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Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in
COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme
heparanase contributes to vascular leakage and inflammation. Low molecular weight
heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase
contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by
LMWH. To test this hypothesis, heparanase activity and heparan sulfate levels were
measured in plasma of healthy controls (n = 10) and COVID-19 patients (n = 48). Plasma
heparanase activity and heparan sulfate levels were significantly elevated in COVID-19
patients. Heparanase activity was associated with disease severity including the need
for intensive care, lactate dehydrogenase levels, and creatinine levels. Use of
prophylactic LMWH in non-ICU patients was associated with a reduced heparanase
activity. Since there is no other clinically applied heparanase inhibitor currently available,
therapeutic treatment of COVID-19 patients with low molecular weight heparins should
be explored.
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INTRODUCTION

The coronavirus disease-2019 (COVID-19) pandemic is caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (1). Severe COVID-19 usually manifests as pneumonitis
or acute respiratory distress syndrome (ARDS) (2, 3). Studies
showed that upon hospital admission 59% of COVID-19 patients
had proteinuria (4), and 22% of the non-ventilated patients and
90% of the ventilated patients developed acute kidney injury
(AKI) (5, 6).

Endothelial barrier function is crucial in the regulation of
fluid and protein extravasation, particularly in the lungs (7, 8)
and in the kidneys (9, 10). An important role for endothelial cell
dysfunction in the pathogenesis of the complications of COVID-
19 has been proposed by several studies (11, 12). As pulmonary
edema occurs when fluid leaks into alveoli, dysfunction of the
endothelium is likely to contribute to pulmonary edema in
COVID-19. Furthermore, it has been well established that
proteinuria occurs when the endothelial barrier function in the
glomerulus is compromised (9, 10, 13).

Endothelial cells are covered with a thick layer of negatively
charged glycosaminoglycans (GAGs), termed the glycocalyx.
Heparan sulfate (HS) is the predominant sulfated GAG in the
glycocalyx. HS contributes to the endothelial charge-dependent
barrier function due to its negative charge (14). Degradation of
HS by heparanase (HPSE), the only known mammalian HS-
degrading enzyme, disrupts the endothelial glycocalyx and
subsequent loss of endothelial barrier function, as observed in
ARDS and proteinuric kidney diseases (7, 15–17). In addition to
compromising barrier function, HPSE generates a pro-
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inflammatory glycocalyx that promotes the binding of
chemokines, cytokines, and leukocytes to the endothelial cell
surface (18). Inhibition of HPSE and/or HPSE deficiency is
beneficial in experimental lung and kidney diseases (7, 15–17,
19). Notably, heparins and low molecular weight heparins
(LMWH) that have been suggested to be beneficial for
COVID-19 patients (20), are potent inhibitors of HPSE activity
(21, 22).

Taken together, we hypothesize that increased HPSE activity
is one of the driving forces in severe COVID-19 manifestations
and that HPSE may be inhibited by the use of LMWH in
COVID-19.
METHODS

Human Samples, Demographics, and
Baseline Characteristics
This study was performed according to the latest version of the
declaration of Helsinki and guidelines for good clinical practice.
The local independent ethical committee approved the study
protocol (CMO 2020-6344, CMO 2020-6359, CMO 2016-2923).
All patients admitted to the Radboud University Medical Center
(Radboudumc) with a PCR-proven SARS-CoV-2 infection was
asked for informed consent for participation in this study. After
obtaining informed consent, ethylenediaminetetraacetic acid
(EDTA) blood was collected and centrifuged for 10 min at
2,954 xg at room temperature (RT), plasma was collected and
stored at −80°C for later analysis. For most patients in the non-
GRAPHICAL ABSTRACT | Heparin and low molecular weight heparins (LMWH) inhibit heparanase activity which is associated with disease severity in COVID-19.
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ICU group, the blood samples collected between day 2 and 4
upon hospitalization were selected for this study except for the
patients in the LMWH- group for whom the sample had to be
collected immediately upon hospital admission prior to initiation
of any standard medical intervention. Demographic data,
medical history, and clinical laboratory measurements were
collected from the medical file and processed in encoded form
in electronic case report forms using Castor electronic data
capture (Castor EDC, Amsterdam, Netherlands).

