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Accumulation of dendritic cells (DCs) is a special characteristic of the decidual
microenvironment. Decidua-infiltrated DCs show unique phenotypes and functions that
promote the establishment of fetal-maternal tolerance. However, the regulatory
mechanisms yet to be fully investigated. Decidual stromal cells (DSCs) are the major
cellular component of decidua tissue. The interactions between DSCs and decidua-
infiltrated immunocytes dictate immune tolerance in early pregnancy. Therefore, in the
present study, we explore the effect of early pregnancy DSCs on monocyte-derived DCs
and the relevant mechanisms. DSC-conditioned DCs showed altered phenotypes,
secretion profiles and Th2 priming potential. G-CSF concentration was significantly up-
regulated in the co-culture supernatant between DSCs and DCs. Supplementation of G-
CSF neutralizing antibody partly reversed the reprogramming of DCs mediated by DSCs.
Furthermore, G-CSF production was promoted by IL-1B, which was mainly produced by
DCs and significantly up-regulated after their cultivation with DSCs. Interestingly, the
effects of DSC on IL-1B production of DCs occurred in their immature stage but not their
mature stage. Lastly, no significant difference of G-CSF was found in DSCs from healthy
early pregnancy women and spontaneous abortions (SA) patients. However, DSCs from
SA patients secreted less G-CSF in response to exogenous rhiL-1B or DC cultivation. In
conclusion, our study bolster the understanding of the decidual immunomodulatory
microenvironment during early pregnancy, and brings new insight into the potential
clinical value of G-CSF in pregnancy disorders.
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INTRODUCTION

Human pregnancy is a complex process containing interactions
between fetal and maternal derived components. Successful embryo
implantation depends on significant morphologic and functional
changes of the maternal endometrium, a process named
decidualization (1). The unique decidual microenvironment not
only provides nutritional and endocrine support for embryo
implantation and growth, but also plays important immunological
roles in the establishment of fetal-maternal tolerance. Fetal-maternal
tolerance is an essential adaptation, involving multiple types of
decidua-infiltrated immunocytes to facilitate fetus development.

Accumulation of dendritic cells (DCs) is a special
characteristic of the decidual microenvironment. Compared to
their scarcity in peripheral blood (around 1%) (2), DCs represent
approximate 5-10% of all hematopoietic cells in decidua tissue
(3, 4). The majority of decidua-infiltrated DCs show myeloid
origin with an immature phenotype. More importantly, they
exhibit tolerogenic potential through various mechanisms, such
as inducing the expansion of regulatory T cells, limiting the
proliferation of effector T cells, and driving a Th2-bias response.
Tolerogenic DCs play important roles in successful pregnancies
in both mice and humans. In mice, depletion of uterine DCs
leads to implantation failure and embryo resorption (5).
Conversely, inoculation of female CBA/] mice with syngeneic
DCs reduced miscarriage rate in the abortion-prone CBA/J x
DBA/2] mating model (6). In humans, fewer immature myeloid
DCs have been found in the decidua tissues of spontaneous
abortion patients compared to normal decidua (7). The
researchers speculated that DCs from the spontaneous
abortion decidua matured, emigrated to local lymph nodes,
and initiated abortifacient Thl responses. These studies suggest
that decidual DCs undergo subtle regulations for their functions
and that dysregulation might break the maternal-fetal immune
tolerance, leading to a negative pregnancy outcome. However,
the regulatory mechanisms yet to be fully investigated.

