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Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence

has increased worldwide in recent years. Research into the pathogenesis of AIH

remains limited largely owing to the lack of suitable mouse models. The concanavalin

A (ConA) mouse model is a typical and well-established model used to investigate

T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually

disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human

body. Several studies have explored various AIH mouse models, but as yet there is no

widely accepted and valid mouse model for AIH. Immunosuppression is the standard

clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory

T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the

prevention of autoimmune diseases, which may provide a potential therapeutic target for

AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of

difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss

the studies related to Treg in various AIHmousemodels and patients with AIH and provide

some novel insights for this research area.
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INTRODUCTION

Autoimmune hepatitis (AIH) is a progressive inflammatory liver disease characterized by chronic
inflammation of the liver, circulating autoantibodies, hypergammaglobulinemia, and specific liver
biopsy histologic features (interface hepatitis, rosettes, and lymphocyte invasion) (1, 2). AIH occurs
in all ethnicities and can affect children and adults of all ages, with a female predominance (3).
AIH is a complex multifactorial polygenic disorder that is thought to be caused by the interaction
between triggers and environmental factors in genetically susceptible individuals, leading to the
loss of tolerance against one’s own liver antigens (4, 5). Standard immunosuppressive treatment
approaches have remained static for decades; these treatments are effective in most patients,
although their mechanisms are unclear (6). Many patients with AIH must receive long-term
immunosuppressive treatment to prevent disease relapse (7).

The precise etiology and pathophysiology of AIH remain largely unknown, and related
basic research in this field is relatively limited compared with other types of hepatitis, such
as viral hepatitis or steatohepatitis. The complexity of the disease, the difficulty of confirming
a clinical diagnosis, and the lack of valid animal models for AIH research contribute to this
situation. Researchers have been working on the establishment of a mouse model for AIH for a
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long time, but as yet no valid animal model has been widely
accepted (8, 9). In 1992, Tiegs et al. (10) established a T cell-
mediated acute hepatitis mouse model using concanavalin A
(ConA), which is a typical and well-recognized mouse model
used to investigate T cell-mediated liver injury. However,
hepatitis in mice livers induced by ConA is acute and often
disappears after 48 h; furthermore, there is no autoantibody
production or liver fibrosis. In 2008, Christen et al. (11)
established a chronic AIH mouse model using adenovirus that
expressed human cytochrome P450 2D6 (CYP2D6), which is
a well-recognized human autoantigen in type-2 AIH. In 2013,
Hardtke-Wolenski et al. (12) established an AIH model against
FTCD in NOD with one single adenoviral injection into the
tail vein, but in 2016 they did not observe chronic AIH with
either soluble liver antigen (SLA) or CYP2D6 in B6, Balb/c and
FVB (13). Given that a one-time adenovirus injection may not
be sufficient to induce a stable and long-term mouse model,
we improved the method to establish this CYP2D6-AIH mouse
model through the repeated injection of the CYP2D6 plasmid
to achieve multiple gene transection in the liver (14). However,
although great efforts have beenmade, the identification of a valid
mouse model for use in the AIH research field remains an urgent,
unsolved issue.

Regulatory T cells (Tregs) that express the transcription
factor Foxp3 play an important role in the maintenance
of immunological self-tolerance and the prevention of
autoimmunity (15). Tregs are recognized as the body’s main
source of tolerance regulation, and their impairment has been
associated with the development of various autoimmune diseases
(16). Given the ability of Tregs to suppress the destructive pro-
inflammatory and cytolytic activities of immune effector cells,
the adoptive transfer of Treg has been considered as a potential
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future treatment for AIH (17). However, the role of Tregs in
AIH remains controversial (18, 19), and for nearly 20 years,
researchers have been exploring whether or not the Tregs are
impaired in AIH. The results of this research are inconclusive,
partly because of the different mouse models used in the different
studies and patient heterogeneity. Here we review these issues by
first summarizing the different mouse models and then focusing
on the studies of AIH to understand what roles have been played
by Tregs in the pathogenesis of AIH.