HPSE Activity Assay
The activity of HPSE in EDTA plasma was determined by an in-
house developed activity assay, which was optimized by the use
of recombinant active human HPSE (Bio-techne, Abingdon,
United Kingdom, Cat#7570-GH-005). In detail, Nunc
maxisorp flat bottom 96 plates (Thermo scientific, Breda,
Netherlands) were coated with 10 ug/ml heparan sulfate from
bovine kidney (HSBK) (Sigma-Aldrich, Zwijndrecht,
Netherlands) in optimized HS coating buffer, overnight in a
humidified chamber at RT. Subsequently, plates were washed
with 0.05% PBS-Tween 20 (Sigma-Aldrich) (PBST) and blocked
for minimal 2 h with 1% bacto-gelatin (Difco laboratories,
Detroit, Michigan, USA) in PBS at RT. Plates were washed
with PBST, followed by a final washing step with PBS prior to
2 h incubation at 37°C with 4 times diluted plasma sample in
HPSE buffer. Samples were randomly distributed over plates.
The HPSE buffer consisted of 50 mM citric acid-sodium citrate
(Merck, Zwijndrecht, Netherlands) buffer supplemented with 50
mM NaCl (Merck), 1 mM CaCl2 (Sigma-Aldrich), and 1 mM
DTT (Sigma-Aldrich) at final pH 5.0. Next, plates were washed
with PBST and incubated with primary mouse anti-rat IgM HS
antibody JM403 (Amsbio, Abingdon, United Kingdom, cat. no.
#370730-S, RRID: AB_10890960, 1 mg/ml in PBST) for 1 h at RT.
Subsequently, plates were washed with PBST and incubated with
secondary goat anti-mouse IgM HRP antibody (Southern
Biotech, Uden, Netherlands, cat. no. #1020-05, RRID:
AB_2794201, dilution 1:10000 in PBST) for 1 h at RT. Finally,
plates were washed with PBST and 3,3’,5,5’-tetramethylbenzidine
(TMB) substrate (Invitrogen, Breda, Netherlands) was added and
reaction was stopped by addition of 2 M sulfuric acid, and
absorbance was measured at 450 nm. The HPSE activity in
plasma was related to a standard curve of recombinant human
HPSE in healthy control EDTA plasma.

For the in vitro HPSE inhibition experiment with dalteparin
(Pfizer, Capelle a/d Ijssel, Netherlands, Fragmin 12,500 IU/0.5 ml),
the HPSE activity was determined using the HPSE activity assay as
outlined above. For inhibition studies 0–1 IU/ml dalteparin was
used with a constant amount of 150 ng/ml recombinant
human HPSE.

HS Competition Assay
HS in EDTA plasma samples was quantified by a previously
described HS competition assay (23, 24). Importantly, this assay
is specific to HS, therefore the measurement is not affected by the
presence of LMWH use. Plates were coated with HSBK and
Frontiers in Immunology | www.frontiersin.org 3
blocked with bacto-gelatin as outlined for the HPSE activity
assay. Uncoated plates, blocked with bacto-gelatin, were washed
with PBST. The plasma samples were four times diluted in PBST
containing primary mouse anti-rat IgM HS antibody JM403
(1.3 mg/ml) and incubated for 1 h at RT. Samples were randomly
distributed over plates. Subsequently, the samples were
transferred from the uncoated plates to the HSBK-coated
plates and incubated for 1 h at RT. Plates were washed with
PBST and incubated with secondary goat anti-mouse IgM HRP
antibody for 1 h at RT. Plates were developed and measured as
outlined for the HPSE activity assay. The amount of HS detected
in plasma is expressed in arbitrary units since HS from bovine
kidney was coated and used to prepare the standard curve.