Decidual stromal cells (DSCs) are the major cellular component
of decidua tissue. Numerous studies have reported that the
interactions between DSCs and decidua-infiltrated immunocytes
dictate immune tolerance in early pregnancy (8). One especially
interesting cytokine is granulocyte colony-stimulating factor (G-
CSF), which is mainly produced by first trimester decidua cells (9).
G-CSF has long been applied as reproductive medicine in the in
vitro fertilization (IVF) process (10, 11) to stimulate oocyte
maturation (12), prevent implantation failures (13, 14), or
improve the uterine receptivity in patients with recurrent
spontaneous abortion (RSA) (14). There is also evidence that G-
CSF may participate in the formation of the tolerogenic
microenvironment in decidua by educating locally infiltrated
immunocytes. A preliminary study showed that G-CSF abolished
IFN-y production and the cytotoxicity of uterine natural killer
(uNK) cells in vitro (15). Other researchers further demonstrated
its immunomodulatory roles, pointing out that an absence of
activated killer-cell immunglobulin-like receptor (KIR)—the
functional surface receptor of NKs—was a hallmark of G-CSF
application in RSA treatment (16, 17). Studies about G-CSF
effects on other types of immunocytes in the pregnancy interface

are quite limited. However, when considering the well-recognized
G-CSF-mediated induction of tolerogenic DCs in immune-
mediated diseases—such as infection, graft-vs-host disease,
multiple sclerosis, lupus nephritis and inflammatory bowel disease
(18, 19)—it is reasonable to speculate that G-CSF may regulate the
phenotypes and functions of decidua-infiltrated DCs.

Based on the above observations, we hypothesize that DSCs
regulate the phenotypes and functions of DCs. We investigated
this hypothesis by establishing an in vitro co-culture system
between freshly isolated monocyte-derived DCs and early
pregnancy DSCs. We found that DSCs induced functional
reprogramming of monocyte-derived DCs, including altered
surface marker expression, secretion profile and Th2-driven
potential, through a G-CSF-dependent way. Furthermore, DC-
derived IL-1P further stimulated G-CSF production. Finally, we
analyzed G-CSF production of DSCs from healthy pregnancy
women and patients with spontaneous abortions (SA), and
found no significant difference of the basal G-CSF secretion
level between two groups. However, DSCs from patients with SA
did exhibit compromised G-CSF production in response to
exogenous rhIL-1f or monocyte-derived DCs by 45.7 and
31.5%, respectively. Our results bolster the understanding of
the interactions occurring in the decidual immunomodulatory
microenvironment during early pregnancy.

MATERIALS AND METHODS

Collection of Human Samples

This study was approved by the Human Research Ethics
Committee of Qilu Hospital of Shandong University
(Shandong, China). All subjects signed consent for sample
collection and subsequent analysis. First trimester decidua
tissues were collected from healthy pregnant women who
underwent artificial abortions for non-medical reasons (n = 10,
age 28.2 * 2.8 years; gestational days at sampling 49.8 + 10.2
days) and spontaneous abortion patients (n = 7, age 27.7 + 3.9
years; gestational days at sampling 54.7 + 6.4 days). All the
normal pregnancies and miscarriages were confirmed by
ultrasound and blood test. All women were non-smokers, not
on medication, and had a history of regular menstrual cycles.
Chromosomal abnormalities were excluded from the study
through analysis of chromosomal karyotype. The decidua
tissues were immediately collected into ice-cold sterile RPMI-
1640 (HyClone, USA) and transported to the laboratory within
30 min after surgery. Peripheral blood samples were donated
from healthy young women volunteers and collected by
K2EDTA-containing BD vacutainer (United Kingdom).

Isolation and Culture of Human DSCs

First trimester human DSCs were isolated and cultured as has
been previous described (20). In short, collected decidua tissues
were washed in calcium/magnesium-free Hanks balanced salt
solution (HBSS) three times and then minced into small pieces.
The minced pieces were further digested by 0.1% collagenase
type I (Sigma-Aldrich, USA) and 0.25% trypsin (Invitrogen,
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USA) for 30 min and then filtrated through a sieve (125 um). The
filtrated substances were centrifuged at 120xg for 10 minutes.
The supernatant was discarded, and the cell pellet was
resuspended by RPMI-1640 with 10% fetal bovine serum (FBS,
HyClone, USA) and seeded in culture flasks. After 1 hour the
macrophages and granulocytes that adhered to the flasks were
discarded and the supernatant was cultured overnight. On the
second day, the blood cells in the supernatant were discarded and
replaced with new complete RPMI-1640 medium. After 3-4
passages decidua cells were confirmed as vimentin positive and
cytokeratin negative and the purity was over 98%.

