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T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards
specific self or non-self antigens. This is particularly essential during prenatal/neonatal
period when T cells are exposed to dramatically changing environment and required to
avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert
environmental and food antigens and antigens from non-harmful commensal
microorganisms, promote maturation of mucosal barrier function, yet mount an
appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic
mechanisms promote the generation of prenatal/neonatal T cells with distinct features to
meet the complex and dynamic need of tolerance during this period. Reduced exposure
or impaired tolerance in early life may have significant impact on allergic or autoimmune
diseases in adult life. The uniqueness of conventional and regulatory T cells in human
umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation
for hematological disorders.

Keywords: neonatal period, T cell tolerance, regulatory T cells, conventional T cells, allogeneic hematopoietic stem
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INTRODUCTION

Immune tolerance is a state of unresponsiveness of the immune cells towards specific self or non-self
antigens. It is an essential mechanism to prevent unwanted or self-reactive immune responses. In
allogeneic hematopoietic stem cell transplantation (HSCT), failure to develop immune tolerance to
autoantigens and alloantigens results in chronic graft-versus-host disease (GVHD), a leading cause
of non-relapse morbidity and mortality (1).

Immune tolerance was first discovered in neonatal dizygotic cattle twins with cellular chimerism
that was due to naturally occurring placental anastomoses and exchange of non-self antigens (2).
Anderson et al. then showed that skin grafts between these calves were well accepted (3). Since then,
the concepts of neonatal immune tolerance and transplant tolerance were first described (4, 5).

T cells play an essential role in neonatal immune tolerance. Thymectomy at day 3 (d3Tx) after birth
quickly leads to the development of an autoimmunewasting disease inmicewhich could be rescuedby a
thymus transplant (6, 7). At the neonatal period (from birth through the first month of life in human or
thefirst 1–2weeks inmice), T cells are exposed to a rapidly anddramatically changing environment, not
only from the thymus to peripheral tissues with variable maturity, but also from a relatively pathogen-
free and stable environment in utero to the diversemicrobial environment in the outside world. During
this period, T cells need to avoid rejection of the maternal host, limit autoimmune responses, tolerate
inert environmental and food antigens and antigens from non-harmful commensal microorganisms,
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promote maturation of mucosal barrier function, yet mount an
appropriate response topathogenicmicroorganisms (8). The clonal
deletion of autoreactive T cells in the thymus (central tolerance) (9,
10) and the suppressive activity of regulatory T cells (Tregs) in the
periphery (peripheral tolerance) (11–15) are both crucial in
immune tolerance. But the mechanisms underlying the
uniqueness of neonatal T cell tolerance and its adaptation to the
adult state are just beginning to be understood after decades of
comparison between neonatal and adult T cells. In this review, we
will summarize current knowledge on T cell tolerance in early life
and subsequent advantages of umbilical cord blood (UCB)T cells in
tolerance development in allogeneic HSCT.
T CELL REPERTOIRE BEFORE THYMIC
SELECTION IN EARLY LIFE

The stepwise T cell development, selection, and the generation of
a functional T cell repertoire occur in the thymus (16).
Compared to adult T cells, both human and murine neonatal
conventional T (Tconv) cells and Treg cells have shorter T cell
receptor (TCR) or shorter complementarity determining region
(CDR)3a stretches, fewer N-region additions (more germ line-
encoded clonotypes), and are less clonally expanded (17–27).
Human UCB T cells also revealed higher percentage of
nonfunctional TCRb mRNAs, likely due to suppressed
nonsense-mediated decay mechanism (26). The shorter TCRs
in neonatal T cells do not limit TCR diversity. The results from
deep sequencing and single cell sequencing demonstrate higher
diversity of TCR repertoire in human neonatal Tconv and Tregs
when compared to adult ones (28, 29). In addition, UCB Treg
cells are also shown to have more clones with TCRs specific for
autoantigens (28).

Terminal deoxynuceotidyl transferase (TdT) is responsible
for template-independent nucleotide addition during the V(D)J
rearrangement. It contributes to 90% of TCRab diversity. The
activity of TdT is believed to be low in the fetal period of both
humans and mice. In particular, TdT expression could be only
detected until 4–5 days after birth in mice and beyond 20th week
of gestation in human. Such delayed TdT expression not only
makes a significant contribution to short CDR3 length and less
N-addition in TCRs of human and murine neonatal T cells (26,
30–32), but also leads to relatively high numbers of public
clonotypes shared among human UCB samples (26).