IL-6 Measurements
IL-6 concentration was measured in plasma of COVID-19 patients
using commercial ELISA kits for human IL-6 (Bio-techne, Abingdon,
United Kingdom) according to manufacturer’s instruction.

Statistical Analysis
Values are expressed as mean ± SEM. D’Agostino & Pearson
normality test was performed to test for normality of data.
Significance was determined by Fisher’s exact test to compare
categorical variables, by Student’s t-test or Mann Whitney test to
compare two groups and by Kruskal-Wallis test followed by
Dunn’s test to compare more than two groups using GraphPad
Prism V.8.4.2 (La Jolla, USA). P values less than 0.05 were
considered as statistically significant.
RESULTS

Demographics and Baseline
Characteristics of COVID-19 Patients
Plasma was collected from 48 PCR-confirmed COVID-19
patients admitted to the ICU (n = 14) or to designated
COVID-19 clinical wards (n = 34). More men than women
were included (Table 1). All ICU patients received LMWH as
part of standard ICU treatment. The non-ICU patients were
further aggregated in those receiving prophylactic LMWH
(LMWH+) (in general dalteparin 5,000 IU subcutaneously
once daily) (n = 17) and those receiving either alternative
anticoagulation (n = 8; vitamin K antagonist n = 6, direct oral
anticoagulant n = 2) or patients for whom the sample collection
was performed before initiation of any standard medical
intervention (LMWH−) (n = 9). Hospital stay duration was
significantly different between ICU and non-ICU groups as well
as between LMWH− and LMWH+ groups, while number of
deaths was not significantly different between the different
subgroups. Notably, ICU patients had a significantly higher C-
reactive protein concentration than non-ICU patients (Table 2).
The LMWH+ group had significantly higher median D-dimer
concentrations compared to LMWH− group, whereas the
concentrations of the inflammatory markers C-reactive protein
and serum ferritin were similar between LMWH+ and LMWH−.
October 2020 | Volume 11 | Article 575047
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Plasma HPSE Activity Is Elevated in
COVID-19 Patients
Several (experimental) disease models have shown that increased
HPSE activity can lead to endothelial barrier dysfunction, which
may be involved in the development of ARDS and proteinuria/
AKI (7, 25, 26). Measurement of plasma HPSE activity levels in
COVID-19 patients and healthy controls revealed that HPSE
activity was significantly elevated in COVID-19 patients
compared to healthy controls (Figure 1A). In line with the
increased HPSE activity, HS plasma levels were also
significantly elevated in COVID-19 patients compared to
healthy controls (Figure 1B). Similarly, we detected
significantly elevated IL-6 levels in COVID-19 patients
Frontiers in Immunology | www.frontiersin.org 4
compared to healthy controls (Figure 1C). Overall, these
results suggest that SARS-CoV-2 infection is associated with an
increase in the activity of HPSE in plasma and an increase in
plasma HS and IL-6 levels.

HPSE Activity Associates With COVID-19
Disease Severity
Next, we investigated whether HPSE activity levels were
associated with COVID-19 disease severity. Plasma HPSE
activity was significantly increased in both non-ICU and ICU
patients compared to healthy controls, and HPSE levels in
ICU patients, who all received mechanical ventilation, were
higher than in non-ICU patients (Figure 2A). Moreover, HS
TABLE 1 | Demographics of COVID-19 patients.