Generation of Human Monocyte-Derived
DCs

Human peripheral blood mononuclear cells (PBMCs) were
obtained by centrifugation with Ficoll-Paque Plus (Sigma-
Aldrich). CD14+ monocytes were isolated from PBMCs by
positive selection using anti-CD14-conjugated magnetic
microbeads (MiltenyiBiotech, Germany) according to the
manufacturer’s instructions. The purity was checked by flow
cytometry and was above 95%. To generate monocyte-derived
immature DCs (imDCs), monocytes were cultured at 1 x 10®/mL
in complete RPMI-1640 medium containing 1,000 U/mL GM-
CSF and 500 U/mL IL-4 (R&D Systems, USA) at 37°C, 5%
humidified CO,, for 5 days. To induce maturation (mDCs),
imDCs were treated with 100 ng/mL LPS (Sigma-Aldrich) for
another 48 h.

Establishment of Co-Culture System

In co-culture experiments, DSCs (5 x 10* per well) were seeded
into a 6-well flat-bottom plate with complete RPMI-1640
medium. CD14" monocytes were seeded into the Transwell
chambers (0.4-um pore size membrane for 6-well plate,
Corning) at a ratio of 1:10 (DSCs to monocytes). The
chambers were inserted into the DSC-seeded wells for further
induction of imDCs or mDCs as above described. In some
experiments anti-human G-CSF neutralizing antibody (G-CSF
NADb, 4 ug/mL, Abcam, UK) was added into the co-
culture system.

Phenotype Analysis

Surface molecule expression on DCs was measured by FITC-,
PE-, APC- and PE-Cy5-labeled monoclonal antibodies: CD1a,
CD14, CD80, CD83, CD86, HLA-DR, IL-1R1, and TIMP-3 (all
from BD Pharmingen, USA except IL-1R1 from R&D Systems,
USA). Isotype controls were performed in parallel. The
samples were acquired on a FACSCalibur flow cytometer
(BD Biosciences, USA) and analyzed by FlowJo software
(FlowJo, USA).

Cytokines Analysis by ELISA

Cytokines including IL-1f, IL-4, IL-6, IL-8, IL-10, IL-12(p70),
IFN-y, TNF-a, G-CSF, MCP-1, and MIP-1B in the supernatant
were quantified using the commercial ELISA kit (all from R&D
Systems except G-CSF from Elabscience Biotech, China),
according to the manufacturer’s instructions.

Determination of T-Cell Polarization

CD4'T lymphocytes were isolated from PBMC by a naive
CD4'T cell isolation kit (Miltenyi Biotec) in accordance with
the manufacturer’s instructions. Syngeneic mixed lymphocyte
reactions were performed based on previous study with some
modifications (20). In short, naive CD4" T lymphocytes (5 x 10°
per well) isolated from peripheral blood were seeded into 24-well
flat bottom plate in complete RPMI 1640 medium containing
soluble anti-human CD3 mAb (1 pg/mL, R&D Systems, USA)
and rhIL-2 (20 U/mL, R&D Systems, USA) and co-cultured with
syngeneic DCs (1 x 10° per well) of different treatment groups
for 5 days. The supernatants were harvested and assessed for
cytokine production. For intracellular IFN-y and IL-4 staining, T
cells were re-stimulated with 10 ng/mL phorbol myristate acetate
(PMA) and 1 ug/mL ionomycin in the presence of 10 pug/mL
brefeldin A (all Sigma-Aldrich) for 5-6 h. Cells were then fixed
(2% paraformaldehyde), permeabilized (0.5% saponin), and
analyzed by flow cytometry using PE-conjugated anti-IL-4 and
IEN-vy antibodies (eBioscience, USA).

Statistical Analysis

Data were achieved from three independent experiments and
presented as mean + SD. Two-tails Student’s t test was conducted
for statistical comparisons. All statistical analyses were conducted
using GraphPad Prism Version 8.0 (GraphPad Software, USA). P
value of less than 0.05 was considered statistically significant.

