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Sphingosine kinase 1 (SPHK1) is a crucial molecule that catalyzes sphingosine to synthesize
sphingosine-1-phosphate (S1P), facilitating cell survival signaling. Pyroptosis is a perplexing
inflammatory mode of cell death primarily triggered by caspase-1, evoked by the NLRP3
inflammasome. Sphingosine is identified as a danger-associated molecular pattern (DAMP),
which activates the NLRP3 inflammasome assembly and induces the pyroptosis. It has been
demonstrated that macrophages play a pro-tumorigenic role and are closely associated with
tumor progression. Attenuation of SPHK1 activity contributes significantly to macrophage
pyroptosis and tumor inhibition. Calcium and integrin-binding protein 1 (CIB1) plays an
important role in the translocation of SPHK1 from the cytoplasm to the plasma membrane,
whereas CIB2 blocks the subcellular trafficking of SPHK1. Therefore, knockout of CIB1 or
over-expression of CIB2 will result in sphingosine accumulation and contribute significantly to
cancer treatment by several approaches. First, it directly provokes cancer cell apoptosis or
triggers robust anti-tumor immunity by pyroptosis-induced inflammation. Second, it could
restrain SPHK1 translocation from the cytoplasm to the plasma membrane and further
pyroptosis, which not only drive M2 macrophages death but also facilitate tumor
microenvironment inflammation as well as the further release of sphingosine from damaged
macrophages. The perspective might provide novel insight into the association between
SPHK1 and pyroptosis and suggest the potential target for cancer therapy.

Keywords: spingosine kinase 1, pyroptosis, calcium and integrin-binding protein 1, cancer, sphingosine-
1-phosphate
INTRODUCTION

Sphingolipids play increasingly important roles in the regulation of cell fate determination.
Sphingosine kinase 1 (SPHK1) is a pivotal kinase that catalyzes ceramide and sphingosine (Sph) to
yield a key sphingolipid signaling mediator sphingosine-1-phosphate (S1P), which stimulates multiple
physiological processes, including cell growth, proliferation, survival, inflammation, migration,
angiogenesis, etc. (1–4). Sphingosine kinase 2 (SPHK2), an isozyme of SPHK1, also has similar
biological activity (Table 1). Conversely, ceramide, a second messenger in sphingolipid metabolism,
triggers anti-proliferative responses involving growth inhibition, apoptosis, differentiation, and
senescence (17, 18). Sph, generated from ceramide, also involves cell growth arrest and apoptosis (19).
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Zychlinsky and colleagues observed a lytic form of cell death
in Shigella flexneri–infected macrophages referred to pyroptosis
(20, 21). Cumulating evidence has acknowledged that pyroptosis
is very perplexing, appears to be multifactorial, and is a pattern of
inflammatory programmed cell death pathway activated by
caspase-1, caspase-4, and caspase-5, or caspase-11. It is a
pathway of cell death characterized by pore formation in the
plasma membrane, cell swelling and rupture of the membrane,
and massive leakage of cytosolic contents (22, 23). Caspase-1, a
multifunctional inflammatory mediator, manages host defense
against bacteria, tissue repair, tumorigenesis, metabolism, and
membrane biogenesis (24). Caspase-1 is evoked by NLRP3 (Nod-
like Receptor Protein 3) inflammasome, which is a multiprotein
complex consisting of NLRP3 (a cytosolic mediator molecule),
adaptor protein ASC (an apoptosis-associated speck-like protein
containing caspase recruitment activation domain), and an
effector molecule cysteine protease pro-caspase-1. These
perplexing particles would be generated on exposure to cellular
perturbations of intracellular microbial infections (21, 25–27).
Moreover, in macrophages, priming and activation are the two
essential steps for NLRP3 inflammasome activation. The priming
stage is elicited by inflammatory stimuli such as TLR4 agonists,
which initiates NF-kB-induced NLRP3 and pro-IL-1b
expression by resulting in transcriptional regulation of many
inflammatory genes, involving cytokines and inflammasome
components, and the activation step is driven by DAMPs
(danger-associated molecular patterns) and PAMPs (pathogen-
related molecular patterns), thereby facilitating NLRP3
inflammasome formation and caspase-1-induced pyroptosis
(28–31). On activation of NLRP3 inflammasome, caspase-1
mediates macrophages pyroptosis, which is controlled by the
N-terminal domain of gasdermin D (GSDMD) via assembling
channels in the cell membrane and activating pro-IL-1b and pro-
IL-18 for their secretion from the cells (Figure 1) (32).

