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Chimeric antigen receptor (CAR) T cells provide new therapeutic options for patients with
relapsed/refractory hematologic malignancies. However, neurotoxicity is a frequent, and
potentially fatal, complication. The spectrum of manifestations ranges from delirium and
language dysfunction to seizures, coma, and fatal cerebral edema. This novel syndrome
has been designated immune effector cell–associated neurotoxicity syndrome (ICANS). In
this review, we draw an arc from our current understanding of how systemic and
potentially local cytokine release act on the CNS, toward possible preventive and
therapeutic approaches. We systematically review reported correlations of secreted
inflammatory mediators in the serum/plasma and cerebrospinal fluid with the risk of
ICANS in patients receiving CAR T cell therapy. Possible pathophysiologic impacts on the
CNS are covered in detail for the most promising candidate cytokines, including IL-1, IL-6,
IL-15, and GM-CSF. To provide insight into possible final common pathways of CNS
inflammation, we place ICANS into the context of other systemic inflammatory conditions
that are associated with neurologic dysfunction, including sepsis-associated
encephalopathy, cerebral malaria, thrombotic microangiopathy, CNS infections, and
hepatic encephalopathy. We then review in detail what is known about systemic
cytokine interaction with components of the neurovascular unit, including endothelial
cells, pericytes, and astrocytes, and how microglia and neurons respond to systemic
inflammatory challenges. Current therapeutic approaches, including corticosteroids and
blockade of IL-1 and IL-6 signaling, are reviewed in the context of what is known about the
role of cytokines in ICANS. Throughout, we point out gaps in knowledge and possible new
approaches for the investigation of the mechanism, prevention, and treatment of ICANS.
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INTRODUCTION

Neurotoxicity is one of the most common and dangerous
complications of chimeric antigen receptor–modified T (CAR
T) cell therapy (1). CAR T cell therapy utilizes patient T cells that
are genetically modified to express a chimeric receptor consisting
of an extracellular antibody fragment to bind the cancer target,
and intracellular signal transduction domains. When the
receptor binds the cancer target, it transduces a signal to the T
cell to kill the target cell. Patients with refractory or relapsed
hematologic malignancies have shown excellent responses to
CAR T cell therapies (2), but toxicities such as cytokine release
syndrome (CRS) and neurotoxicity continue to pose
clinical challenges.

While neurotoxicity is apparently fully reversible in most cases,
fatal cerebral edema and other life-threatening complications such
as seizures and coma continue to occur both in clinical trials and
with commercial CAR T cell products (3, 4). Because a variety of
cell-based immunotherapies have been associated with neurologic
adverse effects, this novel neurologic syndrome was designated
“immune effector cell–associated neurotoxicity syndrome”
(ICANS) by the American Society for Transplantation and
Cellular Therapy (ASTCT) toxicity consensus group (5). For the
purpose of this review, we will preferentially use “neurotoxicity”
when discussing proposed disease mechanisms, and “ICANS”
when referring to the clinical syndrome, with the understanding
that this review focuses on CAR T cell mediated neurotoxicity and
only makes brief mention of other immune effector therapies.

The role of secreted inflammatory mediators has been of great
interest in efforts to understand the pathophysiology of ICANS.
Systemic cytokine release and the severity of CRS are the most
clearly defined risk factors for ICANS, as reported in multiple
clinical trial cohorts in children and adults, in B cell leukemia
and lymphoma, and with both CD28 or 4-1BB costimulated
CAR T cell products (6–13). Therefore, a detailed examination of
the role of the inflammatory secretome in the development of
neurotoxicity may shed light on the pathophysiology of this still
poorly understood complication (1).

In addition to direct effects of proinflammatory mediators on
the CNS, there may be a contribution of cellular toxicity, such as
from infiltrating T cells, macrophages, or other cell types. To
date, there is no direct evidence that CD19, CD22, or BCMA-
directed CAR T cells cause on-target, off-tumor toxicity in the
CNS due to the CAR binding antigen on normal tissue.
Abbreviations: ALL, acute lymphoblastic leukemia; BBB, blood-brain-barrier;
BCMA, B cell maturation antigen; CLL, chronic lymphocytic leukemia; CAR,
chimeric antigen receptor; CRS, cytokine release syndrome; CSF, cerebrospinal
fluid; CNS, central nervous system; CXCL10, C-X-C motif chemokine ligand 10,
also known as interferon-g-inducible protein 10 (IP-10), which is the name used
by most studies cited here; EGFRvIII, epidermal growth factor receptor variant III;
GM-CSF, granulocyte-macrophage colony-stimulating factor; IFNg, interferon
gamma; ICAM-1, intercellular adhesion molecule 1; ICANS, immune effector cell–
associated neurotoxicity syndrome; IL, interleukin; IL-1RA, interleukin-1 receptor
antagonist protein; LPS, lipopolysaccharide; MRI, magnetic resonance imaging;
NHL, non-Hodgkin lymphoma; TNF, tumor necrosis factor, referred to in most
studies cited here as TNFa; TNFR, tumor necrosis factor receptor; TIE2,
Angiopoietin-1 receptor; VCAM-1, vascular cell adhesion protein 1.
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In this review, we will examine the following key questions, as
summarized in Table 1:

1. Which secreted mediators are associated with neurotoxicity?
Consistent association between specific inflammatory
mediators and neurotoxicity risk may suggest the highest-
yield candidates for further investigation. Here, we will
discuss the current evidence for involvement of both
cytokines and other secreted factors such as angiopoietins
in ICANS pathogenesis, and their contribution to other
neuroinflammatory conditions that may have mechanistic
pathways in common with neurotoxicity,