RESULTS

Decidual Stromal Cells Alter the
Phenotypic Characteristics of Immature
Monocyte-Derived DCs

In order to investigate whether decidual stromal cells (DSCs)
regulate the differentiation from monocytes to DCs and their
maturation, CD14" monocytes isolated from PBMC were
cultivated with DSCs from healthy early pregnancy women in
the presence of GM-CSF/IL-4. Monocytes-derived immature
DCs (imDCs) were collected after 5 days cultivation and the
expression of surface markers of DCs analyzed by flow
cytometry. As Figures 1A, B show, a significant change was
observed in the expression of CDla and CD14. Control imDCs
were mostly negative for CD14 (4.25 + 1.33%), and the majority
were positive for CD1a expression (86.30 + 7.65%). Significantly
higher percentages of CD1la” and CD14" subpopulations were
found in imDCs cultivated with DSCs (55.08 + 4.64% for CDla
and 34.08 + 5.04% for CD14).

We next explored the expression of major histocompatibility
complex (MHC) class II molecules and costimulatory molecules,
such as CD80, CD83, and CD86 at the surface of imDCs. Here
we found that a significant decrease of CD80+ percentage in
imDCs co-cultured with DSCs (34.36 + 4.07% vs. 4.44 + 0.94%).
A similar decrease was also found in CD86 expression (89.52 +
3.07% vs. 54.90 = 1.97%, Figure 1C). A significant decrease of
expression intensity of CD80, as determined by mean
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with SD (P < 0.01).
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FIGURE 1 | DSCs modulate phenotypes of immature monocyte-derived DCs. (A) The expression of CD1a and CD14 on immature monocyte-derived DCs cultivated
with DSCs (imDC+DSC) or not was analyzed by flow cytometry and displayed in the form of contour map. A representative result from 5 independent experiments
was shown. (B) Percentages of CD1a* and CD14* subpopulation in total imDCs. (C) The expression of co-stimulatory factors and HLA-DR on imDCs cultivated with
DSCs or not was analyzed by flow cytometry. A representative result from 5 independent experiments was shown. Isotype control was shown as gray filled
histogram and indicated molecules were shown as open histogram. (D) The mean fluorescence intensity (MFIl) of CD80 was presented (after Log transformation).
(E) TIMP-3 expression on imDCs cultivated with DSCs or not was analyzed by flow cytometry, and a representative result from five independent experiments was
shown. (F) MFI of TIMP-3 was presented (after Log transformation). All experiments were independently conducted for 5 times, and data were presented as mean
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fluorescence intensity (MFI), was found in DSC-cultivated
imDCs, compared with controls (0.85 + 0.08 vs. 0.61 * 0.08
after Log transformation, Figure 1D).

We further analyzed TIMP-3 expression in DSC-conditioned
imDCs, as TIMP-3 has been demonstrated to be involved in the
differentiation of DCs by our previous study (20). We found that
both the positive percentage (32.74 + 5.81% vs. 60.54 + 4.21%) and
expression intensity (0.83 * 0.01 vs. 1.34 + 0.01 after Log
transformation) of TIMP-3 were significantly up-regulated in
DSC-conditioned imDCs compared with controls (Figures 1E, F).

DSC-Conditioned Mature DCs

Display Altered Cytokine Profiles

and Th2 Priming Potential

We generated mature DCs (mDCs) by stimulating imDCs with LPS
(100 ng/mL) for 48 h. First, we analyzed the phenotypes of mDCs
and found no significant change in most surface markers between
the control and the DSC-conditioned groups (Data not shown).
Notably, we found a significant increase of positive percentage
(17.58 + 2.63% vs. 33.44 + 5.01%) of TIMP-3 in DSC-conditioned
mDCs (Figure 2A). Moreover, although CD86 was positive on
almost all mDCs (Figure 2A), we observed an increase of
proportion of CD86'" subset in DSC-conditioned mDCs
(13.54 £ 2.80% vs. 29.52 + 8.31%, Figure 2B), which indicated a
less mature status.

