID-19.

Belonging to one of two distinct subsets, namely monocytic
or granulocytic, myeloid-derived suppressor cells (MDSC’s) are
a heterogeneous collection of immature cells. Via a range of
mechanisms, which include the generation of ROS and nitric
oxide, arginine metabolism, induction of T regulatory cells and
the production of anti-inflammatory cytokines, MDSC’s are
potent immune suppressors, inhibiting the proliferation and
activation of innate (NK cells, DC’s and macrophages) and
adaptive (T and B cells) immune cells (227, 228). Whilst the
presence of MDSC’s during acute inflammatory responses is
seen as beneficial (due to their involvement in the resolution
of inflammation), in the setting of chronic inflammation,
where MDSC’s persist, their suppressive activity is considered
detrimental to the host (229). Thus, the elevated frequency
of MDSC’s reported in older adults, obese subjects and T2D

patients (230–232) has been proposed as a potential mechanistic
explanation for the increased susceptibility to infection and poor
vaccination responses elicited by these individuals (233, 234).
Given that such inflammatory mediators as PGE2, IL-6, TNF-α,
and GM-CSF promote the expansion and activation of MDSC’s
(227), the hyperactive immune response and cytokine storm
described in SARS-CoV-2-infected patients has resulted in a
handful of studies investigating whether MDSC’s may contribute
to the pathogenesis of COVID-19.

Relative to HC’s, significantly elevated frequencies of MDSC’s
(235) and granulocytic-MDSC’s (G-MDSCs) (236) have been
detected in peripheral blood samples obtained from mild
and severe COVID-19 patients. Suggestive of driving reduced
anti-viral immune responses, significant negative associations
were reported between MDSC frequency and the percentage
of perforin+ CD3+T cells and perforin+ NK cells (235),
whilst in ex vivo cultures, depletion of G-MDSC’s from PBMC
samples of severe COVID-19 patients restored the proliferative
capacity and cytokine production of T cells (236). In terms
of disease severity, MDSC frequency has been reported to be
significantly higher in patients with severe COVID-19 when
compared to subjects with mild disease (236), whilst single
cell transcriptomics has revealed the presence of immature
CD14+MPO+Ki67+HLA-DRlo suppressive monocytes and
immature ARG1+CD101+S100A8/A9+ neutrophils only in
patients with severe disease (237). Furthermore, there is evidence
to suggest that MDSC’s persist in severe patients, with one
study reporting G-MDSC’s comprised >30% of total PBMC’s in
samples acquired from 3 severe COVID-19 patients at day 18
post-hospital admission (236). Thus, it has been hypothesized
that a SARS-CoV-2-induced expansion of MDSC’s may promote
immune paralysis and that current therapeutic approaches
targeting the cytokine storm may have the additional benefit of
augmenting anti-viral immune responses by reducing MDSC
proliferation and activation (235).

Age-Associated Changes in Pulmonary
Immune Responses
Thus, far, our discussion of how immunesenescence may
predispose to severe COVID-19 has focussed on the changes
that occur in the composition, phenotype and/or function of
circulating immune cells. As a respiratory tract infection, it is
important to discuss the pulmonary immune response.

As the resident immune cell of the lungs, studies that
have examined the effect of age on the pulmonary immune
response have focussed predominantly upon the AM. Gene
profiling of resting AMs has shown aging induces wide-spread
transcriptional changes in aged mice (97), with up-regulation
of inflammatory pathways related to oxidative burst and IL-8
supporting the notion that aging is associated with heightened
basal inflammation within the lung (97). Intertwined with this
pulmonary inflammaging is reduced AM function (95, 97, 238),
with the work of Hinojosa et al. suggesting the elevation in
basal inflammation is linked to impaired cytokine production
via an up-regulation in AMs of A20, a negative regulator of
NK-κβ and MAPKs (239). As both these signaling elements
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function downstream of the RNA sensing PRRs TLR7/8 and
RIG-1, pro-inflammatory cytokine production by AMs following
SARS-CoV-2 stimulation may be reduced with age. This theory
is supported by the significantly reduced production of IL-6
by AMs from aged mice following ex vivo stimulation with
the TLR7/8 agonist R848, an impairment that was reported
alongside a down-regulation of TLR8 gene expression and a
reduced induction of genes related to IL-6 signaling in lung
tissue from aged mice following viral infection (240). Other
age-related defects reported in the pulmonary immune response
include reduced NKCC (241), impaired migration of pulmonary
DCs to draining lymph nodes (DLNs) (242), diminished virus-
specific CD8+ T cell responses (242–245) and delayed immune
cell infiltration (74, 245). Results of adoptive transfer experiments
point toward an immune suppressive environment rather than
cell-intrinsic defects as the cause of some of the abovementioned
functional impairments, with one study attributing the age-
associated impairment in pulmonary DC and T cell responses to
elevated levels of the immune suppressive eicosanoid PGD2 in
the lungs of aged mice (97, 242).