AIH: CURRENT RESEARCH STATUS

Autoimmune hepatitis (AIH) is a liver-specific autoimmune
disease first described in 1951 (5). AIH manifests in all age
groups, and its incidence has shown an increasing trend (20).
The disease is now widely known as a consequence of immune
tolerance breakdown, leading to an autoimmune response
against hepatocytes that induces liver injury (21). AIH is divided
into two main types based on the serological profiles of persistent
autoantibodies (22). Type 1 AIH is defined by the presence
of antinuclear antibodies (ANAs) and/or anti-smooth muscle
antibodies (SMAs), while type 2 AIH is defined by the presence
of anti-liver-kidneymicrosomal 1 (LKM-1) antibody and/or anti-
liver cytosol type 1 (LC1) antibody (23, 24). The pathogenesis
of AIH is complicated and unclear, but it likely involves
environmental factors (25), genetic factors, epigenetic factors
(26, 27), and a dynamic immunological microenvironment
(28). It is widely accepted that both the initiation of the self-
attack and the subsequent dysregulation of the immune system
in the liver microenvironment contribute to the progressive
process of liver damage. During this process, helper T (Th)
cells play the most important role in triggering this self-attack
process by recognizing the autoantigens (29), while B cells are
responsible for the subsequent production of autoantibodies
(29). Meanwhile, increasing evidence suggests the emerging role
of impaired immunoregulation in this process (30–32). Cells
and cytokines involved immunoregulation maintaining the liver
immunologic balance to protect the liver from serve damage
under inflammatory attack have also been widely studied in
recent years (29, 33, 34). However, further studies are required
to elucidate their exact roles in the AIH disease process.

Clinically, although a well-established diagnostic scoring
system with acceptable specificity and sensitivity is in use (35),
AIH diagnosis remains difficult, largely owing to its dependence
on liver biopsy. Moreover, due to the insidious and atypical
symptoms of patients, AIH is difficult to diagnose in the very
early stage, which leads to delays in treatment. Therefore, an
increasing number of studies have explored AIH biomarkers that
could be applied to obtain an early diagnosis (36, 37). Given
the diagnostic difficulties of AIH, the related clinical research is
difficult to carry out. Furthermore, there is no effective therapy
for patients with AIH except for standard immunosuppressive
treatment using corticosteroids with or without azathioprine
(2, 38). However, not all patients respond well to this treatment,
and most will develop disease relapse after drug withdrawal (39).
Immunoregulatory therapy has also been explored as a potential
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FIGURE 1 | Characteristic features of type 2 AIH in an improved mouse model. (A) Chronic liver inflammation (interface hepatitis) and characteristic pathological

features (rosettes and lymphocytes invasion) are shown. The red arrow indicates the hepatocyte. (B) Sirius red staining showing the fibrosis in a mouse liver. The red

color indicates collagenous fibers. (C) Stained autoantibodies from the plasma of AIH mice.

therapy for AIH; however, it has not yet been clinically applied
(6, 40, 41). Much research effort has been given in recent decades
to comprehensively understand the pathogenesis of AIH and to
find potential therapeutic targets (42, 43). However, it is difficult
to progress basic research in the area of AIH because of the lack
of a suitable and widely accepted mouse model that imitates the
AIH disease process in humans.

DIFFERENT AIH MOUSE MODELS

ConA Mouse Model
There has been a lot of research effort in the last 50 years to
establish AIH mouse models (44–46). In 1992, Tiegs et al. (10)
were the first to report the use of ConA to establish a T cell-
mediated hepatitis mouse model, which is now the most widely
used tool to investigate immune-mediated liver injury (47–
49). Progressive hepatitis, severe lymphocytes infiltration, and
significantly increased transaminase release are observed within
8 h; this condition results from the activation of T lymphocytes
by macrophages in the presence of ConA. Subsequently, IFN-γ
(interferon-γ) and TNF-α (tumor necrosis factor-α) were proven
to be the critical mediators of liver injury in ConA-treated mice
(50), which is similar to the situation in patients with AIH (51).
Over the past decades, substantial basic research on AIH was
carried out using this typical and well-established ConA mouse
model due to its convenience and low cost (52–54). However,
hepatitis in this mouse model is acute and usually disappears
within 48 h (10, 55). Characteristic features of AIH, such as
the presence of autoantibodies, typical interface hepatitis, and
progressive liver fibrosis, are not observed in this model.