Characteristics All patients n = 48 ICU n = 14 Non-ICU p2

LMWH− n = 17 LMWH+ n = 17 Total n = 34 p1

Sex, male, n (%) 37 (77) 11 (78.5) 13 (76.5) 13 (76.5) 26 (76.5) 1.00001 1.00001

Age, median (IQR), years 67.5 (57.3–74.75) 62.5 (53.0– 69.5) 69 (62.5–76.5) 69 (53.5–77.0) 69 (58.8–77.0) 0.67923 0.24282

Hospital stay, median (IQR), days 9 (5–16) 26 (16–…)& 5 (5–8) 9 (6–12) 7 (5–9) 0.04433 0.00013

Deaths, n (%) 7 (15) 3 (21) 3 (18) 1 (6) 4 (12) 0.60121 0.40041

Transfer non-ICU to ICU, n (%) N/A N/A 0 (0) 0 (0) N/A 1.00001 N/A
Day of sampling, median (IQR) 2 (1–4) 3 (1–6) 1 (1–4) 2 (2–4) 2 (1–4) 0.39403 0.09452

Coexisting disorder, n (%)
Heart disease 8 (16.7) 3 (21.4) 3 (17.6) 2 (11.8) 5 (14.7) 1.00001 0.67571

Lung disease 16 (33.3) 4 (28.6) 2 (11.8) 10 (58.8) 12 (35.3) 0.01041 0.74601

Diabetes 6 (12.5) 2 (14.3) 3 (17.6) 1 (5.9) 4 (11.8) 0.60121 1.00001

Hypertension 18 (37.5) 8 (72.7) 5 (29.4) 5 (29.4) 10 (29.4) 1.00001 0.10321

Malignancy 9 (18.8) 1 (7.1) 4 (23.5) 4 (23.5) 8 (23.5) 1.00001 0.25011

Immunocompromised 7 (14.6) 0 (0) 2 (11.8) 5 (29.4) 7 (20.6) 0.39831 0.08981

Renal disease 4 (8.3) 2 (14.3) 0 (0) 2 (11.8) 2 (5.9) 0.48481 0.56591

COVID-19 treatment, n (%)
(hydroxy)chloroquine 19 (39.6) 6 (42.9) 4 (42.9) 9 (52.9) 13 (38.2) 0.15711 1.00001

Remdesivir 1 (2.1) 1 (7.1) 0 (0.0) 0 (0.0) 0 (0.0) NA 0.11531
October 2020 | Volume 11 | Article
Data are presented as median (IQR) or percentage (%). P values comparing LMWH−with LMWH+ patients (p1) or ICU patients with non-ICU patients (p2) are calculated with Fisher’s exact
test1, and with unpaired two-tailed Student’s t test2 or unpaired two-tailed Mann Whitney test3 based on the distribution of data determined by D’Agostino & Pearson omnibus normality
test. ICU, intensive care unit; COVID-19, coronavirus disease-2019; IQR, interquartile range; LMWH−, patients without prophylactic LMWH; LMWH+, patients with prophylactic LMWH.
&75% quartile is unknown due to prolonged hospitalization of some patients.
TABLE 2 | Baseline characteristics of COVID-19 patients.

Characteristics All patients n = 48 ICU n = 14 Non-ICU p2

LMWH− n = 17 LMWH+ n = 17 Total n = 34 p1

CT severity score*, median
(IQR)

NA NA 9.0 (7.3–13.0)+ 13.0 (9.3–16.5)+ 11.5 (8.0–15.0)++ 0.07433 NA

Laboratory, median (IQR)
WBC, ×109/L* 6.8 (5.2–9.6) 6.7 (5.9–7.9) 6.8 (4.3–9.5) 7.4 (4.8–9.8) 6.8 (4.7–9.8) 0.71012 0.86483

Platelets, ×109/L* 216 (159–286) 220 (176–281) 163 (139–256) 250 (189–330) 216 (154–308) 0.10543 0.80332

C-reactive protein, mg/L* 98 (54–171) ++ 171 (120–259) + 96 (41–154) + 78 (41–136) 86 (42–140)+ 0.31972 0.00133

Ferritin, µg/L 955 (567–1,658) 1,363 (872–1917) 762 (362–1,239) 950 (571–1,854) 835 (481–1,483) 0.26293 0.13743