Insights into how aging may specifically affect the pulmonary
immune response to SARS-CoV-2 are offered by the results
of murine and non-human primate models of SARS-CoV-1
infection (242, 246–251). Replicating the situation in humans,
disease severity and lethality in these models are higher in aged
animals when compared to their younger counterparts (242, 247–
249), and interestingly, the immune dysregulation that occurs
in aged mice infected with SARS-CoV-1 is greater than that
detected during influenza A virus infection (242). Features of the
pulmonary immune response of aged animals to SARS-CoV-1
include: reduced DC migration to DLNs (242), impaired CD8+

viral-specific T cell responses (242), decreased macrophage
and DC activation (247), reduced T cell proliferation (247)
and enhanced pro-inflammatory cytokine responses (246, 248,
249). Those studies that have reported an age-related increase
in viral-induced inflammation have shown this exaggerated
response is associated with significant lung damage, leading
to the suggestion that a pathological immune response may
contribute to the increased morbidity and mortality rates in
older adults following coronavirus infection (246). Using two
distinct approaches, namely antagonism of PGD2 signaling (242)
or prophylactic treatment with the TLR3 agonist poly IC (251), it
is possible to enhance the pulmonary immune response of older
animals to SARS-CoV-1 and increase host survival (242, 251).
Demonstrating reversal of immunesenescence, these therapeutic
strategies have been proposed as a potential means of improving
clinical outcome in older adults at high risk of severe respiratory
infections (242, 251).

RESOLUTION OF INFLAMMATION

A co-ordinated multi-step program that involves the clearance
of apoptosed neutrophils by macrophages (efferocytosis) and the
generation of specialized pro-resolving lipid mediators (SPMs),
the resolution of inflammatory responses is an active process
that protects against unwarranted tissue damage (252). Whilst we

await data relating specifically to features of the resolution phase
in SARS-CoV-2-infected patients, a series of murine and human-
based studies have shown aging (97, 225, 253), obesity (254, 255)
and T2D (254, 256) are all associated with delayed resolution of
inflammatory responses.

Attributed to a p38 MAPK driven reduction in the expression
of T-cell immunoglobulin mucin protein 4 (TIM-4), a receptor
expressed by macrophages that recognizes phosphatidylserine
on the surface of apoptosed neutrophils, De Maeyer and
colleagues recently demonstrated an age-associated impairment
in efferocytosis (225). In a human dermal model of acute
sterile inflammation, this defect in efferocytosis resulted in the
accumulation of annexin V+ neutrophils and delayed resolution
(225). Mirroring these observations, reduced clearance of
apoptosed cells by macrophages has been reported in the
experimental settings of obesity (97, 254, 257) and diabetes (254,
256, 258), with decreased PI3-K signaling (257) and elevated
PGE2 levels in inflammatory exudate (254) identified as potential
underlying causes. In addition to defective efferocytosis, reduced
concentrations of SPMs have been measured at sites of acute
inflammation in murine models of aging (253) and diabetes
(256). Augmenting SPM levels via exogenous administration
shortened resolution time in vivo, with this improvement linked
to increased efferocytosis and the reprogramming of monocytes
to a pro-resolving phenotype (253). Based on these data, we
propose that, via their delayed induction of resolution programs,
groups at high risk of COVID-19 would experience prolonged
inflammatory responses following SARS-CoV-2 infection. By
exacerbating their pre-existing heightened pro-inflammatory
status, this impairment in resolution would promote further
immune dysregulation and bystander tissue damage that would
result in delayed viral clearance and an extended time to recovery.
On this note, coinciding with impaired efferocytosis in vitro,
Wong et al. observed greater neutrophil retention in the lungs
and higher myeloperoxidase levels in the BALF of aged mice
following influenza A virus infection (97). Interestingly, adoptive
transfer of AMs from young mice into aged mice significantly
reduced the degree of lung damage measured 3 days post
influenza A virus challenge (97).