2. Which cells secrete these inflammatory mediators? It is clear that
CAR T cells do not act alone, and activated endothelium and
monocytes/macrophages have also been implicated in ICANS-
related cytokine production. We will examine evidence for and
against a direct role of cellular effectors during neurotoxicity,

3. How do inflammatory mediators act on the CNS? Cytokines
have potential effects on many components of the CNS,
including the neurovascular unit, which shields the brain
from circulating effectors. Alterations in cytokine signaling
during neurotoxicity may results in direct cytotoxic effects, or
alterations in glial solute handling, neuronal excitability,
neurotransmitter production, and cerebral perfusion.
Understanding the response to systemic inflammation by
individual cell types in the CNS will enable us to make sense
of the complex and often contradictory data in the literature,

4. How can this pathophysiologic process be modulated to improve
clinical outcomes? The complex web of possible neurotoxic
interactions makes it challenging to predict which
components could be modulated to alter the system in such a
way to still allow full CAR T cell efficacy without causing
neurologic dysfunction. The most informative approach right
now is to critically examine clinical and nonclinical data for
evidence of efficacy in modulating neurotoxicity, and design
rigorous clinical interventional studies that can be integrated
with both research and commercial CAR T treatment. In
addition, we will discuss putative areas of intervention that
have not yet been attempted in the clinic.
CLINICAL PHENOTYPE OF NEUROLOGIC
DYSFUNCTION IN CAR T CELL THERAPY

To begin, we will review the typical clinical presentation and impact
of ICANS to emphasize the features that may shed light on a
pathophysiologic understanding from a cytokine perspective.
Comprehensive reviews of clinical presentation, findings on
clinical studies such as brain imaging, CSF examination, and
electroencephalography (EEG), as well as toxicity grading and
interventions, are available elsewhere (1, 14–18).

Incidence of ICANS
Neurologic adverse events have been reported for all CAR T cell
products with definitive clinical efficacy in hematologic
malignancies (Table 2). This includes CAR T cells directed
December 2020 | Volume 11 | Article 577027
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against CD19 [for acute lymphoblastic leukemia (ALL), non-
Hodgkin lymphoma (NHL), and chronic lymphocytic leukemia
(CLL)]; CD22 (to treat ALL); and B cell maturation antigen
(BCMA) to treat multiple myeloma. Rates of ICANS vary from
as low as 2% to as high as 60%–70% (10, 14, 37). For ease of
comparison, we have plotted the reported rates of ICANS as a
function of CRS for all published clinical studies that provided
this information (Figure 1). Much of the variability in rates of
ICANS can be explained by variability in CRS, where studies
with lower rates of CRS also have less ICANS. However, some
trials report much higher or lower rates of ICANS than can be
explained by CRS alone. Some of this additional variability might
be accounted for by differences in grading schemes. Most of the
pivotal CAR T cell trials employed the Common Terminology
Criteria for Adverse Events (CTCAE) toxicity criteria, whereas
more recent investigations have utilized the ASTCT consensus
ICANS grading scheme (5). Other causes for variability likely
include patient population characteristics, properties of
individual CAR constructs, and the type of malignancy treated.

For CAR T cells directed against solid tumors, the cytokine-
related toxicity profiles are not as well defined. Brain tumor-directed
CAR T cells have been associated with transient neurologic events
such as seizures and focal weakness (40, 41), which may be more
likely related to local brain inflammation and edema, rather than a
systemic response. There are no published reports to date of
neurologic adverse events during treatment with CAR T cells for
Frontiers in Immunology | www.frontiersin.org 3
non-CNS solid tumors. One possible explanation is the fact that
CAR T cell proliferation and cytokine release require target
recognition. Robust anti-tumor activity remains elusive in solid
tumor CAR T cells, and consequently limited CAR T cell
proliferation and cytokine release take place.

Immune effector cell engaging therapies can cause neurologic
toxicity even in the absence of adoptive cell transfer.
Blinatumomab, a bispecific CD3/CD19 T cell engager used in
treatment of ALL, can cause severe CRS, and neurotoxicity
occurs in 40%–50% of patients (42, 43). The most common
manifestations are tremor, dizziness, paresthesia, and confusion
(44). In contrast to CAR T cells, the presence of CRS does not
appear to increase the risk of neurotoxicity. In a cohort of 225
patients treated with blinatumomab, the incidence of
neurotoxicity was 58% in patients with CRS, and 51% in
patients without CRS (44). Blinatumomab induces transient
rises in cytokines, including IL-2, IL-6, IL-10, IFNg, and TNF,
which are most pronounced in the first cycle when neurologic
symptoms are also most common (45, 46). Blinatumomab can
induce endothelial activation as evidenced by increased serum
angiopoietin-2 in treated patients, and in vitro can cause
increased adhesion of T cells to endothelial cells (47).

Time Course of ICANS
The typical ICANS time course is monophasic, with symptoms
quickly ramping up to maximum and then improving over time,
TABLE 1 | Key points for cytokines and effector cell types.

Topic Key Points

Mediators likely or possibly
associated with ICANS

IFNg, IL-15, IL-6, IL-10, GM-CSF, IL-2, IL-2Ra, IL-1RA, CXCL10, Granzyme b

Mediators likely NOT associated
with ICANS

IL-4, IL-5, IL-7, IL-13, Ang-1, perforin

Mediators with indeterminate
ICANS association

Ang-2, Ang2/1 ratio, CRP, EGF, eotaxin, FLT3L, Fractalkine, GCSF, GRO, Granzyme a, IFNa, IL-17, IL-18, IL-1a, IL-1b, IL-2, IL-
22, IL-3, IL-8, MCP-1, MIG, MIP-1a, MIP-1b, PIGF, sIL6R, SVCAM1, TGFb1, TNF, TNFRp55, TNFRp75, VEGF

CSF cytokines Most commonly similar to serum levels

IL-15 Regulates T cell effector function
Can exacerbate neuroinflammation and cerebral edema in animal models

IFNg Released by proliferating CAR T cells
Complex regulator of CNS response in viral infection and autoimmunity

IL-1b Produced by monocytes/macrophages, processed in inflammasome
Key mediator of CNS response to injury, inflammation, and neurodegeneration

GM-CSF Myeloid proliferation and activation, CD4+ T cell activator

IL-6 Key mediator of CRS
Modulates CNS response to injury

Angiopoietin-Tie2 axis Increased Ang-2 signaling activates endothelial cells
May provide link between cytokine release and endothelial dysfunction

IL-10 Primary role as anti-inflammatory counter regulator, but may also have pro-inflammatory effects in the CNS.