A new mechanism of macrophage pyroptosis can be triggered
by NETs (neutrophil extracellular trap) released by HMGB1
(high-mobility group box1) in sepsis, which can release nuclear
contents of the PMN (polymorphonuclear neutrophils) into the
extracellular space to trap and kill the bacteria in responding to
pathogens infection (33). However, lipopolysaccharide or Gram-
negative bacteria can trigger pyroptosis known as NETosis that
in neutrophils, activating GSDMD cause neutrophils pyroptosis
through caspase-4/11 noncanonical inflammasome signal
pathway (34). Furthermore, pyroptosis has an important
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influence on the progress of many different neoplasms. In
particular, tri-negative breast cancer, Barrett’s esophageal
cancer, and A549 cells can induce the occurrence of pyroptosis
via caspase-1 canonical inflammasome signal pathway
stimulators (35, 36). Especially in HCC, the expression level of
NLRP3, caspase-1, IL-1b, and IL-18 was significantly attenuated
compared with that in adjacent normal tissues. Noticeably, there
was a negative correlation between the pathological progress of
HCC and the expression level of NLRP3 inflammasome (37–39).

Pyroptosis is a complex cell death mechanism involving multiple
stimulators, pathway in which cell cytokines and inflammatory
cytokines take part. Therefore, considering pyroptosis facilitation of
tumor treatment requires more profound exploration. There is a
balance between pro- and anti-tumorigenic roles of pyroptosis. On
the one hand, pyroptosis can yield a certain microenvironment for
tumorigenesis, tumor growth, and progression. On the other hand,
the induction of TAMs pyroptosis can arrest tumor cell growth and
development. Pyroptosis of cancer cells is also believed a potential
tumor treatment approach. Thus, pro- and anti-tumorigenic roles
of pyroptosis need further exploration owning to the double-edged
sword of pyroptosis. In this study, the relationship of sphingosine
kinase 1 on pyroptosis as it provides a new strategy for tumor
therapy was discussed.
SPH ACTING AS DAMP CONTRIBUTES TO
THE PYROPTOSIS

Luheshi et al. identified that both sphingosine and sphingosine
analog, FTY720 can induce NLRP3-dependent activation of
caspase-1 and secretion of IL-1b from LPS-primed peritoneal
macrophages in vitro, which was contributed to lysosomal
membrane rupture, demonstrated by the translocation of
cathepsin B from lysosomes to the cytosol (40). Moreover, it is
revealed that cathepsin B is diffuse into the cytosol when lysosome is
disrupted, accelerating a conversion in the specificity of the enzyme
from an exopeptidase to an endopeptidase, efficiently cleaving
SPHK1 at various sites, and leading to loss of the protein and
subsequent frustration of SPHK1 activity (41). Therefore, Sph
inducing lysosomal membrane rupture and resulting in the
translocation of cathepsin B to the cytosol from lysosomes confers
two effects. On the one hand, cathepsin B in cytoplasm cleaves
SPHK1 impairing the conversion into S1P and accumulation of
Sph; on the other hand, cumulative Sph acts as a DAMP, activating
TABLE 1 | The comparison between SPHK1 and SPHK2.

Name SPHK1 SPHK2 References

Location Cell membrane
Endosome membrane
Nucleus

Nucleus, Cytoplasm (5–15)

Transport CIB1/CIB2 (6, 7)
Metabolism Cleavage of sphingomyelin by sphingomyelinase generates ceramide that can promote apoptosis, cell-cycle arrest, and cellular

senescence, and then ceramide can be cleaved by ceramidase to produce sphingosine that can be phosphorylated by SPHK1/2 to
form S1P.

(4)

Potential
Mechanism

Decreases intracellular ceramide levels, enhances cell growth, and
inhibits apoptosis.

Increases intracellular ceramide levels, inhibits cell growth, and
enhances apoptosis.

(16)
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NLRP3 inflammasome assembly, thereby inducing pyroptosis.
There are two common ways for macrophages to be activated: IL-
4 mediated alternative macrophage activation, which is known as
alternatively activated (M2) macrophages, and classically activated
(M1) macrophages activated by microbe products or PAMPs (42–
44). Recently researchers have characterized that tumor-associated
macrophages (TAMs, M2-like functions, and phenotype) permeate
into tumor tissues in large numbers, and macrophages have a pro-
tumorigenic role closely associated with tumor promotion (45).
Thus, inhibiting the enzymatic activity of SPHK1 might contribute
greatly to TAMs pyroptosis to promote anti-tumor progression.
CIB1 MODULATES THE TRANSLOCATION
OF SPHK1