Mouse Model of Type 2 AIH
Autoantibodies against the autoantigens expressed on
hepatocytes play crucial roles in the pathogenesis of AIH;
therefore, breaking immune tolerance using known autoantigens
may provide a pathway for the establishment of a chronic
AIH mouse model. In type 2 AIH, CYP2D6 is one of the most
thoroughly characterized autoantigens that is recognized by type
1 liver/kidney microsomal autoantibodies (LKM-1) (56), while
the target of LC1 antibodies is FTCD (57). In 2004, Lapierre
et al. (58) first established a murine model of AIH via DNA
immunization against CYP2D6 and FTCD. The authors found
cytotoxic-specific T cells and the presence of necroinflammation

in the liver, with the alanine aminotransferase (ALT) level
peaking at 4 and 7 months post-injection. Anti-LKM1 and anti-
LC1 antibodies were also detected in the mice sera, which stay
elevated for at least 8 months (59). The genetic background was
proven to affect AIH development by the fact that C57Bl/6J mice
were more susceptible to the DNA vaccination compared with
the 129/Sv or BALB/c strains (60). The age and sex susceptibility
bias of AIH was also investigated in this model (61). A few years
later, Christen et al. infected mice with adenovirus(Ad) that
expressed human CYP2D6 based on an FVB/N or C57Bl/6J
background and observed the characteristic pathological features
and the presence of anti-LKM1 antibodies in their livers (11, 62–
64). In this CYP2D6 model, acute liver damage resulting from
the adenovirus infection was first observed, followed by massive
infiltration, progressive liver inflammation, and fibrosis at 8
weeks, which is a much shorter timeframe than the model from
Lapierre et al. (58).

In 2013, Hardtke-Wolenski et al. (12) developed a model of
type 2 AIH by inducing a self-limited adenoviral infection with
FTCD. The authors also demonstrated that the development
of AIH in autoantibody-positive animals was determined by
the genetic background (13). However, they did not observe
the development of AIH when using Christen’s protocol and
a one-time Ad-CYP2D6 injection on the FVB/N background.
These differences may have been due to their different injection
methods or the different time points at which the mice were
sacrificed. Recently, we also introduced an improved method
for establishing a CYP2D6-induced AIH mouse model using
an initial one-time adenovirus infection and repeated injections
of human CYP2D6 plasmid based on the hydrodynamic-
based liver-targeted gene delivery technique (14). This achieves
the initial transient hepatitis using pure adenovirus and the
multiple continuous expression of the naked CYP2D6 plasmid.
Autoantibodies and interface hepatitis can be observed at 4 weeks
after the first injection, with the appearance of progressive liver
fibrosis at 5 weeks. This provides another technical approach
to establishing a CYP2D6-induced type 2 AIH mouse model
(Figure 1).

Other Mouse Models for AIH
In addition to the acute ConA mouse model and the chronic
type 2 AIH mouse models, other studies have reported using
different methods to mimic AIH in the human body; these are

Frontiers in Immunology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 575572

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Regulatory T Cell in Autoimmune Hepatitis

FIGURE 2 | A summary of AIH mouse models. The mouse models are divided into two categories; one is based on a T cell-related mechanism and the other is based

on an autoantigen- or liver antigen-related mechanism. The ConA mouse model is the most widely used mouse model to investigate acute T cell-mediated liver injury.

Transgenic mice combined with T cell adoptive transfer also provides a method to establish an AIH mouse model. Some transgenic or gene knockout mice can

develop spontaneous AIH-like disease. Treg depletion may also function as a potential method to induce AIH in mice. Transfecting the human autoantigen CYP2D6 or

FTCD from type 2 AIH into mice may simulate the initiation process of type 2 AIH in humans to establish a chronic type 2 AIH mouse model. S-100, a supernatant of

syngeneic liver homogenate, has also been used to induce AIH in mice. The expression of transgenic IL-2 in hepatocytes causes loss of tolerance of hepatocellular

antigens, leading to chronic type 1 AIH-like disease in mice. Transfection HLA-DR3 or HLA-DR4 transgenic mice with the non-obese -diabetic background with a

plasmid containing CYP2D6 and FTCD can also induce AIH.