CAR T cells CAR T cells can produce most ICANS-associated cytokines

Monocytes/macrophages CAR T cells can induce monocyte/macrophage inflammatory responses, which can be amplified by autocrine feedback loops

CNS resident cells (endothelium,
pericytes, microglia, astrocytes)

Can respond to and produce many ICANS-associated cytokines
Bolded secreted mediators are discussed in detail in the text.
December 2020 | Volume 11 | Article 577027
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although waxing and waning can occur. Rapid development of
ICANS symptoms is commonly observed in cases of fatal
cerebral edema, where patients can go from being
neurologically normal to dying from brain herniation within
24 h. Neurologic signs and symptoms typically begin 3–6 days
after CAR T cell infusion, with the peak of symptoms around day
7 or 8, and resolution by days 14–21 (7, 8, 11, 12). Severe ICANS
symptoms are more frequently observed in cases when CRS
develops early (7), which may be due to a high dose of CAR T
cells, or unusually robust and rapid CAR T cell proliferation.
Neurologic adverse events typically occur after the onset of CRS,
and it is not unusual for ICANS to develop in the setting of
improving or resolved CRS. This observation supports the
hypothesis that cytokine release contributes to the
development of neurotoxicity, with a lag of several days
between the peak of cytokine levels and the peak of neurologic
symptoms. ICANS can also develop in the absence of CRS,
although this is less common (1, 12).

Signs and Symptoms
To understand the pathophysiology of ICANS, it is important to
consider whether there are parallels between CAR-T cell related
neurotoxicity and other neurologic sequelae that occur with
systemic immune activation. Overall, the constellation of
December 2020 | Volume 11 | Article 57702
TABLE 2 | CAR T cell clinical trials with reported incidences of CRS and neurotoxicity.

CAR construct CRS (%) sCRS (%) ICANS (%) sICANS (%)

ALL
Grupp et al. (19) CD19 4-1BBt

– 13A – 9A

Park et al. (20) CD19 28z 85M 26 44C 42
Maude et al. (9) CD19 4-1BBt 77P 46 40C 13
Fry et al. (21) CD22 4-1BB 76C* 0 25C 0
Gardner et al. (22) CD19 4-1BB 93C* 23 44C* 21
Turtle et al. (23) CD19 4-1BB 83C 23 50C* 50
Lee et al. (24) CD19 28z 75C* 30 30C 5
Maude et al. (25) CD19 4-1BBt 88C* 27 43C –

NHL
Brudno et al. (26) hCD19 28z 80A 10 20C 5
Pasquini et al. (4) CD19 28za 83A 14 61A –

Jaglowski et al. (3) CD19 4-1BBt
– 4A – 4A

Kochenderfer et al. (27) CD19 28z – 18C – 55C

Neelapu et al. (10) CD19 28za 93L 13 64C 28
Schuster et al. (28) CD19 4-1BBt 57P 18 39C 11
Turtle et al. (29) CD19 4-1BB 63C* 13 28C* 28
CLL
Fraietta et al. (30)# CD19 4-1BB 69C 38 6C 0
Turtle et al. (31) CD19 4-1BB 83C* 8 33C* 25
Hodgkin Lymphoma
Ramos et al. (32) CD30 28z 0C 0 0C 0
Wang et al. (33) CD30 4-1BB 0C 0 0C 0
Multiple Myeloma
Raje et al. (34) BCMA 4-1BB 76L 6 42C 3
Cohen et al. (35) BCMA 4-1BB 88P 32 32C 12
Brudno et al. (36) BCMA 28z 93C 29 – 14C

Zhao et al. (37) BCMA 4-1BB 90L 7 2C 0
Ali et al. (38) BCMA 28z 50C 25 25C 8
AML
Ritchie et al. (39) LEY 28z 25C 0 0C 0
sCRS, severe CRS (grade ≥ 3). sICANS, severe ICANS (grade ≥ 3). CRS and ICANS grading systems used by each trial is denoted by superscripts as follows (15): A, ASTCT criteria; C, CTCAE
criteria; L, Lee criteria; P, PENN/CHOP criteria; M, MSKCC criteria; *, modified, please refer to the individual publication for details. -, not reported. #, toxicities only reported for responders.
FIGURE 1 | Correlation of incidence of neurotoxicity and CRS reported by
clinical trials listed in Table 2. The solid line shows the linear regression,
R2 = 0.4523.
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typical signs and symptoms appears to be relatively specific to
ICANS, and especially neurotoxicity after CAR T cells for
hematologic malignancies. The majority of experience has been
in patients treated with CD19-directed CAR T cells, but the
syndrome appears similar in BCMA- and CD22-targeted CAR
T therapies.