We went on to explore whether cultivation with DSCs would
modulate the secretion profile of DCs. mDCs were separated
from DSCs after period of cultivation, washed and cultured alone
for another 24 h, and then the conditioned medium (CM) was
collected. We found significant up-regulation of IL-1f, IL-6, and
IL-10 and down-regulation of IL-8 and TNF-a in CM of DSC-
conditioned mDCs (Figure 2C).

We further tested the T cells priming potential of DCs by
stimulating naive T cells with mDCs from the control or the
DSC-conditioned groups. Intracellular staining assays showed
that T cells primed by control mDCs exhibited a higher
percentage of IFN-y-producing groups than IL-4-producing
groups, indicating a Thl priming potential for control mDCs
(Figure 2D). In contrast, T cells primed by DSC-conditioned
mDCs exhibited a Th2 profile, supported by a decrease of IFN-y-
producing percentage and an increase of IL-4-producing
percentage (Figure 2D). The Th2 priming potential was also
revealed, as IFN-y was significantly decreased (10.12 + 2.27 vs.
6.15 + 1.08 ng/mL) and IL-4 was significantly increased (29.06 +
5.02 vs. 53.42 + 19.90 pg/mL) in the co-cultured supernatant
between naive T cells and DSC-conditioned mDCs (Figure 2E).

G-CSF Is Partially Involved in DSC-
Induced Phenotype and Function
Modulation of Monocyte-Derived DCs

We speculated that soluble factors might be involved in the
modulation of DSCs on conditioning monocyte-derived DCs.
Therefore, we analyzed the concentrations of some factors in the
co-cultured supernatant—which have been proven to be involved

in the differentiation and maturation of DCs—including G-CSF,
MCP-1, and MIP-1P. Of the three factors, only G-CSF showed a

substantial up-regulation (0.06 + 0.01 ng/mL in imDC vs. 5.03 +
1.78 ng/mL in imDC+DSC and 0.12 + 0.01 ng/mL in mDC vs.
12.27 + 3.25 ng/mL in mDC+DSC) in the co-cultured supernatant
compared to CM of DCs (Figures 3A-C).

To test the roles of G-CSF in the conditioning of monocyte-
derived DCs by DSCs, we added anti-G-CSF neutralizing
antibody (NAb) into the co-cultured system. As Figure 3D
shows, the presence of G-CSF NAb recovered the expression of
surface markers of imDCs. The expression of CD14, CD86, and
TIMP-3 were restored in the presence of G-CSF NAb, whereas
the expression of CDla and CD80 were also significantly
elevated. Moreover, we also found that G-CSF NAb greatly
inhibited IL-1f, IL-6, and IL-10 expression of mDCs
stimulated by DSCs. However, G-CSF NAb showed no
significant effect on IL-8 and TNF-o. (Figure 3E). Finally, we
investigated whether the presence of G-CSF NAb in the co-
culture system would regulate the subsequent T cells priming
potential of DCs. As shown by Figure 3F, in the mixed
lymphocyte reaction between naive T cells and G-CSF NAb
previously treated DCs, the concentrations of IFN-y and IL-4
were partly restored.

DC-Derived IL-1B Is Up-Regulated by
DSCs During the Monocyte-imDC Phase
and Promotes G-CSF Production

In the above results, we noticed that DCs conditioned by DSCs
secreted a significantly higher level of IL-1B, which had been
proved to stimulate G-CSF production (21). Similarly, we found
that the presence of an IL-1P neutralizing antibody significantly
inhibited G-CSF production by 41.01% in imDCs and by 42.00%
in mDCs in the co-cultured system (Figure 4A). We also
demonstrated that both imDCs and mDCs produce high levels
of IL-1f3 (288.20 + 59.25 pg/mL in imDCs and 1008.00 + 303.10
pg/mL in mDCs), whereas the production of IL-1f3 by DSCs was
scarce (25.74 + 2.61 pg/mL, Figure 4B).