D-dimer, ng/ml* 1,080 (319–1,973)++++
+++

1,870 (313–
5,275)+

407 (210–650)+ 1,335 (1,130–2,775)++
+++

720 (318–1,335)++++
++

0.00033 0.10843

Lactate dehydrogenase, U/L* 314 (258–413)+ 307 (273–400) 318 (238–436)+ 317 (259–362) 317 (257–418)+ 0.98563 0.67802

Creatinine, µmol/L*# 92.0 (69.0–115.8)+++++ 101.0 (73.0–
145.5)++

92.0 (73.0–
117.0)++

85.0 (62.3–97.8)+ 87.0 (66.0–112.0)++
+

0.33253 0.26853
Data are presented as median (IQR). P values comparing LMWH− with LMWH+ patients (p1) or ICU patients with non-ICU patients (p2) are calculated with unpaired two-tailed Student’s t
test2 or unpaired two-tailed Mann Whitney test3 based on the distribution of data determined by D’Agostino & Pearson omnibus normality test. ICU, intensive care unit; COVID-19,
coronavirus disease-2019; IQR, interquartile range; LMWH−, patients without prophylactic LMWH; LMWH+, patients with prophylactic LMWH. Measurements with missing values are
indicated with * and the number of + signs indicates the number of missing patients per characteristic and group. #Four patients with history of renal disease were excluded.
575047
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A B C

FIGURE 1 | COVID-19 patients display increased HPSE activity, and elevated levels of heparan sulfate and IL-6 in plasma. (A) HPSE activity was increased in
plasma of COVID-19 patients compared to healthy controls. HPSE activity was measured using an in-house developed ELISA with a specific anti-HS antibody.
(B) HS levels were increased in plasma of COVID-19 patients compared to healthy controls. HS levels were measured by an in-house developed competition ELISA
using a specific anti-HS antibody. (C) IL-6 levels were increased in plasma of COVID-19 patients compared to healthy controls. IL-6 levels were measured using a
commercial IL-6 ELISA. Data were presented as mean ± SEM and tested for normal distribution with D’Agostino & Pearson omnibus normality test and statistical
differences were calculated using Mann Whitney test (n = 10 healthy; n = 48 COVID-19; **p < 0.01; ****p < 0.0001). HPSE, heparanase; HS, heparan sulfate;
Healthy, healthy controls; COVID-19, coronavirus disease-19 patients; AU, arbitrary units.
A B C

D E

FIGURE 2 | Increased plasma HPSE activity associates with COVID-19 disease severity. (A) Plasma HPSE activity was significantly higher in ICU and non-ICU
patients compared to healthy controls, and higher in ICU patients compared to non-ICU patients (n = 10 healthy; n = 34 non-ICU; n = 14 ICU). (B) HS plasma levels
were significantly increased in plasma of ICU and non-ICU patients compared to healthy controls (n = 10 healthy; n = 34 non-ICU; n = 14 ICU). (C) IL-6 plasma
levels were significantly increased in plasma of ICU and non-ICU patients compared to healthy controls (n = 10 healthy; n = 34 non-ICU; n = 14 ICU). (D) HPSE
activity was significantly higher in plasma of patients with elevated LDH (>280 U/L) values compared to patients with normal LDH levels (n = 15 normal LDH; n = 26
elevated LDH). (E) HPSE activity was significantly higher in plasma of patients with elevated creatinine (>110 µmol/L for men and >90 µmol/L for women) values
compared to patients with normal creatinine values (n = 30 normal creatinine; n = 11 elevated creatinine; patients with history of renal disease were excluded from
this analysis). HPSE activity was measured using an in-house developed ELISA with a specific anti-HS antibody and HS plasma levels were measured using an in-
house developed competition ELISA with a specific anti-HS antibody. Data were presented as mean ± SEM and tested for normal distribution with D’Agostino &
Pearson omnibus normality test and statistical differences were calculated using Kruskal Wallis test followed by Dunn’s multiple comparison test, unpaired one-tailed
Student’s t-test or unpaired one-tailed Mann Whitney test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). HPSE, heparanase; HS, heparan sulfate; LDH, lactate
dehydrogenase; Healthy, healthy controls; non-ICU, COVID-19 patients in normal hospital ward; ICU, COVID-19 patients in ICU; AU, arbitrary units.
Frontiers in Immunology | www.frontiersin.org October 2020 | Volume 11 | Article 5750475
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(Figure 2B) and IL-6 levels (Figure 2C) in plasma were also
higher in both non-ICU and ICU patients compared to healthy
controls. Finally, plasma HPSE activity was significantly higher
in patients with elevated LDH values (Figure 2D), and in
patients with elevated serum creatinine values (Figure 2E).
These findings reveal that patients with severe COVID-19
disease display higher plasma HPSE activity levels than
patients with moderate COVID-19 disease.