The most prevalent ICANS symptom by far is transient
cognitive impairment. This is variably described by authors as
confusion, delirium, or encephalopathy, and predominates in
both children and adults, as well as in patients with different
underlying hematologic malignancies (6–8, 12, 48). Cognitive
dysfunction is often associated with a striking phenotype of
language dysfunction, ranging from word finding difficulty to
mutism. Even though language and/or handwriting disturbance
affects the majority of patients who develop ICANS, it is almost
never associated with focal abnormalities on MRI that would
implicate injury localized to recognized language areas of
the brain.

Although tremor and headache are relatively nonspecific and
are thus not considered core symptoms of ICANS for diagnostic
purposes, they commonly coexist with or precede more definitive
neurologic impairment. Altered level of consciousness occurs in
more severe cases, and can lead to coma and requirement for
mechanical ventilation. Seizures, both clinical convulsions and
electrographic seizures without a motor correlate, occur in
upward of 5%–10% of patients, with incidence varying from
0% to 30% after CD28-costimulated CD19-CAR T cells, and 3%–
14% with 4-1BB CD19-CARs (14). Focal neurologic symptoms
are less common, although EEG commonly shows focal
abnormalities (11, 49, 50). Rarely, cortical cytotoxic edema
seen during acute ICANS can evolve into chronic injury with
persistent focal dysfunction, and evidence of gliosis on
histopathology (7, 8).

The most feared neurologic complication is cerebral edema,
which is fatal in most cases. Although comprehensive data is
currently not available, we estimate that 1%–2% of CD19-CAR
T–treated patients develop cerebral edema based on the reported
incidence across clinical trials. Cerebral edema has not been
described with other CAR T cell products or other cancer
immunotherapies. Cerebral edema has occurred in children
and adults, in patients with ALL, NHL, and CLL, and in CD28
and 4-1BB costimulated CAR T cell products (7, 28, 51–54).
Many of the hypotheses on ICANS pathophysiology are based on
findings in patients with severe or fatal neurotoxicity, such as
microvascular disruption, endothelial activation, and brain
edema. However, more research is needed to determine
whether these are present to a milder degree in reversible
ICANS, or whether the pathophysiologic mechanisms
are distinct.

Imaging
Imaging findings in ICANS have some striking similarities with
MRI patterns seen during CNS inflammatory conditions, and
some types of CNS infections.

The first pattern that can be seen in all three is leptomeningeal
enhancement and T2 hyperintensity in the cerebral sulci (7, 11), an
imaging appearance which is suggestive of infectious or
Frontiers in Immunology | www.frontiersin.org 5
inflammatory meningitis. However, CSF cell counts are typically
only mildly elevated during ICANS (1). An explanation of this
finding may be an opening of the meningeal blood-CSF barrier,
with meningeal vessels becoming more permeable (55).

The second finding that can be seen in ICANS, CNS
inflammation, or CNS infection is T2 hyperintensity and swelling
of the bilateral thalami, indicative of interstitial or vasogenic edema
(8, 12). This can be associated with diffusion restriction in the same
area, which suggests additional cytotoxic edema. This pattern of
symmetric thalamic change is quite common in multiple
neuroinflammatory conditions, including acute demyelinating
encephalomyeli t i s (ADEM) (56) , acute necrotiz ing
encephalopathy of childhood (ANEC) (57), and arboviral
encephalitides (58). In addition, the thalami are commonly
affected in a number of neurometabolic derangements, including
hypoxia and mitochondrial dysfunction, and in thrombotic
microangiopathies such as hemolytic-uremic syndrome (59). It is
unknown what causes the specific susceptibility of this brain region,
but it may be due to differences in energy demand or microvascular
blood supply. The brainstem, especially the medulla, can also
demonstrate interstitial or cytotoxic edema in severe cases of
ICANS, typically associated with concomitant changes in the
thalami and other deep gray matter structures.

Other common patterns of MRI abnormalities during ICANS
include symmetric T2 hyperintensities in the supratentorial
white matter, diffusion restriction in patchy areas or cortex
and/or white matter, and reversible interstitial edema in areas
of prior CNS injury such as from radiation or medication toxicity
(7, 8).

In conclusion, CNS imaging changes are typically symmetric,
and have a predilection for uniquely susceptible brain regions,
such as the thalami and deep gray matter. This suggests that
ICANS may be triggered by a systemic process, such as systemic
cytokine elevation, and that it may engage final common
pathways that are active during other types of CNS infection
or inflammation.

CSF Analysis
The interpretation of CSF measurements in ICANS has been
hampered by the fact that CSF is rarely obtained from CAR T
recipients without ICANS during the 10–14 days following CAR
T cell treatment (the typical time frame for ICANS
development). Therefore, it is not known whether the findings
during acute ICANS would also occur in patients who have CAR
T cell expansion but no ICANS.

CAR T cells are found in the CSF of most patients who have
had successful CAR T cell expansion. In a pediatric study of
CD19-CAR T cell therapy for ALL, all subjects underwent
lumbar puncture on day 21 after CAR T cell infusion (8). CAR
T cells were found in the CSF of all patients with ICANS, but also
in 90% of patients without neurological symptoms. These
findings suggest that trafficking of CAR T cells into the CSF
space is not a primary mechanism of neurotoxicity.