Interestingly, we found that when DSCs were added into the
co-culture system at day 5 (Figures 4C, E: DSC-5")—that is,
the CD14" monocytes had been transformed into imDCs—
their promoting effect on IL-1f production for both imDCs and
mDCs was greatly compromised (Figures 4D, F). On the
contrary, when DSCs were added at day 1 and removed from
the co-culture system at day 3 or day 5, respectively (Figure
4G), the levels of IL-1P secreted by imDCs were no difference to
those secreted by DSC-conditioned ones (Figure 4H). As for
mDCs, DSCs withdraw caused a milder but not significant
compromise of IL-1B production in response to LPS at day 7
(Figures 41, J).

DSCs From Patients With Spontaneous
Abortion Produce Lower Levels of G-CSF
in Response to Exogenous IL-1 and
Conditioning of DCs

G-CSF administration has been used as a promising treatment
option for patients with SA. Therefore, we explored whether the
G-CSF secretory capacity of DSCs was compromised in patients
with SA. DSCs, collected from patients with SA (n = 7) and
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mDGCs, cultivated with DSCs in the presence of G-CSF neutralizing antibody (NAb) or not. (F) mDCs, cultivated with DSCs in the presence of G-CSF neutralizing
antibody (NAb) or not, were incubated with syngeneic naive CD4™T cells for 5 days. Concentrations of IFN-y and IL-4 in the supernatant of the mixed lymphocyte
reaction between DCs and T cells were shown. All experiments were conducted for five times independently, and data were presented as mean with SD (*P < 0.05;
P < 0.01).

healthy pregnant women in their first trimester (n = 10), were  than healthy pregnant women. However, DSCs from patients
cultivated alone with exogenous IL-13 or monocyte-derived DCs ~ with SA secreted significantly less G-CSF in response to
for 7 days, respectively. As shown in Figure 5A, the basic level of ~ exogenous rhIL-1f than those from the healthy controls
G-CSF secreted by DSCs from patients with SA was no different ~ (1.51 £ 0.79 vs. 2.78 + 1.33 ng/mL, Figure 5B). Moreover,
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FIGURE 4 | Continued

when cultivated with monocyte-derived DCs, the upregulation of
G-CSF production by DSCs from patients with SA was further
compromised, compared with those from healthy pregnant
women (Figure 5C, 6.59 + 1.70 vs. 9.62 + 2.77 ng/mL).

The lower concentration of G-CSF in supernatant of SA-DSCs
under treatment of rhIL-1[3 was not caused by different cell number,
as the proliferation between DSCs from healthy pregnancy and SA
patients showed no difference (Supplemental Figure 1A), and

receptor, IL-1R1, also showed no difference between two types of
DSCs (Supplemental Figure 1C).

DISCUSSION

The decidua plays important roles in embryo implantation and
maintenance during early pregnancy by forming a unique
tolerogenic microenvironment. The maternal-fetal interface
contains several types of immunocompetent cells, and their
functions are closely regulated by the interactions between
each other, or with non-immunocytes. In the present study, we
demonstrate that human decidual stromal cells (DSCs) in early
pregnancy can modulate the phenotype and functions of
monocyte-derived DCs through G-CSF, which promotes the
induction of maternal-fetal tolerance. By using indirect in-vitro
co-culture model, we found that monocyte-derived DCs
cultivated with DSCs possess a higher percentage of CDla”
and CD14" subpopulations. DSC-conditioned DCs also express
lower levels of maturation markers, CD80, CD86, and higher
levels of TIMP-3. Altered cytokine profiles are found in DSC-
conditioned DCs associated with Th2-priming potential. Partly
stimulated by DC-derived IL-1PB, the levels of G-CSF are
strikingly elevated in the co-culture system. The upregulation
of G-CSF is in turn, involved in the reprogramming of DCs.
Finally, we found that DSCs from patients with spontaneous
abortion (SA) produce significantly lower levels of G-CSF
compared to healthy pregnant women in response to
exogenous IL-1 or monocyte-derived DCs.