Associated with pathogen dissemination, impaired lung
function and increased mortality (259, 260), down-regulation
of ALOX5 (the gene responsible for the synthesis of the SPM
lipoxin) and reduced production of the SPM protectin D1
(PD1) have been reported in murine models of severe influenza
infection. Based in part on the fact that in these models
administration of PD1 improved survival rates and pulmonary
function (260), SPM treatment has been proposed as a therapy
by which to promote the resolution of lung inflammation and
reduce tissue damage in COVID-19 patients (261). Importantly,
treatment regimens that include exogenous application of SPMs
and inhibition of P38 MAPK have been shown in human and
animal models to overcome the delay in inflammatory resolution
that occurs as a consequence of aging and the presence of co-
morbidities (225, 253, 256). Thus, it appears that resolution
of inflammation can be manipulated in groups at high risk
of severe COVID-19. However, as histological examination of
lung tissue obtained from a SARS-CoV-1 infected patient found
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increased expression of plasminogen activator inhibitor-1 (262),
a negative regulator of efferocytosis (263), there may be obstacles
beyond impaired SPM generation that need to be overcome
in order to successfully promote the resolution of coronavirus-
induced inflammatory responses in older adults and those with
inflammatory co-morbidities.

FUTURE DIRECTIONS

Immunesenescence and the Development
of a COVID-19 Vaccine
A recent report by the World Health Organization provided
information on the 26 candidate COVID-19 vaccines that are
currently undergoing clinical testing and details of a further 139
that are in preclinical evaluation (264). The speed of COVID-
19 vaccine research was highlighted by the fact that within 68
days of being declared a pandemic, results of the first animal and
human based studies to test potential vaccines were published
(265). Across rodents and non-human primates, the efficacy of
an adenovirus-vectored vaccine encoding the spike protein of
SARS-CoV-2 (266), a purified inactivated virus vaccine (267)
and a series of DNA vaccines expressing different forms of
the spike protein (268) have been tested, with preliminary
results demonstrating the generation of robust humoral and
cell-mediated responses that significantly reduce viral load and
prevent the development of pneumonia (266, 267). Moderna
Therapeutics recently announced the results of their phase 1
human trial of a potential COVID-19 vaccine (269). Using
an mRNA vaccine that encodes for a pre-fusion stabilized
form of the SARS-CoV-2 spike protein, the company reported
seroconversion following a single dose in all 45 participants, with
those who received two doses generating antibody levels akin to
those measured in patients that have recovered from COVID-19
(269). However, it will be important to consider the impact of age
and co-morbidities on the efficacy of any potential vaccine.

To date, a number of animal-based studies have investigated
the effect of age on the efficacy of SARS-CoV-1 vaccines (270–
272). In response to infection with homologous or heterologous
viral strains, Bolles et al. found that aged mice vaccinated
with an adjuvanted-double-inactivated whole SARS-CoV-1 virus
were not completely protected against virus-induced mortality
and exhibited both increased morbidity and pulmonary viral
load when compared to young mice (270). Underlying this
impairment in vaccine efficacy was a significant age-associated
reduction in serum neutralizing antibody titres (270). However,
in a related study, Sheahan et al. used a virus replicon particle
vaccine platform that specifically targeted DCs, and showed
that this strategy resulted in comparable antigen-specific IgG
responses between young and aged mice and protected older
mice from SARS-CoV-1-mediated clinical disease (272). Taken
together, these data not only demonstrate the importance of
testing any potential COVID-19 vaccine in all age groups
but highlight how vaccine design will be critical for inducing
protective antibody responses in aged hosts. On this note, a
number of therapeutic strategies have been proposed and/or
trialed in an attempt to combat the reduced efficacy of

vaccinations against viral antigens in older adults (273). To date,
these have included immunostimulant patches (274), the use of
TLR agonists as adjuvants (275), the fusion of viral proteins with
TLR agonists (276), high dose vaccination (277–279) and the use
of PGD2 antagonists (242).