CSF protein is frequently very abnormal during ICANS, with
median levels of 80–110 mg/dl, and occasional values over 1,000
mg/dl (7, 8, 11, 12). The CSF/serum albumin quotient is
increased, and higher protein levels were associated with more
December 2020 | Volume 11 | Article 577027
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severe neurotoxicity (12). The composition of the elevated CSF
protein has not been reported in the literature, and it is therefore
unknown whether it represents mainly leakage of serum proteins
through a permeable blood-CSF barrier, or additional local
synthesis in the CNS. Levels of cytokines in the CSF are
frequently quite elevated (see below), but usually mirror the
levels found in the serum, with only some studies reporting
elevation above serum levels for some analytes. These data
suggest that there is increased access of the systemic secretome
to the CNS via the blood-CSF barrier.
SECRETED MEDIATORS ASSOCIATED
WITH NEUROTOXICITY IN
IMMUNOTHERAPY

Patient Cytokine Profiles
Cytokine measurements in the serum/plasma and CSF were
performed in many of the pivotal clinical trials that established
the efficacy of CAR T cell treatment. We conducted a
comprehensive literature search to identify all published
clinical trials of CAR T cells that measured levels of secreted
mediators in serum and/or CSF during the 21-day period
following CAR T cell infusion, and who reported whether or
not these were associated with risk of ICANS. We identified 8
studies that reported cytokine associations with ICANS (6–8, 10,
12, 27, 35, 60). These studies employed a variety of cytokine
panels that were evaluated using either bead-based or
electrochemoluminescence assays. The findings from these
studies are summarized in Table 1 and Figure 2.
Frontiers in Immunology | www.frontiersin.org 6
Important Caveats for Interpreting Clinical
Cytokine Profiles in ICANS
When interpreting clinical cytokine measurements, several
limitations to the data must be considered: the confounding
effect of concurrent CRS, and variability in ICANS grading,
comparison groups, cytokine panel selection, timing of
samples, and cytokine-directed interventions.

The most important obstacle to identifying neurotoxicity-
specific cytokines and other signaling molecules is the fact that
CRS is often present simultaneously. This may obscure the
importance of some markers, while others may appear strongly
associated with ICANS when they are actually more reflective of
the higher rates of concurrent CRS in patients with ICANS. Some
investigators have attempted to control for the presence of
concurrent CRS by reporting cytokine elevations that were
exclusively associated with ICANS but not CRS, although
methodologies for comparison and results have been
inconsistent. In a pediatric study of CD19-CAR T cells, 28 of
43 cytokines on a panel were associated with ICANS. However,
only IL-2, soluble IL-4 receptor, hepatocyte growth factor, and
IL-15 were uniquely elevated in patients with neurotoxicity, but
not in patients with CRS alone (6). In a study of BCMA-CAR T
cells for multiple myeloma, CXCL10 and IL-7 were the only
cytokines that were elevated in ICANS but not CRS (35). In
another pediatric CD19-CAR study, patients were stratified by
CRS grade to account for the confounding effect of CRS. IL-10
and granzyme B, but not IL-6 and IFNg, were significantly higher
in patients with ICANS compared to those who had the same
CRS grade but no ICANS (8). However, most investigators have
not attempted to control for the presence of CRS, and therefore,
we are summarizing reported associations of secreted markers
FIGURE 2 | Reported associations of serum and CSF cytokine levels with ICANS. All published studies that reported association of cytokine measurements with
ICANS are summarized. The first column shows the ICANS grades that were compared to determine whether there was an association of cytokine levels with either
presence or absence of ICANS in half of the studies, or between none/mild and severe ICANS in the other half. In studies that reported CSF cytokine measurements,
baseline samples were compared to those obtained during acute ICANS.
December 2020 | Volume 11 | Article 577027
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with neurotoxicity irrespective of whether the patients may have
had concurrent CRS.

Variability of ICANS grading and assignment to comparison
groups may further complicate the interpretation of cytokine
measurements, rendering it impossible to directly compare the
absolute levels of cytokines between studies. For example, some
investigators compared patients with no ICANS against those
with any grade of neurological symptoms, while others compared
mild versus severe ICANS, or association of specific cytokines
with specific neurologic signs and symptoms. Therefore, for the
remainder of the review, we have adopted a simple categorization
of “associated with ICANS” versus “not associated with ICANS”.

An additional concern is that potentially important
inflammatory mediators were not measured by the majority of
studies. The reported cytokine panels were typically designed to
better understand the signaling environment that supports CAR
T cell proliferation and anti-tumor activity, rather than being
neuroinflammation-specific. Further, some authors report their
findings for all tested cytokines, whether they were significantly
associated with ICANS or not, while others report only the
statistically significant associations. This may lead to an under-
reporting of markers that are consistently found to NOT be
associated with ICANS, hampering our ability to identify
pathways that are unlikely to contribute to ICANS. Despite
these caveats, consistent patterns emerge from the literature.

Serum Cytokines
Increased serum levels of IFNg and IL-15 were associated with
ICANS in every study that investigated these cytokines. Other
markers with significant association in a majority of studies
include IL-6, IL-10, GM-CSF, IL-2, IL-1RA, and CXCL10. A
mixed pattern emerges for IL-1b, IL-8, and TNF. Consistent lack
of association was found for a few cytokines, for example, IL-4
levels were not associated with ICANS in any of the 4 studies that
reported them. For the majority of other markers, it is difficult to
draw conclusions because they have been investigated by
few studies.

CSF Cytokines
Since levels of inflammatory mediators in the CNS parenchyma
cannot be directly measured in patients, CSF levels are frequently
used as a proxy. Molecules are trafficked across the epithelial
barriers of the choroid plexus into the CSF (61), which is distinct
from the active transport of cytokines from the blood into the
brain parenchyma via the neurovascular unit (62). Systemic
inflammation may alter the permeability of these barriers to
cytokines (63), and induce additional local cytokine production
in the CNS by infiltrating immune cells and CNS resident cell
types (discussed below).