In addition to different diversity, neonatal TCR repertoire is also
biased toward TCRswith high affinity and high cross-reactivity. This
is mainly based on the studies of Tdt-deficient mice but is confirmed
later with other mouse models. T cells lacking Tdt showed increased
affinity of TCR to the a helices of self-MHC (major
histocompatibility complex) (33, 34). One of the surface markers
that can report the TCR avidity for peptide/MHC complexes is CD5.
Higher levels of CD5 (peaked at day 7 after birth) were found in wild
type and several types of mutant murine neonatal Tconv and Tregs
when compared to their adult counterparts (35). However, the high
affinity between TCRs and self-peptide/MHC complexes did not
increase the likelihood to generate autoreactive T cells during
neonatal period or incidence of autoimmune pathologies (36–38),
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at least in a rodent model with the transplantation of NOD thymi to
NOD.scidmice (39). Instead, it promotesTregs’ capability toundergo
proliferation and likely, to modulate specific immune responses (40,
41). Tdt-deficient T cells also had an increased frequency for a given
antigen, including self, commensal, and pathogenic ones (33, 34, 42).
Such promiscuous peptide recognition is clearly an advantage to
defend against a variety of environmental or infectious insults during
neonatal period or during reconstitution after HSCT when the
number of peripheral T cells is limited. Indeed, specific and
competent CD8+ T cell responses against a range of viral infections
(Vesicular Stomatitis Virus, Vaccinia Virus, and Lymphocytic
Choriomeningitis Virus) in vivo have been observed in murine
Tdt-deficient or neonatal T cells (34, 43, 44). In human samples, T
cells inUCBhadhigher level ofCD5expression andhigherprecursor
frequency for certain tumor-associated antigens or pathogens thanT
cells in adults (Table 1) (28, 42, 45). Together with delayed TdT
expression and similar TCR sequencing feature between human fetal
T cells and mouse neonatal T cells, it is believed, although more
evidence is needed, that human TCR repertoire also has high
cross-reactivity.
THYMIC SELECTION IN EARLY LIFE

During thymocyte development, the stochastic V(D)J
recombination of TCR a and b chains inevitably generates
thymocyte clones with high potential for self-reactivity. These
autoreactive clones will either be removed by negative selection
or develop into self-reactive thymic Tregs (tTregs) by agonist
selection (59, 60). Thymic epithelial cells in the medulla
(mTECs) are essential in these thymic selections by displaying
a broad spectrum of self-peptide called tissue-specific self
antigens (TSAs) to developing T cells (61). The expression of
these TSAs in mTECs is regulated, in a significant part, by the
transcriptional modulator autoimmune regulator (AIRE). Other
regulators include but not limited to the transcription factor
forebrain embryonic zinc fingerlike protein 2 (Fezf2) and
mTECs’ autophagy machinery (62–64). Other cell types in the
thymus, including cortical TECs, corneocyte-like mTECs (16),
various types of dendritic cells (DC) (65–67), and B cells (68, 69),
also contribute to negative selection of conventional T (Tconv)
cells and agonist selection of tTregs. These different types of
antigen presenting cells (APCs), with their different ways to
sample and process self antigens, likely have non-redundant
roles in thymic selection and in the determination of negative
selection versus agonist selection (70, 71).

The uniqueness of thymic selection during neonatal period is
not fully understood yet. Most of the evidence so far comes from
murine studies. For instance, the interaction of developing
thymocytes with medullary APCs may be limited due to small
“islands” of thymic medulla in newborn animals in comparison
with large and organized structure in adult ones (39). The
spectrum of peptide presented by various thymic APCs is also
different between neonatal and adult mice. Perinatal mTECs had
a much lower ratio of HLA-DO : HLA-DM (non-classical MHC-
II molecules that regulate peptide loading of MHC-II) and lower
level of CD74/CLIP (MHC-II-associated invariant chain
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peptide) expression when compared to adult mTECs, indicating
that mTECs in young animals have higher efficiency in loading a
diverse repertoires of TSA peptides in the antigen-binding
grooves of MHC-II molecules (27). MHC-IIhiCD8a+

conventional DC (cDC) that can cross-present diverse TSAs to
thymocytes, however, are less in perinatal than in adult thymi
(27). The seeding of migratory DCs, including B220+

plasmacytoid DCs and Sirpa+CD11b+ cDCs, to induce
negative selection against peripheral self- and non-self antigens
in the thymus also takes time, in particular when the number of
DCs and the expression levels of MHC-II, CD86, and IL-12p70
in DCs were low during neonatal period (72–75).