presented in Figure 2. First, liver antigens have been used to
initiate AIH by injection of syngeneic liver homogenate (S-100)
in complete Freund’s adjuvant (46) alone or with thymectomy
(65), which can be used to induced AIH in mice. Second,
exogenous cytokines such as IL (interleukin)-12 may also be used
as triggers to induce AIH (66–68). Third, several transgenic mice
that underwent specific T cells adoptive transfer were used to
break the peripheral or central tolerance to induce AIH (69–71).
The human leukocyte antigen (HLA)-DR3 and DR4 allele related
transgenic AIH mouse models have also been established due
to their strong genetic association with both type 1 and type 2
AIH (42, 72). Some studies have even reported spontaneous AIH
in specific transgenic mouse models (73–75), the mechanism of
which largely depends on the breakdown of normal immune
tolerance. Furthermore, given that Tregs are the most important
regulatory cells maintaining immune tolerance, scientists have
also tried to induce AIH in mice by depleting Tregs using PD-
1 (programmed cell death protein 1)–/– mice with neonatal
thymectomy (76–78).

Although there appear to be many options for AIH mouse
models, different models should be carefully selected based on
different research aims. To be more specific, the ConA model
is more suitable for the investigation of drug-induced liver
injury or the therapeutic effect of certain reagents in controlling
the acute immune-mediated liver injury. The models based on
transgenic/knockout mice (plus T cell transfer/deletion or not)

may not suitable for studying particular immune cells due to their
deficient immune system even before AIH initiation. Therefore,
spontaneous type 2 AIH in mice that triggered by natural disease
antigens can better simulate the natural process of AIH in
the human body. It will be more consistent with its clinical
characteristic as well, which is more appropriate for investigating
the roles of immune cells in the disease process of AIH.

THE ROLE OF TREGS IN AIH

Tregs in AIH Mouse Models
Tregs are important regulatory cells that maintain immune
tolerance and have shown considerable potential in treating
multiple autoimmune diseases (79–81). The depletion of Tregs in
mice has been reported as a method to establish an AIH mouse
model (76). However, the exact role of Tregs in AIH remains
unclear. Scientists have explored the function and number of
Tregs in different AIH mouse models, which are summarized in
Table 1. The conclusions of these studies are conflicting, probably
because of the different mechanisms used to induce AIH in the
different mouse models and the different markers and methods
used to detect Tregs.

For instance, Tregs behave completely differently in acute and
chronic mouse models. In the ConA mouse model, the function
and frequency of Tregs are increased both in the liver and in
the peripheral environment (85–88), but decreased in the type 2
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TABLE 1 | The quality and function change of Treg in AIH mouse model.

Mouse model Strain

(gender)

Marker of Treg

(detection methods)

Peripheral Liver Year (Reference)

Number Function Number Function

ConA mouse model C57BL/6J

(male)

CD4+Foxp3+(FC);Foxp3(WB;PCR) (–) (–) ↑ (–) 2018 (81)

S100 liver homogenate mouse

model

C57BL/6J

(male)

CD4+CD25+Foxp3+(FC);Foxp3(PCR) ↑ (–) ↑ (–) 2018 (82)

S100 liver homogenate mouse

model

C57BL/6J

(female)

CD4+Foxp3+(FC);Foxp3(PCR) ↓ (–) (–) (–) 2018 (83)

TF-OVA mouse + Transfer of

TCR tg OVA-specific T cells

C57Bl/6J

(–)

CD4+CD25+Foxp3+(FC);Foxp3(IHC) → (–) ↑ → 2015 (84)

Aire−/− mouse model BALB/c

(female)

CD4+ CD25+Foxp3+(FC) → → ↑ ↓ 2015 (74)

ConA mouse model C57BL/6J

(male)

CD4+CD25+(FC) (–) (–) ↑ (–) 2014 (85)

Traf61TEC mouse model C57Bl/6J

(–)

CD4+Foxp3+(FC) (–) (–) ↑ (–) 2013 (73)

Type 2 AIH mouse model C57BL/6J

(female)

CD4+CD25+Foxp3+(FC) ↓ (–) ↓ ↓ 2013 (86)

ConA mouse model C57BL/6J

(female)

CD4+Foxp3+(FC);Foxp3(WB;PCR) → (–) ↑ (–) 2008 (87)

PD-1−/− + NTx mouse model BALB/c

(–)

CD4+Foxp3+(FC) ↓ (–) (–) (–) 2008 (75)