Use of LMWH Is Associated With
Lower HPSE Activity in Plasma
of COVID-19 Patients
Prophylactic treatment with LMWH is recommended for
patients hospitalized with COVID-19 (27), whereas some
experts recommend higher doses for critically ill patients (28).
As LMWH inhibits HPSE activity and it is known that HPSE
deficiency reduces expression of various cytokines (15), we
Frontiers in Immunology | www.frontiersin.org 6
analyzed the effect of prophylactic LMWH on HPSE activity,
HS levels and IL-6 levels in plasma of COVID-19 patients.
Markedly, non-ICU patients who received LMWH displayed
significantly lower plasma HPSE activity compared to non-ICU
patients without LMWH prophylaxis (Figure 3A), whereas no
statistically significant differences could be observed on HS levels
(Figure 3B) or IL-6 levels (Figure 3C) between non-ICU
patients with or without LMWH prophylaxis. According to
literature, a single injection of 5,000 units dalteparin would
result in an estimated concentration of around 0.37 U/ml in
vivo (29). We found a dose dependent inhibition of recombinant
HPSE at concentrations between 0.0025 and 0.05 U/ml and full
inhibition starting from 0.25 U/ml dalteparin in vitro (Figure
3D). These data suggest that the applied prophylactic LMWH
dose is already effective in inhibition of HPSE activity within
plasma of moderately diseased, while HPSE activity remained
high in severely ill, COVID-19 patients.
A B

C D

FIGURE 3 | LMWH reduces plasma HPSE activity, but not plasma HS or IL-6 levels in moderately diseased COVID-19 patients. (A) LMWH reduces HPSE activity in
plasma of non-ICU patients with COVID-19, which was measured using in-house developed HPSE activity assay (n = 17 for both groups, **p < 0.01). (B) LMWH
does not reduce HS levels in plasma of non-ICU patients with COVID-19, which was measured with an in-house developed competition ELISA with a specific anti-
HS antibody. (C) LMWH does not reduce IL-6 levels in plasma of non-ICU patients with COVID-19, which was measured using an in-house developed competition
ELISA with a specific anti-HS antibody. Data were presented as mean ± SEM and tested for normal distribution with D’Agostino & Pearson omnibus normality test
and statistical difference was calculated using unpaired one-tailed Mann Whitney test. (D) LMWH inhibits recombinant HPSE activity in vitro in a dose-dependent
manner. HPSE activity was measured using an in-house developed ELISA with a specific anti-HS antibody (n = 5). HPSE, heparanase; HS, heparan sulfate; LMWH,
low molecular weight heparin.
October 2020 | Volume 11 | Article 575047
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DISCUSSION

COVID-19 appears to be a disease that leads to endothelial
dysfunction and disruption of the endothelial barrier, which may
underly development of ARDS and proteinuria/AKI (11, 30). Here,
we report increasedHPSEactivity andHS levels inplasmaofCOVID-
19 patients, which were also associated with severity of the disease.