The impactof theuniqueantigenpresentation inneonatal thymus
was demonstrated recently. Tconv cells specific for islet b cells can be
observed within 1 week after birth, and the appearance of Tconv and
tTreg specific for Peptidyl arginine deiminase, type IV (Padi4) and
Adducin 2 (Add2) was restricted to 1–3-week-old mice (39, 76).
Beyond the above indicated period, b cell-, Padi4- or Add2-reactive
CD4 single positive T cells or tTreg cells were depleted in the thymus.
The coincidence of bonemarrow (BM)-derived cells accumulating in
the thymus beyondweaning age indicates the likelihood ofmigratory
DCs in inducing a late stage negative selection of these autoreactive T
cells (76). The second piece of evidence comes from Aire-related
studies.Mathis’s group found that the level ofAire expression and the
repertories of Aire-dependent transcripts in mTECs were
indistinguishable between <3-day-old and 5-week-old mice (27).
However, thymectomyatday3afterbirth, turningoffAire expression
before or shortly after birth, or tuning on Aire expression only after
birth in the inducibleAire transgenic mice quickly led to the wasting
disease and multiorgan autoimmune pathology (77), while turning
off Aire expression beyondweaning age induced a different spectrum
ofpathologies (77–80). Inaddition, themultiorganpathology inAire-
deficient mice could be ameliorated by the adoptive transfer of
perinatal Tregs, but not adult Tregs (27). Collectively, these murine
studies clearlydemonstrate thedifferences in theantigenpresentation
Frontiers in Immunology | www.frontiersin.org 3
machineries and post-selected repertoires between neonatal and
adult thymi. Whether different selection machineries also exist in
humanthymiover thecourseofa lifespan isnot clear.But infantswho
receive fully allogeneic thymi from unrelated infants generate Treg
cellswithdiverse repertoires andTconvbeing tolerant to self aswell as
the thymic transplant (81–83).
TREG CELLS IN EARLY LIFE

Treg cells are an essential mode of immune tolerance that can be
transferred into naïve animals to prevent rejection of tissue/cell
transplantation, development of autoimmune diseases and atopic
disorders, such as allergies (11–13, 84–86). The importance of Treg
cells specifically in fetal tolerance is realized by the onset of IPEX
(immune dysregulation, polyendocrinopathy, entheropathy, X-
linked)-related autoimmunity at second-trimester in humans that
lack functional FOXP3 (87). Using a Foxp3-DTR transgenic mouse
system, we and Yang et al. showed that Treg depletion during the
day 0–10 or day 7–11 age-window quickly resulted in significant
weight loss and autoimmune pathology (27, 41). When Treg cells
were depleted beyond weaning age (35–45-day window), only
scattered individual mouse developed mild autoimmune
inflammation (27). Collectively, these data demonstrate an active
and tight control of fetal/neonatal autoimmune responses by
Treg cells

In addition to self antigens, Treg cell-mediated immune
tolerance to commensal microbiota-derived antigens is also
critical at barrier sites. Notably, the preferential barrier sites for
neonatal Treg regulation are the intestine in humans but the skin in
mouse. In humans, Treg cells with gut tropism (integrin b7
expression) and resting phenotype are found most abundant at
birth and decreased with age, while the frequency of Treg cells with
skin tropism (cutaneous lymphocyte antigen (CLA) expression)
and activated phenotype is increased later in life (55) (Table 1). IL-2
TABLE 1 | Unique features of human Tconv and Treg cells in umbilical cord blood.