ConA mouse model C57BL/6J

(male)

CD4+Foxp3+(FC) ↑ ↑ ↑ ↑ 2007 (88)

AIH, autoimmune hepatitis; ConA, concanavalin A; S100, syngeneic liver homogenate; TF-OVA mouse, the model antigen ovalbumin is expressed in hepatocytes of the mouse;

Traf61TEC, conditional deletion of tumor necrosis factor receptor-associated factor 6 expression in the thymic epithelial cells; PD-1, programmed cell death protein 1; NTx, neonatal

theymectomy; FC, flow cytometry; WB, western blotting; PCR, polymerase chain reaction; IHC, immunohistochemistry.

AIH mouse model (82). The increased Tregs in the liver of the
ConA mouse model are mainly responding to the severe liver
inflammation induced by ConA, while their deficiency results in
long-term impaired immune homeostasis in the chronic type 2
mouse model. Moreover, two different studies reported contrary
results regarding Tregs in the liver of the S100 liver homogenate
mouse model (83, 89). This discrepancy likely arose because
of the different sexes of the experimental mice, as discussed
in a previous study (61). However, using a drug-induced AIH
mouse model, one study showed that IL-33-induced Tregs
confer protection against liver damage in both female and
male mice (90). Furthermore, several studies have indicated
that Tregs behave differently inside and outside of the hepatic
microenvironment. Alexandropoulos et al. reported evidence of
Tregs-mechanisms in the liver based on the Traf61TEC mouse
model, but the peripheral tolerance in the mice was normal (74).
Schott et al. found that Tregs accumulated in the liver of the
TF-OVA mouse model but remained unchanged in the spleen
(84). The different prevalence of Tregs in the mouse liver and
peripheral microenvironment (spleen or blood) may reflect the
unique and organ-specific pathogenesis of AIH.

Although Tregs show different changes among the different
models, some studies have focused on efforts to improve Tregs
immunoregulation inmice. In 2015, Hardtke-Wolenski et al. (75)
reported hyperproliferative intrahepatic Tregs in a spontaneous
transgenic AIHmouse model with ongoing severe AIH, and they
also found the AIH in those mice could be treated by adoptive

Tregs transfer. Those findings suggest that the intrahepatic Tregs
that increase during the process of AIH are dysfunctional or not
sufficient to control the severe liver inflammation. Some other
studies have also provided evidence for the curative effect of
Tregs adoptive transfer in different AIH mouse models (82, 86,
91). Several animal studies have investigated improving the Tregs
frequency (88) or the impaired Treg/Th17 balance (83, 85, 92)
in the liver to reduce immune-mediated liver damage in mice.
In general, owing to the different mechanisms in the different
mouse models to trigger AIH, it is reasonable to have incoherent
observation results from various studies. However, the various
Treg-related studies in different mouse models can still provide
us with this consistent enlightenment—improving the Tregs
immunoregulation (function and/or number) in AIH can relieve
the hepatitis and liver damage in mice.

Tregs in Patients With AIH
Over the past 20 years, Tregs in patients with AIH have been
investigated, but the function and number of Tregs in these
patients remains controversial (Table 2). The conflicting results
may be due to patient heterogeneity, the use of different markers,
and differences in the methodologies applied in various studies.
It was long believed that in AIH, Tregs were functionally
and/or numerically impaired (18, 32, 95, 97–99). Several studies
suggested that decreases of suppressive molecules or genes in
patients with AIH may lead to Tregs deficiency (96, 99, 100).
In contrast, recent studies have shown that Tregs in patients
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TABLE 2 | The quality and function change of Treg in patients with AIH.

Patients group

(number)

Control

group

(number)

Patients type Marker of Treg

(detection

methods)

Peripheral blood Liver Year (Reference)

Number Function Number Function

AIH (n = 32) HC (n = 20) Adults CD4+CD25+Foxp3+

(FC)

↑ (–) (–) (–) 2018 (83)

AIH (n = 42) HC (n = 15) (−) CD4+CD25hi

CD127lo/−Foxp3+

(FC)

→ (–) (–) (–) 2017 (31)

pAIH (n = 40) aAIH (n = 45) Children and

adults

CD4+Foxp3+(IF) (–) (–) ↑ (–) 2017 (93)