It is becoming increasingly recognized that obesity is a risk
factor for infectious disease and poor vaccination responses
(280–283). Data from mice (284–286) and human (287, 288)
studies have reported reduced influenza vaccine efficacy in obese
subjects, which in murine studies was associated with increased
lung pathology, higher viral titres and greater mortality rates
upon secondary infection (284, 285). Studies are underway
to investigate methods of counteracting the negative effects
of obesity on vaccine responses. Of note, whilst the use of
adjuvants and/or high dose vaccination have been shown to
increase neutralizing antibody titres in obese mice, the levels
generated as well as the breadth and magnitude of the antibody
response was significantly lower when compared to lean controls,
ultimately resulting in reduced protection upon viral challenge
(289). Thus, when viewed alongside the abovementioned age-
related impairment in vaccine efficacy, these results imply that
a “one size fits all” policy may not be appropriate for a
COVID-19 vaccine, with high risk groups requiring a tailored
vaccine designed to overcome the deficits of their remodeled
immune systems.

Enhancing Immune Function in Older
Adults
Through pharmacological and non-pharmacological approaches,
which include nutritional intervention (290, 291) and the
administration of protein kinase inhibitors (204, 205, 225, 292,
293), clinical studies in older adults have shown it is possible to
reverse immunesenescence.

Associated with reduced circulating frequencies of
functionally exhausted PD-1 positive CD4+ and CD8+ T
cells, Mannick et al. demonstrated a significantly enhanced
serological response to influenza vaccination in older adults
treated with the allosteric mammalian target of rapamycin
(mTOR) inhibitor RAD001 prior to antigenic challenge
(292). More recently, the same group reported that a
combined therapy of RAD001 and BEZ235, a competitive
mTOR inhibitor, significantly reduced the annualized rate
of respiratory tract infections in adults aged ≥65 years
(293). mRNA sequencing analysis of circulating leukocytes
revealed this protective effect was accompanied by an
up-regulation in genes related to anti-viral type I IFN
signaling (293).

Oral administration of the potent and selective P38 MAPK
inhibitor losmapimod has been shown to boost cutaneous
immune responses in older adults. In a model of DTH, P38
inhibition was found to significantly increase VZV antigen
specific immunity (205). Mechanistically, at the site of antigenic
challenge, this improved immune response was associated with
significantly reduced infiltration of PGE2 producing CCR2+

monocytes and increased T cell proliferation, whilst systemically,
a significant decline in serum CRP levels was reported
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(204, 205). Importantly, losmapimod treatment also augments
the resolution response of older adults (225), meaning that
the improved immune response that would occur following
P38 inhibition would not be offset by bystander tissue
damage that would arise from the delay in the resolution
of inflammatory responses that accompanies physiological
aging (225).

Taken together, these studies demonstrate that it is possible to
enhance anti-viral immunity and resolution responses in older
adults. In the context of SARS-CoV-2 infection, these treatment
regimens could be applied in a prophylactic manner to prevent
the spread of COVID-19 and boost immune responses to future
vaccines. Having already proven successful in elderly subjects,
these therapeutic strategies have an advantage over many other
potential treatments whose efficacy would be hampered by the
remodeling of the immune system that occurs with age.

CONCLUDING REMARKS

The similarities that exist between the immune response that
precedes or accompanies the onset of severe COVID-19,

and the re-modeled immune systems of older adults and
those with inflammatory co-morbidities, lend support to the
idea that immunesenescence may predispose to COVID-19
infection and disease severity (Figure 1). However, current
evidence is at best circumstantial (202, 203), with the lack of
cross-sectional and prospective studies examining the SARS-
CoV-2-induced immune response in these high risk groups
hindering our ability to address this hypothesis. That said, it
appears that such studies are underway (10, 154, 294). For
example, in a recent study, Liu et al. divided a cohort of 221
COVID-19 patients into two distinct age groups, and found
older adults (≥60 years of age) presented with significantly
elevated inflammatory indices (10). Furthermore, a study at
University College London has acquired pre-infection blood
and throat swab samples from people ≥70 years of age
who will be assessed weekly for COVID-19 related symptoms
(294, 295). Working on a hypothesis that prior exposure to
coronaviruses may lead to an exaggerated immune response
against SARS-CoV-2, one aim of the study is to determine
pre-infection antibody titres against other coronaviruses (295).
The results of this study, which also plans to search for

FIGURE 1 | Immunesenescence: a risk factor for severe COVID-19? Similarities between the immune profile of patients with severe COVID-19, healthy older adults

and adults with inflammatory co-morbidities (obesity and type 2 diabetes). IFN, Interferon; NET, Neutrophil extracellular traps; NK, Natural killer.
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biomarkers that are predictive of outcome in those subjects
who develop COVID-19 (294, 295), will provide a much needed
insight into how the immune system of older adults responds
to SARS-Cov-2 and whether it is a contributory factor in
patient outcome.
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