Three studies reported cytokine analyses in the CSF (7, 8, 12).
All reported comparisons between CSF cytokine levels before
and after CAR T cell infusion, and between patients with
different degrees of ICANS, but not between patients with and
without ICANS. This is due to the unavailability of control CSF
during the acute post-infusion phase from patients who did NOT
develop ICANS. Therefore, we do not know whether elevation of
CSF inflammatory markers above baseline is related to the
Frontiers in Immunology | www.frontiersin.org 7
pathophysiology of ICANS, or whether it may simply represent
spillover of serum cytokine levels. To address this question, all
three studies compared acute CSF and serum cytokine levels to
determine whether there might be local cytokine synthesis in the
CNS. In most cases, CSF cytokine elevations during acute
neurotoxicity mirrored those in the serum (7, 8, 12).
Enrichment of IL-8, CXCL10 and MCP-1 was seen in the CSF
compared to the blood in some patients with severe
neurotoxicity (12), but others found no cytokines that were
higher in the CSF than in the serum (7, 8).

Cytokine Kinetics
The timing of cytokine production is tightly linked to the kinetics
of CAR T cell expansion. Importantly, the peak of CRS is
approximately 1 day before the peak of ICANS, and both
occur prior to the peak of peripheral blood CAR T cell counts
(7, 64). In the blood, CAR T cell counts typically rise from less
than 1 cell/ml on day 3 to 100–1,000 s of cells/ml blood on day 8–
14 after infusion, with the steepest slope of increase occurring
around day 5 (65). After the peak, the CAR T cell numbers
contract again, although they may remain detectable in the
peripheral blood for months and years (20).

Only two studies have reported detailed data on the
association of cytokine kinetics over time with neurotoxicity
(7, 12). The peak levels of serum cytokines that are associated
with increased neurotoxicity risk typically occur around days 5–7
after CAR T cell infusion, when CAR T cell doubling rate is the
fastest. Exceptions include IL-2 and MCP-1, which peaked
earlier, between days 1 and 3 (7, 12).

Several investigators have attempted to identify early markers
of toxicity risk, which would allow risk stratification of patients
and preventive treatment with cytokine blockade. In patients
with severe neurotoxicity, IL-6, IFNg, IL-2, IL-10, IL-15, and
MCP-1 were already significantly higher within the first 36 h
after CAR T cell infusion in both studies reporting these time
points (7, 66). Results have been less consistent when trying to
identify cytokines that predict neurotoxicity risk prior to
lymphodepleting chemotherapy and CAR T cell infusion. One
study reported elevations of several cytokines, including IL-6 and
GM-CSF, pre-therapy in patients who would go on to develop
severe neurotoxicity (66). Other studies have not found the same
association (7, 8).

IL-15
IL-15 is one of the most consistently identified systemic and CSF
markers of ICANS. All 6 studies that measured serum
concentrations of IL-15 showed a correlation with ICANS
(Figure 2). IL-15 concentration in the CSF was higher during
ICANS than at baseline in the one study in which it was reported.

IL-15 plays a key role in T cell effector functions, and is used
during generation of CAR T cells to induce proliferation and
activation (67). Higher baseline or peak serum IL-15 levels have
been associated with better anti-tumor responses after CD19-
CAR T therapy, but also higher rates of severe ICANS and CRS
(27, 68). It is possible that the association of IL-15 with ICANS is
a bystander effect, where higher IL-15 levels are key for robust
CAR T cell proliferation, thereby increasing the risk of CRS and
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ICANS without a direct role of IL-15 on the CNS. However, there
is some evidence that IL-15 can cause neurotoxicity. Treatment
of non-Hodgkin lymphoma with lymphodepletion followed by
haploidentical natural killer cell-enriched donor cells and
recombinant IL-15 was associated with neurotoxicity in 38% of
patients. Interestingly, neurotoxicity and CRS only occurred if
the IL-15 was given subcutaneously, but not if administered
intravenously (69, 70). IL-15 is expressed by tissues as a danger
signal that communicates to the immune system that the tissue is
under attack. It provides co-stimulation to cytotoxic T cells to
instruct them to eliminate infected cells (71). In mice, IL-15
induces cytokine production in microglia, which could amplify
the local inflammatory response in the CNS (72). Increased IL-15
expression in astrocytes led to worsening of cerebral edema in
mice subjected to experimental intracranial hemorrhage (73).
Thus, overactive IL-15 signaling is a plausible contributor to
ICANS. Unfortunately, blockade of IL-15 signaling might
increase the risk of an unsatisfactory antitumor response.

IFNg
IFNg is a key cytokine that participates in the regulation of
complex networks of soluble mediators in viral pathogen
response and autoimmunity (74–76). Increased serum IFNg
levels during the acute post-CAR T phase were reported as
associated with ICANS by every study we evaluated (Figure 2).
In addition, all 3 studies that measured CSF levels found IFNg
increases above baseline in patients with ICANS.

IFNg is released by proliferating CAR T cells, and production
of IFNg and other pro-inflammatory cytokines differs between
types of CAR T cell therapies. In patients treated with a CD19-
CAR T cells incorporating a fully human CAR, lower IFNg
production by the CAR T cells in vitro was associated with lower
serum levels of IFNg and decreased rates of ICANS, compared to
T cells modified with a non-humanized CD19-CAR (26).

Preclinical studies paint a complex picture of the regulatory
role of IFNg in CNS inflammation. IFNg mediates activation of
infiltrating immune cells such as T cells, monocytes/
macrophages, and natural killer cells (75), and is also
responsible for microglial activation and antigen-presenting
function (77). In endothelial cells, IFNg modulates gene
expression (78) This can, for example, alter leukocyte adhesion
to the endothelium by decreasing expression of E-selectin, while
increasing ICAM-1 and VCAM-1 (79).