AIH (n = 50) Other chronic

liver disease

(n = 50)

Children CD4+Foxp3+

(Tissue

immunostaining)

(–) (–) ↑ (–) 2016 (94)

AIH and ASC

(n = 43)

HC (n = 22) Adults and

children

CD4+CD25hi/+CD127-

(FC)

↓ ↓ (–) (–) 2015 (32)

AIH (n = 77) HC (n = 42) or

NASH (n = 8)

Adults CD4+CD25hiCD127lo

Foxp3+(FC);

Foxp3(IHC)

→

(vs. HC)

→

(vs. HC)

↑

(vs. NASH)

(–) 2012 (19)

Type 1 AIH (n = 47) HC (n = 28) Adults CD4+CD25hi(FC);

Foxp3+(IHC)

↓ ↓ ↓ (–) 2010 (95)

Type 1 AIH (n = 15) HC (n = 9) Adults CD4+CD25+(FC) ↑ ↓ (–) (–) 2008 (96)

AIH (n = 25) HC (n = 15) Adults and

children

Foxp3(PCR) ↓ (–) (–) (–) 2006 (18)

AIH (n = 28) HC (n = 15) Adults and

children

CD4+CD25+(FC) (–) ↓ (–) (–) 2005 (97)

AIH (n = 41) HC (n = 18) Adults and

children

CD4+CD25+(FC) ↓ → (–) (–) 2004 (98)

AIH, autoimmune hepatitis; pAIH, pediatric AIH; aAIH, adult AIH; ASC, autoimmune hepatitis-sclerosing cholangitis; HC, healthy control; NASH, non-alcoholic hepatitis; FC, flow

cytometry; PCR, polymerase chain reaction.

with AIH are fully functional and are not reduced in frequency
(19, 31). Moreover, some studies have even shown aggregated
Tregs in patients with AIH (19, 89, 94). A study reported the
isolated Tregs from the peripheral blood of patients with AIH are
suppressive, possess the functional markers CD39 and CTLA-4,
and express the C-X-C chemokine receptor (CXCR3) (101). As
mentioned above for the mouse model, altered levels of Tregs
inside and outside of the liver have also been found in patients
with AIH (19).

Meanwhile, Tregs seem to behave differently between adult
and pediatric patients with AIH. Unlike adult patients, a
numerical Tregs defect has long been considered in pediatric
patients. However, recent studies showed enriched intrahepatic
Tregs in pediatric AIH (93, 94). Moreover, the increase of
Treg/total T cells was reported to be even more pronounced
in pediatric AIH than in adult AIH due to fewer infiltrating
T and B cells (93). Overall, given the severe inflammatory
microenvironment in the liver of patients with AIH, the
enrichment of Tregs is probably because of their recruitment
from the periphery via various chemokine pathways. However,
whether the Tregs can maintain their full function in the special
hepatic microenvironment in AIH remains unknown. Although
the Tregs isolated from the peripheral blood of patients with
AIH can suppress the proliferation of effector T cells in vitro,
the intrahepatic Tregs are the ones that modulate the immune
microenvironment in the liver. Although isolating Tregs from

the liver of patients is challenging, we can still speculate that the
Tregs in the liver in AIH are impaired or not sufficient to control
the inflammation.

As mentioned, the current management of AIH involves
administering corticosteroids alone or in combination with
azathioprine (102). Most patients achieve remission (103), but
up to 90% develop a disease relapse after therapy withdrawal
(38, 104, 105). Notably, the Tregs frequency has been reported
as being significantly higher in patients with active AIH than
in those who are in a state of remission (19). Moreover,
patients with AIH who are untreated appeared to have a higher
frequency of Tregs in the blood compared to patients under
treatment (19, 93), which may be caused by a decrease of
IL-2 levels (32). The disproportional decrease of intrahepatic
Tregs during therapy might explain the high relapse rates after
discontinuation of immunosuppressants (106), which suggests
that increasing intrahepatic immunoregulation may be a better
treatment strategy for the long-term control of AIH (97). Low-
dose IL-2 has been suggested as a treatment for type 2 AIH
and it can result in the expansion of Tregs (41, 107). Blocking
Th17 is also a potential avenue for therapy development because
it can converts Tregs into a more suppressive phenotype (108).
Moreover, growing evidence supports Tregs adoptive transfer as
a novel and effective mode of treatment for autoimmune diseases
(80, 109, 110). Functionally enhanced Tregs can be expanded and
generated de novo in patients with AIH (111). The generation of
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FIGURE 3 | Interaction between Tregs and other cells in AIH. The network shows the interaction of Tregs with other cells as well as the down-regulation of important