Human T cell types in
UCB

Unique features (in comparison with adult counterparts) Reference

Tconv Higher CD5 expression in naïve CD4+ cells (42)
Higher frequency of pathogen-specific and PR1-specific clonotypes with smaller average clonotype size (26, 45)
Higher TCR diversity (28, 46)
Lower numbers of randomly added nucleotides in TCRs without affecting the functional diversity (26)
Higher percentage of nonfunctional TCRb mRNAs (26)
Higher numbers of public clones shared among samples (26)
More naïve CD4+ and CD8+ T cells
Upregulated Treg markers (FOXP3 TIGIT and IKZF2),, after 14-day expansion (28)
Higher expression of inhibitory receptors including CTLA-4 (in CD4+CD28+ cells), LAIR-1, CD31, and CD200 in all T cells (47, 48),
Higher expression of costimulatory molecules including ICOS and CD26 in all T cells; higher/lower IFN-g production and
cytotoxicity upon stimulation in vitro

(49–51)

Enhanced rejection of HLA-mismatched B cell lymphoma in a xenogeneic mouse model (52)
Transcriptional features associated more with cell cycle and innate immune responses and chromatin architecture of CD8+ T cells
are similar to adult effector cells

(53, 54)

Treg More diverse TCR repertoire (28)
Less effector-like cells (28, 55)
More clones with TCRs specific for autoantigens (28)
Higher integrin b7 expression and lower CLA expression (55)
Upon stimulation, Treg cells are more proliferative, have higher percentage of activated/effector cells, and perform better in the
suppression assay

(27, 56–
58)
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and IL-7, but not retinoic acid, promote the expression ofb7 inTreg
cells after thymic egress (55). Reduced tTreg cells in UCB were
found to be associated with higher susceptibility to food allergies in
infants (88). Thus, human neonatal tTreg cells may preferentially
migrate to the gut and promote the establishment of mucosal
immune tolerance (oral tolerance), in preparing for progressive
exposure of microbial, diet, and environmental antigens after birth
(89, 90). The reason for the delayed acquisition of skin homing
potential in human neonatal Treg cells is not clear. But with
impaired barrier function, such as in atopic dermatitis, late
coming Tregs may increase the susceptibility to allergen
sensitization through the skin (55).

In mouse, however, a unique neonatal Treg population was
recently found to migrate to hair follicles and get activated at 1–2
weeks after birth, coinciding with the initial colonization of
microbes to the skin (91, 92). Such rapid recruitment of Treg
cells in neonatal skin depends on Ccl20–Ccr6 pathway
stimulated by commensal bacteria and their surface molecules.
Blocking Treg cell entry into hair follicles during neonatal
window or colonization of bacteria during adult period all
leads to increased antigen-specific effector T cells in the
draining lymph nodes, demonstrating the importance of
murine neonatal Tregs in promoting immune tolerance to skin
commensal microbiota. It further indicates that certain chronic
tissue inflammation in adults may be closely associated with
impaired tolerance to commensal microbiota established during
the neonatal period. Whether murine Treg cells (93–96)
accumulate in other barrier sites, including lung and gut,
during a defined early developmental period is not as clearly
studied as the ones in the mouse skin.

A second difference between human and murine Treg cells is
the timing of appearance, with the former emerging at
gestational week 13 (97, 98) while the latter being detected in
the thymus 2–3 days after birth (27, 99, 100). The frequency of
human Treg cells in CD4+ T cells significantly increases during
the second trimester then decreases during the third trimester.
Within the first week after birth, Treg cell ratio rapidly increases
again (56, 101, 102). Depletion of CD25+ Treg cells enhanced
fetal T cell activation against self and maternal cells, but not
against unrelated donor cells (103). Loss of FOXP3 leads to the
occurrence of autoimmune inflammation specifically at second-
trimester. Thus, the early appearance of human Treg cells in fetus
plays a unique but critical role in maintaining self-tolerance as
well as feto-maternal tolerance (8, 103, 104).