Calcium and integrin-binding protein 1 (CIB1), first discovered in
1997 as a novel interacting protein of the integrin aIIb, is a calcium
Frontiers in Immunology | www.frontiersin.org 3
modulating molecule, which is implicated in multiple cellular
processes, including calcium signaling, cell growth, and
proliferation, migration, adhesion, and apoptosis (46, 47). The
myristoyl group of CIB1 is sequestered into a hydrophobic pocket
in the protein’s absence of intracellular Ca2+. Ca2+ binding
promotes topology changes enabling two effects as follows: first
in conferring the association between protein and partners, and
second to provoke the appearance of the myristoyl group from its
original buried region, targeting the protein and any nascent
associated interacting partner to intracellular membranes.
Notably, CIB1 is essential for the agonist-induced migration of
SPHK1 from the cytoplasm to the plasma membrane (5, 48).
Jarman et al. explored how either knockdown of CIB1 or a
dominant-negative CIB1 could restrain the agonist-dependent
redistribution of SPHK1 (5). Zhu et al. also confirmed that over-
expression of CIB1 contributes high distribution of SPHK1 to the
plasma membrane, which was verified by boosted plasma
membrane-associated SPHK1 activity, and attenuates the
FIGURE 1 | Ceramide, primarily located in the endoplasmic reticulum membrane, generates sphingosine (Sph) by ceramidase. Both ceramide and Sph could
contribute to cell apoptosis. On the one hand, Sph migrates to the cytomembrane from the endoplasmic reticulum (ER) membrane and produces sphingosine-1-
phosphate (S1P) by sphingosine kinase 1 (SPHK1). In contrast to the apoptotic effect of Sph, S1P could facilitate cell survival signaling. On the other hand, SPHK1
subcellular localization was regulated by calcium and integrin-binding protein 1 (CIB1) and CIB2. It is believed that the translocation of SPHK1 from the cytoplasm to
the cytomembrane is dependent on CIB1, whereas CIB2 competes with CIB1 to binds to SPHK1, resulting in the cytoplasm retention of SPHK1 and the inhibition of
its enzymatic activity. Additionally, the accumulation of Sph in ER acts as DAMPs to activate NLRP3 and the oligomeric RLRP3 inflammasome, further causing
caspase-1 homo activation and activated caspase-1 cleave gasdermin D to form N-terminal and pro-IL-1b/pro-IL-18 to yield IL-1b/IL-18, respectively. Then
N-terminal of gasdermin D will form the channels in the plasma membrane causing massive leakage of cytosolic contents including IL-1b and IL-18, which leads to
tumor microenvironment inflammation in that IL-1b can activate primary T cells and memory T cells, IL-18 can promote interferon (IFN)-g production in TH1 cells, NK
cells and cytotoxic T cells, boost the development of TH2 cells, and improve local inflammation response.
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synthesis of S1P in CIB1 over-expressing cells (6). Although both
CIB1 and CIB2 bind to SPHK1 on the a8 helix of SPHK1, CIB2
lacks the Ca2+-myristoyl switch function. Contrary to CIB1, CIB2
blocks the translocation of SPHK1 to the cell membrane and
undermines its subsequent signaling. The interaction between
CIB2 and SPHK1 is independent of Ca2+, or Mg2+, and
myristoylation of CIB2 does not affect their association (6, 7). It
is probable that CIB2 competitively binds to SPHK1 with CIB1
and gives rise to the retention of SPHK1 in the cytoplasm.
SUMMARY AND PROSPECT

Thus, a proposal that facilitated Sph release in tumor
microenvironment might be an effective treatment scheme.
Baroja-Mazo et al. found that NLRP3 and ASC complexes
released from pyroptosis cells functioned as danger signals
giving rise to amplifying inflammation by improving the
activation of extracellular caspase-1 and in surrounding
macrophages following internalization of the particles (16).

In summary, mutating CIB1 or over-expression of CIB2
resulting in Sph accumulation might contribute twofold to
cancer therapy: in cancer cells, it directly provokes cell apoptosis,
or triggers robust anti-tumor immunity by pyroptosis-induced
inflammation as well as a combination with some potential anti-
tumor drugs; in M2 macrophages, it could restrict SPHK1
redistribution from cytoplasm to cytomembrane and trigger
Frontiers in Immunology | www.frontiersin.org 4
subsequent pyroptosis, which not only causes M2 macrophages
death and play an essential role in anti-tumor progression, but also
facilitates both tumor microenvironment inflammation and Sph
leakage from damaged macrophages. Together, our review
might provide insight into the close association between
SPHK1 and pyroptosis and contribute to tumor treatment’s
potential strategy.
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30. Krześniak M, Zajkowicz A, Gdowicz-Kłosok A, Głowala-Kosińska M, Łasut-
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