The phenotypes of decidual DCs is a complex and
controversial topic, possibly because they are composed of
multiple heterogeneous subpopulations. Nevertheless, most
studies agree that decidual DCs exhibit an immature
phenotype, with little or no expression of CD1la and reduced
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FIGURE 5 | DSCs from SA patients showed low G-CSF production in response to rhiL-1p and DCs condition. DSCs were collected from healthy early pregnant
women (n = 10) and patients with spontaneous abortion (SA, n = 7). (A) Same amount of DSCs from two groups were cultured for 7 days and the conditioned
medium were collected. G-CSF concentration in the conditioned medium was measured by ELISA. (B) DSCs from healthy pregnant women and SA patients were
cultured for 7 days with the treatment of recombinant human IL-18 (rhIL-1f) for 7 days and G-CSF concentration was measured. Dash line indicated average G-CSF
concentration in the conditioned medium of DSCs before rhiL-1 stimulation. (C) DSCs from healthy pregnant women and SA patients were co-cultured with mDCs
from healthy women for 7 days, and G-CSF concentration was measured. Data were presented as mean with SD (*P < 0.05).

expression of CD80 and CD86. In the present study, we find that
DSC-conditioned DCs showed immature and tolerogenic
features. First, DSC-conditioned DCs display significant
amplification of the CD14" and decrease of the CDla"
subpopulations, exhibiting a phenotype similar to intra-
decidual antigen presenting cells (APCs) in situ (22, 23).
Second, DSC-conditioned DCs show a significant decrease in
surface expression of co-stimulatory factors (CD80 and CD86)
and HLA-DR. As the expression intensity of co-stimulatory
factors are greatly enhanced during the maturation of DCs,
this decreased expression suggested an immature status. Third,
DSC-conditioned DCs secret reduced levels of pro-inflammatory
cytokines IL-8 and TNF-o, and enhanced levels of anti-
inflammatory cytokine IL-10. Last, DSC-conditioned DCs
stimulate T cells to produce less Thl-type cytokine (IFN-y) but
more Th2-type cytokines (IL-4), indicating the Th2 priming
potential of DSC-conditioned DCs.

Our previous study found that surface expression of TIMP-3
effectively suppressed CD86 expression and IL-12 production of
DCs, leading to a Th2 polarization of naive T cells (20). In the
present study, we analyze the expression of TIMP-3 in DSC-
conditioned DCs and find that TIMP-3 is significantly
upregulated after co-culture with DSCs. Notably in our
previous studies, although the upregulation of TIMP-3
occurred during the differentiation from monocytes to imDCs,
it only caused expression changes of co-stimulatory factors,
MHC molecules, and secretion of cytokines after LPS and
TNF-a priming (20). In the present study, the upregulation of
TIMP-3 expression is observed in both imDCs and mDCs. These
observations indicate that enhanced TIMP-3 expression may
regulate the functions of DSC-conditioned DCs during the
maturation stage, a possibility that should be examined in
future studies. Moreover, the mechanisms of TIMP-3 on the
regulation of functions of DSC-conditioned DCs also needs
detailed investigation.

The underlying mechanisms by which DSCs modulate the
differentiation and functions of DCs are largely unknown. In the
present study, we found that G-CSF is strikingly upregulated in a
co-culture system of DSCs and monocyte-derived DCs. G-CSF and
its receptors are expressed on both the fetal (cytotrophoblasts and
syncytiotrophoblasts) and the maternal (DSCs, endometrial glands
and epithelium) sides (24). The local production of G-CSF in the
fetal-maternal interface modulates the cytotoxicity of uterine nature
killer cells (NKs) and reduces their pro-inflammatory cytokines
production (15). Our study demonstrates that the presence of a G-
CSF neutralizing antibody partly restores the phenotype of DSC-
conditioned DC, with decreased CD1a” and CD14" subpopulation
percentages, and increased CD80 and CD86 expression. Moreover,
G-CSF NAD also recovers the cytokine profiles of DCs. To our
knowledge, this is the first report showing that G-CSF regulates the
functions of DCs in maternal-fetal interface.