The in vivo effects on CNS inflammation are likely regulated
by an interplay of multiple cell types at the neurovascular unit
(80). In mice, IFNg is required for trafficking of T cells and
monocytes into the CSF via the choroid plexus (81). In rats,
direct injection of IFNgginto the brain caused demyelination,
whereas systemic administration of IFNg protected against
demyelination in animals with experimental autoimmune
encephalomyelitis (82). IFNg can stabilize brain endothelial
tight junctions and prevent infiltration of leukocytes into the
brain in experimental autoimmune encephalomyelitis (83), but
conversely causes BBB leakage during reovirus infection (84). In
addition, the effects of IFNg differ by brain region, likely due to
differential effects on infiltration of encephalitogenic T cells (82).
Frontiers in Immunology | www.frontiersin.org 8
IL-1b
IL-1b signaling is a key mediator of CNS response to injury,
inflammation, or neurodegeneration (85). It is primarily
produced by monocytes and macrophages and processed in the
inflammasome. In human disease it is considered a mediator of
autoinflammation that does not involve T-lymphocyte mediated
autoimmunity (86). Unfortunately, only three clinical CAR T
studies included IL-1b or the IL-1 receptor antagonist (IL-1RA)
on their reported analyte panels. While IL-1RA was associated
with ICANS in all three studies, only one of three studies noted
an increase in IL-1b (Figure 2). No CSF data are available in
CAR T cell patients. Despite these equivocal associations, there
has been strong interest in exploring IL-1 blockade as a strategy
for preventing ICANS. One rationale is the fact that IL-1
blockade is helpful in macrophage activation syndrome and
hemophagocytic lymphohistiocytosis, which share many
clinical and laboratory features with CRS (87, 88). The IL-1
receptor antagonist anakinra has excellent CSF penetration, and
was able to reduce CSF IL-6 and TNF levels in patients with
neonatal-onset multisystem inflammatory disease (89). The
second rationale comes from a key preclinical study (90),
which showed a direct role for IL-1 in CAR T cell related
neurotoxicity in a humanized mouse model. After treatment
with human CD19 CAR T cells, SGM3 mice developed
generalized paralysis and seizures, which could be prevented by
anti-IL-1 pretreatment. In this mouse model, neurologic changes
did not develop until 28–30 days after CAR T treatment when
CRS had long resolved, and was characterized by meningeal
infiltration of human monocytes but no CNS parenchymal
changes. IL-1b production by CNS-infiltrating neutrophils and
monocytes is required for the development of experimental
autoimmune encephalomyelitis, which can be partially
replicated by injection of IL-1b (91). Brain endothelial cells
express the IL-1 receptor 1, and IL-1b activity is amplified by a
paracrine loop between infiltrating immune cells and the brain
endothelium (92). Results of clinical trials of IL-1R antagonism
(discussed further below) will be highly informative in guiding
clinical practice.

GM-CSF
GM-CSF was associated with ICANS in five of six studies in
serum, but did not increase during ICANS in the CSF in the
single study that reported CSF measurements (Figure 2). A
putative role for GM-CSF in the development of neurotoxicity
is supported by animal studies. Although GM-CSF is largely
responsible for myeloid cell proliferation and activation, it is also
a critical mediator of autoimmune or inflammatory activity of
CD4+ T cells. CNS-infiltrating helper T cells secrete GM-CSF,
which then activates microglia, leading to further secretion of
pro-inflammatory mediators by the microglia (93). In a
xenograft study, mice implanted with primary ALL blasts
developed hunched posture, motor weakness and CRS after
treatment with human CD19-directed CAR T cells (94). The
mice also had increased contrast enhancement on brain MRI,
which was ameliorated by concurrent treatment with the GM-
CSF neutralizing antibody lenzilumab.
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IL-6
IL-6 was associated with ICANS in five of seven studies in serum,
and increased in CSF from baseline in all 3 studies that measure it
(Figure 2). A causative role for IL-6 in ICANS is not established,
although its importance in CRS certainly makes it deserving of
further study. Current data support a key role of IL-6 release in the
pathogenesis of CRS, based on correlation of markedly elevated IL-6
levels with signs and symptoms of CRS (13, 64), as well as
observational evidence of rapid resolution of CRS after
administration of the IL-6 receptor blocker tocilizumab (95).
However, the role of IL-6 in mediating neurotoxicity remains
uncertain, based on clinical evidence that IL-6 blockade may not
prevent the development of ICANS. Observational studies (further
discussed below) reported equal or higher rates of ICANS when IL-
6 blockade was used preemptively (8, 53, 96). In addition, clinical
experience shows that tocilizumab typically fails to induce rapid
improvement of established ICANS (7, 8).

IL-6 plays an important role in the response to CNS insults
such as stroke and neurodegenerative disorders (97). It induces
proliferation of microglia (98), and IL-6 deletion in mice leads to
impaired neuroglial response to injury (99). The widespread use
of tocilizumab for management of CRS provides an excellent
opportunity for correlative clinical studies of its effect on ICANS.

Angiopoietin-Tie2 Axis
Endothelial activation may provide a link between systemic
cytokine release and CNS microvascular dysfunction. Indeed,
the angiopoietin (Ang)-Tie 2 system has been implicated in
ICANS (7). The system maintains vascular quiescence when
Ang-1 binds the Tie-2 receptor, and induces a proinflammatory
endothelial activation phenotype when Ang-2 is released from
endothelial cells and displaces Ang-1 from the receptor (100,
101). The ratio of serum Ang-2 to Ang-1 was increased in two of
three CAR T studies, while none reported a significant
association of Ang-1 levels, and only one noted a difference in
Ang-2 levels in patients with and without ICANS (Figure 2).
Although the role of the Ang-Tie2 axis in the pathogenesis of
sepsis is well established (102), there is limited direct evidence for
a role of the Ang-Tie2 axis in CNS inflammation or BBB
dysfunction. In cerebral malaria, which is discussed in more
detail below, the evidence for involvement of the Ang-Tie2 axis
points toward a clear role in severe malaria, while a specific
pathogenic role in cerebral malaria is not supported by clinical
evidence to date. For example, an association of decreased Ang1,
and/or increased Ang2, Ang2/1 ratio and Tie2, has been
repeatedly demonstrated in clinical studies of severe malaria,
but the subset of patients with severe malaria who have cerebral
malaria is indistinguishable from those with severe malaria but
no cerebral involvement (103, 104). In animal studies, however,
manipulation of Ang-Tie2 signaling toward the quiescent Ang1-
dominant state does appear to protect the BBB, both in models of
cerebral malaria (103) and traumatic brain injury (105).