Murine neonatal Tregs and human fetal Tregs also have
common features. They are more proliferative, have higher
percentage of activated/effector cells, and perform better in the
suppression assay in vitro when compared to adult Treg cells (27,
56). The transcriptome of human neonatal/fetal Tregs is also
different from that of adult Treg cells, supporting the enhanced
cell division and suppressive functions (57, 58).
ORIGIN OF T CELLS IN EARLY LIFE

Although having different dynamics in T cell emergence, the
origin of human and murine prenatal/perinatal T cells with
Frontiers in Immunology | www.frontiersin.org 4
distinct intrinsic properties, including short TCR, promiscuous
antigen recognition, and high CD5 expression, is the same, i.e.
both are derived from hematopoietic stem cells (HSCs) from fetal
liver (53, 58, 105–108). High expression of Lin28b and high
expression of let-7 microRNA mark the difference between fetal
liver/thymus and adult BM/thymus, respectively. The detailed in
vivo experiments in murine system further demonstrate that
ectopic expression of Lin28b or loss of Ezh2 in adult BM
hematopoietic stem/progenitor cells (HSPCs) induces
activation of fetal-specific genes (including let-7 target genes)
in HSPCs and fetal-like lymphopoiesis, including the
development of B-1 cells, marginal zone B cells, and gd T cells
(106, 109).

Both human or mouse fetal/neonatal CD4+ T cells
preferentially differentiate into induced Tregs (iTregs) when
compared to adult CD4+ T cells (58, 103, 110, 111). Inhibiting
Lin28b in human fetal CD4+ T cells leads to let-7 upregulation and
reduced Treg cell differentiation (112). Human fetal naïve T cells
also express higher level of Helios, and deletion of Helios results in
impaired Treg differentiation and regulatory function (113). These
results demonstrate that fetal liver-derived T cells have unique
intrinsic properties to promote Treg cell differentiation.
PERSISTENCE OF NEONATAL T CELLS
IN ADULTHOOD

The uniqueness of neonatal T cells and their roles in immune
tolerance are not restricted to early life. Using a fate-mapping
model, Yang et al. found that the number and function of murine
neonatal Tregs were stably maintained in adulthood (27). Thus,
the adoptive transfer of the persisting neonate-derived Treg cells
from adult mice suppressed the progression of multi-organ
autoimmune pathology in Aire-deficient mice. Similarly,
human fetal Treg cells specific for maternal antigens can be
found more than a decade later, right into the teenage year (103).
Therefore, Treg cells produced during a specific ontogenic
window in early life are unique and essential in maintaining
self-tolerance in adulthood.

Notably, the persistence of fetal T cells in young adults is not
limited to Treg cells. The analysis of deep sequencing data of
human TCR repertoire recently reveals that large numbers of
naïve T cell clones without N-region addition (fetal origin) are
public clones and also persist for decades (114). A better
understanding of the impact of these persisting fetal/neonatal
T cells on self-tolerance and immune responses against
pathogen/tumor in adults will thus be important and may
bring benefits in the development of vaccine and therapeutics.
EARLY-LIFE T CELL TOLERANCE
AND UMBILICAL CORD BLOOD
TRANSPLANTATION

Allogeneic HSCT from an HLA-matched related or unrelated
donor has been more and more widely used to treat patients with
November 2020 | Volume 11 | Article 576261
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malignant or non-malignant hematological disorders (115). The
HSCs used in the transplantation can be derived from BM,
peripheral blood, or UCB. Multiple comparisons between the
transplantation of UCB and BM/peripheral blood HSCs have
shown that UCB grafts are associated with lower incidence of
GVHD, and in some cases such as patients with pre-transplant
persistent minimal residual disease, better long-term outcomes
(116). When CD34+ cells from a third-party HLA-haploidentical
donor were transplanted together with unrelated UCB cells, an
early haploidentical engraftment was frequently replaced by
durable UCB engraftment (117, 118). The distinct features of
fetal liver-derived HSCs and Tconv/Treg cells described above
may build the basis for these advantages in UCB transplantation
(UCBT). Whether T cells reconstituted from UCBT could
provide further benefits, such as better self-tolerance and lower
incidence of autoimmune diseases later in life, will be an
interesting question to investigate.
CONCLUDING REMARKS

T cell-mediated immune tolerance is essential in preventing
unwanted or self-reactive immune responses throughout life.
The distinct features of prenatal/neonatal Tconv and Treg cells
provide a unique layer of tolerance against maternal and self
Frontiers in Immunology | www.frontiersin.org 5
antigens, certain allergens, and commensal microbes-derived
products. The in-depth investigation of these T cell populations
in early life may shed light on a better understanding of the
immune responses in infants, the early-life root of certain adult
immune alterations, and the choice and prognosis of UCBT in
treating hematological disorders.
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