During the analysis of cytokine secretion profiles of DSC-
conditioned DCs, we found a significant enhancement of IL-1f3
regulated by G-CSF. IL-1p is well-recognized as key regulator of
the inflammatory response and is closely involved in the
reproduction process. Previous studies have shown that
repeated injections of an antagonist of IL-1 receptor into
pregnant mice prior to implantation causes implantation
failure (25, 26). In humans, women with habitual abortion
show decreased serum levels of IL-1B (27). Moreover,
detectable serum IL-1P levels at the start of in vitro fertilization
(IVF) cycle is associated with a successful IVF outcome (28). Our
results suggest a potential link between the controllable
inflammatory process and successful implantation. DCs act as
one of the major APCs that trigger immune reaction and regulate
the intensity of the inflammatory response. Furthermore,
previous studies have shown that endometrial biopsy induces
DCs accumulation, elevates pro-inflammatory cytokine secretion
and promotes successful implantation in IVF patients (29). Our
results may reflect a novel mechanism that facilitates pregnancy
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outcome as mediated by high G-CSF during early stage
of pregnancy.

It should also be noted that IL-1B may regulate G-CSF
production. A previous study has shown that upregulation of G-
CSF in chorio-decidua during chorioamnionitis is IL-13 dependent
(30). In our present study, we also demonstrated this positive
feedback interaction by showing that supplementation of IL-13
NAb inhibited G-CSF concentration in the co-culture supernatant.
According to previous works, G-CSF and IL-1B may work in
concert to establishment a special immune niche that facilitates
embryo implantation. For example, one study demonstrated that
IL-1B induces chemoattractant CXCL1 (31) and CXCL8 (30)
expression in DSCs. As their major receptor, CXCR2, is highly
expressed in the circulating monocytes of humans, we speculate that
IL-1B overexpression in the first-trimester decidua promotes
monocytes recruitment into the pregnancy site. High G-CSF level
in decidua will further promote the differentiation of recruited
monocyte into DCs with immunoregulatory functions, which
facilitate embryo implantation and maintenance.

G-CSF has been applied as innovative therapy for early
pregnancy disorders, such as repetitive implantation failures
and recurrent spontaneous abortions (RSAs). Some clinical
trials have been conducted and show promising results (32,
33). However, researchers argue about the indications for G-
CSF treatment, as there is no precise definition of an
“implantative G-CSF deficiency syndrome” (14). One possible
solution has used KIR typing from uterine NK cells (uNK), with
the hypothesis that G-CSF dysfunction leads to the disruption of
activating interactions (16, 34). This solution is still questionable
however, especially when considering that tissue-infiltrated
immunocytes are under the effects of variable factors and G-
CSF may not be the primary factor. In the last part of our study,
we analyzed G-CSF expression of DSCs from healthy pregnant
women and SA patients. It was surprising to find that the basal
secretion of G-CSF of DSCs from SA patients were no different
with those from healthy pregnancy women. However, DSCs
from SA patients produced significantly less G-CSF in
response to exogenous IL-1B and DCs stimulation. Our
findings suggest that the pregnancy interface of SA patients
may not undergo an absolute deficiency of G-CSF but
exhibit compromised G-CSF secretion under certain
stimulations. The compromise appear after 1 day of IL-1B
treatment and no difference of expression of IL-1f receptor,
IL-1R1, was found. Therefore whether this compromise comes
from aberrant intracellular signaling pathways or imbalanced
cytokine profile needs further investigation. Demonstrating the
relevant mechanisms would bring strong support for the
supplementation of G-CSF as reproductive medicine and may
also shed light on the establishment of a more direct and reliable
indication criteria.

In conclusion, our results suggest that DSCs regulate the
phenotypes and functions of monocyte-derived DCs, and that
this effect is mediated by a unique positive feedback interaction
between G-CSF and IL-1P. Our study provides new evidence for
the regulatory mechanisms behind the establishment of
maternal-fetal tolerance at the early stage of pregnancy and

brings new insight into the potential clinical value of G-CSF in
pregnancy disorders.
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