inhibitory molecules and cytokines in Tregs of patients with AIH. The dotted lines represent the reported decreased regulation in AIH. CD8+ T cells, Th17 cells, Th22

cells, and Th1 cells contribute to inflammatory liver injury in AIH; these cells, are suppressed by Tregs. LSECs and NK cells contribute to the expansion of Tregs while

HSCs can enhance the suppressive function of Tregs in AIH. Th17 is reported to inhibit Treg through IL-17A. IL-33 can enhance the expression of ST2 on the surface

of Treg, thereby regulating the pro-inflammatory ILC2s in immune-mediated hepatitis.

antigen-specific Tregs may represent a superior therapy option
due to its more specific and potent suppressive function for
effector T cells (112, 113). Based on the above discussion,
enhanced Tregs adoptive transfer may open an avenue for long-
term AIH treatment.

Interaction of Treg With Other Cells in AIH
AIH can be described as a clinical syndrome of the immune-
mediated destruction of hepatocytes. The processes of various
immune and non-immune cells in the hepatic microenvironment
affect each other, forming an interacting network. Tregs, the
main regulators of the immune system, can work with other
cells in the liver, contributing to the disease process of immune-
mediated liver injury (Figure 3). It is well-documented that an
imbalance between Tregs and effector T cells is related to AIH
pathogenesis (114, 115). The Treg/Th17 ratio has been regarded
as a predictor of the degree of liver inflammation, as well as a
therapeutic target in AIH (30, 83, 85, 89, 116). The inability of
Tregs to efficiently suppress IL-17 production by Th17 cells may
be crucial to the pathogenesis of AIH (100). In turn, inhibiting
IL-17 has been proven to increase the expression of Foxp3 by
CD25− cells (ngTregs), which allows ngTregs to differentiate into

functionally stable immune inhibitory cells (108). Additionally,
Tregs in patients with AIH are reportedly unable to regulate
CD8+ T cell proliferation and cytokine production, which may
contribute to the initiation of AIH damage.

The crosstalk of innate immune cells and Tregs has also
been reported recently. A clinical study of type 2 AIH showed
that natural killer (NK) cells display an altered cytokine pattern
characterized by increased IFN-γ and reduced IL-2 production,
which can contribute to impaired Tregs function (107). Using
a Con A mouse model, a study indicated that the IL-33-elicited
hepatic ST2+ Tregs might counteract the inflammatory activity
of type 2 innate lymphoid cells (ILC2s), which participate in the
pathogenesis of immune-mediated hepatitis (117).

Some non-immune cells in the liver may also affect the
behavior of Tregs in AIH. For example, liver sinusoidal
endothelial cells (LSECs) were reported to prime CD4+ T cells
into a CD45RBlow memory phenotype, which might belong to
the expanding group of Foxp3− Tregs in the TF-OVA mouse
model (118). Moreover, Huang et al. (91) also found that hepatic
stellate cells (HSCs) can stimulate allogeneic Tregs proliferation
and can also enhance the suppressive activity of Tregs to inhibit
the proliferation of effector T cells in the ConA mouse model.
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An altered cytokines profile secreted by Tregs in AIH, such as
IL-10, IL-4, and transforming growth factor β (TGF-β), and their
decreased expression of inhibitory molecules such as cytotoxic
T-lymphocytes-associated protein 4 (CTLA-4) and CD39 has
also been reported (96, 100). These changes can influence the
direct and indirect interactions of Tregs with other target cells.
In addition, one study indicated that the reduced levels of T cell
immunoglobulin and mucin domain 3 (Tim-3) on CD4+CD25−

effector cells and of galectin-9 in Tregs contributes to the
impaired immunoregulation in patients with AIH by enabling
effector T cells to evade Tregs (99).