Several mechanisms are currently proposed to explain
pulmonary edema and ARDS in COVID-19. One suggested
mechanism focuses on the kallikrein/kinin system, which is
involved in the local inflammation and vascular leakage in the
lung (31, 32). Over-activation of the bradykinin pathway may occur
due to consumption of angiotensin converting enzyme-2 (ACE2)
during viral entry (32). Interestingly, endothelial cell surface GAGs,
such as HS, regulate activation of bradykinin pathways whereas
degradation of HS by bacterial heparinases promotes proteolytic
bradykinin generation (33). Therefore, increased plasma HPSE
activity in COVID-19 patients could contribute to activation of
the bradykinin pathway, and subsequently vascular leakage and
local inflammation. The renin-angiotensin system also could be
involved in endothelial dysfunction in COVID-19 patients (34).
Increased angiotensin II levels have been reported in COVID-19
patients (35). Angiotensin II induces vasoconstriction,
inflammation, fibrosis, and proliferation, which in turn can cause
thrombosis, ARDS, and AKI. Importantly, we have previously
shown that Angiotensin II is a potent inducer of HPSE
expression (36, 37). Moreover, it is feasible that endothelin-1, one
of the downstream mediators activated by angiotensin II (38, 39) is
also increased in COVID-19 and it is known that endothelin-1 can
induce HPSE expression as well (40).

Besides the role of HPSE in compromising the endothelial
glycocalyx, HPSE and HS fragments play an important role in
inflammation (41). HPSE can activate macrophages, resulting in
secretion of MCP-1, TNF-a, and IL-1b, independent of HS-
degrading activity (42). Released HS fragments also induce a pro-
inflammatory response by binding to TLR2 and TLR4 (42, 43).
Moreover, cleavage of HS by HPSE releases HS bound molecules,
such as chemokines and cytokines, thereby promoting
inflammation (44). Furthermore, cells exposed to HPSE show
an enhanced response to pro-inflammatory cytokines like IFN-g
(17, 45, 46). Interestingly, cytokines such as IL-1b, IL-6, TNF-a,
and MCP-1 appear to be elevated in COVID-19 patients (47–49)
and also can induce HPSE expression (15). These data suggest
the formation of a HPSE-mediated positive feed forward loop for
inflammation in COVID-19. Notably, HPSE appears to have a
direct effect in shaping the cytokine milieu, since HPSE
deficiency reduces expression of a wide range of cytokines
including TNF-a, IL-6, IFN-g in experimental models (15).

Potential beneficial effects of prophylactic as well as therapeutic
doses of LMWH in COVID-19 patients have been reported (50–
53). Our data reveal that prophylactic doses of LMWH is associated
with reduced HPSE activity in moderately diseased COVID-19
patients while this reduction of HPSE activity with LMWH
prophylaxis was not accompanied with a reduction in HS or IL-6
plasma levels. Moreover, HPSE activity remained high in COVID-
19 patients in ICU, all of whom received prophylactic LMWH as
part of standard ICU treatment regimen. Therefore, therapeutic
Frontiers in Immunology | www.frontiersin.org 7
LMWH dose instead of prophylactic dose might be required to
further inhibit HPSE both in non-ICU and ICU COVID-19
patients. This further reduction of HPSE activity might eventually
lead to additional beneficial effect, such as reduced HS and IL-6
plasma levels. In addition to inhibition of HPSE, LMWH has other
non-anticoagulant functions that may be beneficial for patients with
COVID-19, such as neutralization of chemokines/cytokines,
interference with leukocyte trafficking, neutralization of
extracellular cytotoxic histones, neutralization of high molecular
weight kinogen, and reduction of viral entry (33, 54–57).

In summary, this cross-sectional study shows that HPSE activity
and HS levels are significantly elevated in plasma of COVID-19
patients, which is associated with the severity of COVID-19.
Targeting of HPSE activity could be beneficial for the clinical
outcome of COVID-19 patients, since it is well established that
increased HPSE activity compromises the endothelial glycocalyx
and contributes to a pro-inflammatory cytokinemilieu. Considering
the fact that no specific clinically approved heparanase inhibitors are
currently available, prospective studies evaluating the clinical
outcome of COVID-19 patients treated with therapeutic doses of
LMWH are urgently needed.
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