TREGS IN OTHER AUTOIMMUNE LIVER
DISEASES

Studies in other autoimmune liver diseases, such as primary
biliary cirrhosis (PBC) or primary sclerosing cholangitis (PSC),
have also provided evidence that the intrahepatic Tregs may
be affected by the unique microenvironment of AIH. Unlike
in AIH, peripheral and intrahepatic Tregs have long been
well-documented to be numerically and functionally defective
in patients with PBC and murine models of PBC (119–121).
Gershwin et al. has confirmed the important role of Treg
deficiency in the initiation of PBC, which may be due to the loss
of the IL-2 receptor alpha (IL2RA) gene (122–124). They also
achieve successful immunotherapy of PBC by adoptive transfer of
Tregs (125). Moreover, a patient study revealed the level of Tregs
was markedly lower in affected PBC portal tracts compared with
AIH, while the CD8+T cell/FoxP3+ Treg ratio was significantly
higher in the livers of late-stage PBC compared with early-stage
AIH (126). Compared to PBC, the number of intrahepatic Tregs
was reported to be even lower in PSC, which is also associated
with the IL2RA gene (127). One study indicated that Tregs
adoptive transfer and neutralization of IL-12 may be a treatment
strategy to control the cholangitis in PSC (128). Therefore, a
reduced number of Tregs has long been regarded as an initiating
and promoting factor of the disease processes of PBC and PSC.
Compared to PBC and PSC, the increased intrahepatic Tregs in
AIH seem to be a consequence rather than a driver of the disease
process. This hypothesis can explain why the increased Tregs
cannot control the inflammation while the adoptive transfer of
in vitro enhanced Tregs can relieve AIH.

CURRENT TREG-BASED THERAPY IN
AUTOIMMUNE DISEASES

Growing evidence shows the excellent safety and therapeutic
effect of Treg-based therapy. There have been 51 clinical trials
related to Treg-based therapy, with 12 of these trials related to
autoimmune diseases (129). Clinical trials performed in patients
with type 1 diabetes (T1D) (109, 110) demonstrated the efficacy
of Treg therapy in these patients, with no infusion reactions
or cell therapy-related high-grade adverse events. A case report
described a patient with systemic lupus erythematosus (SLE)
treated with autologous adoptive Treg cell therapy (80). The

patient initially developed a transient but then a sustained
increase in the percentage of highly activated Tregs. A recent
study also reported that three patients with amyotrophic
lateral sclerosis (ALS) benefited from expanded autologous Treg
infusions (130). Several clinical trials have been initiated to assess
the safety and efficacy of Treg therapy in other autoimmune
diseases such as inflammatory bowel disease, Guillain–Barré
syndrome, pemphigus vulgaris, and Alzheimer’s disease (129).
Given the important role of IL-2 in Treg survival and expansion
and the better availability of IL-2 in vitro, clinical trials of low-
dose IL-2 in various autoimmune diseases have been undertaken
(41, 131–134). A phase I clinical trial investigating Treg-based
therapy has also been initiated in AIH (NCT02704338) (129).
However, much more research effort is needed before adoptive
Treg therapy can be clinically translated to patients with AIH.

CONCLUSIONS AND FUTURE
PERSPECTIVES

AIH is a chronic and progressive immune-mediated liver
disease that can lead to cirrhosis, hepatocellular carcinoma,
liver transplantation, and death (135–137). The pathogenesis of
AIH largely remains unclear, while the main clinical treatment
consists of immunosuppressive therapy. Although most patients
respond well to immunosuppressants, the disease relapses after
withdrawal. Animal models are crucial tools to better understand
the pathogenetic mechanisms of AIH and to identify potential
therapeutic targets. As yet, there is no widely accepted AIH
mouse model for this research field. The chronic type 2 AIH
mouse model might be a better option to simulate the natural
disease process of AIH. Tregs therapy is now emerging as a
potential treatment route for a wide variety of autoimmune
diseases, while the efficacy of this therapy in AIH remains
unclear. Although there is an increased understanding of the
roles of Tregs in animal models and patients with AIH, whether
their intrahepatic Tregs are impaired or not is not clear. The fact
that the increased number of Tregs in the liver of patients with
AIH are unable to control the hepatitis indicates the impaired
function of Tregs in the special hepatic microenvironment
of AIH. However, even though AIH is not driven by the
impairment of Tregs, Treg-based therapies for AIH might be
effective, providing a potential avenue for the long-term control
of AIH.
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