IL-10
IL-10 was elevated in serum during ICANS in six of seven
studies, and increased in the CSF during ICANS in all three
Frontiers in Immunology | www.frontiersin.org 9
studies that measured it (Figure 2). Nonetheless, the consistent
activation of the IL-10 response in ICANS has not received much
attention. This is likely due to the well-established role of IL-10
as an anti-inflammatory counter-regulator that suppresses
cytokine production and terminates inflammatory responses
(106). However, IL-10 can also lead to a paradoxical increase
in IFNg production (107), and stimulates the cytotoxic response
of CD8+ T cells (108). The role of IL-10 in CNS inflammation is
only beginning to emerge (109). It is produced by microglia and
astrocytes, but supplemental administration or overexpression of
IL-10 did not ameliorate neuroinflammation in animal studies
(109). Suppression of IL-10 secretion may be beneficial in
inducing a more robust CAR T response (110), but pegylated
IL-10 has also been noted to improve CAR T expansion (111). In
summary, although the activity of IL-10 may be largely as a
counter-regulator that is important for maintaining a
monophasic inflammatory response after CAR T cell infusion,
it could also lead to induction of additional toxic responses,
which deserve further study.

Cellular Sources of ICANS-Associated
Secreted Mediators
The source of cytokines in blood and CSF is incompletely
characterized in human CAR T cell patients. Many of the
cytokines associated with ICANS can be produced by a variety of
immune cells, both endogenous and adoptively transferred, as well
as non-immune cell types including endothelium and stromal cells.
CAR T cells alone are capable of producing high concentrations of
ICANS-associated cytokines upon antigen stimulation in vitro,
including IFNg, TNF, GM-CSF, IL-6, IL-2, IL-10, IL-13, IL12p70,
and IL-8 (112). If CAR T cells are the primary source of toxic
inflammatory mediators, then toxicity risk might be improved by
genetically manipulating the CAR T cells’ ability to express these
mediators, a technique that has been shown as proof of principle
using CRISPR/Cas9 technology (113). In vivo, more complex
interactions between CAR T cells and other components of the
immune system are likely responsible for the spike in cytokine
production during CAR T cell proliferation. Even though IL-6 is a
key cytokine implicated in the pathogenesis of CRS, IL-6 transcripts
were not detected in peripheral blood T cells collected from patients
who had developed CRS after CD19-CAR T cell therapy. This was
despite the fact that the cells had microscopic appearance consistent
with CAR T cell activation (114). Monocytes/macrophages likely
play a key role in the production of IL-6 and IL-1 during CRS and/
or ICANS, as shown both in co-culture experiments (114) and in
vivo with a humanized mouse model (90). The production of IL-6
andMCP-1 by monocytes was shown to be dependent on GM-CSF
signaling by CAR T cells in vitro (115). Knockdown of GM-CSF in
CAR T cells via TALEN repressed secretion of IL-6 and MCP-1 by
monocytes, while IFNg, TNF, IL-8, and IL-10 were unaffected. Once
initiated, macrophage inflammatory responses can then be
amplified by autocrine positive feedback loops via catecholamine
signaling (116). This was shown to be relevant for the development
of CRS in mouse models (117): CRS was ameliorated by inhibition
of catecholamine signaling by atrial natriuretic peptide or
methyltyrosine in mice transgenic for human myeloid supporting
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cytokines (SMG3mice) treated with human CD19-CART cells, and
in wild-type mice treated with murine CD19-CAR T cells.

Cytokine production by endothelial cells may also be relevant
in ICANS, as indicated in an autopsy study of a patient with fatal
CRS that was accompanied by mental status changes. Here, IL-6
was expressed by brain endothelial cells but not infiltrating T
cells (118).
KNOWN ROLES OF ICANS-ASSOCIATED
CYTOKINES IN NEUROINFLAMMATORY
DISORDERS

To provide some insight into possible final common pathways of
how systemic cytokine elevation is related to CNS inflammation
and brain edema, we will examine several systemic inflammatory
conditions that are associated with neurologic dysfunction.
Apart from CNS infection, these are all systemic conditions
that lead to diffuse brain dysfunction, with clinical and imaging
characteristics, as well as systemic and CSF cytokine profiles, that
are similar to patients with ICANS. Cerebral edema is associated
with a variety of neuropathological conditions, including trauma,
ischemic or hypoxic injury, infection, liver failure, and
inflammatory disorders such as multiple sclerosis. Breakdown
of the blood-brain-barrier is the suspected pathogenic
mechanism, although much remains to be learned (119, 120).
Where appropriate, we point out key differences between ICANS
and other disorders, which may indicate a divergence in
pathophysiologic mechanisms.

Encephalopathy and Cerebral Edema
During Systemic Infectious and
Inflammatory Disorders
Sepsis-associated encephalopathy denotes the neurologic
dysfunction that can be present during the severe systemic
inflammatory state of sepsis, in the absence of direct CNS
infection (121, 122). The proposed pathophysiology includes
systemic cytokine release, endothelial activation, and BBB
leakage (122). The disorder most often manifests as reversible
delirium, but can also lead to seizures, coma, and associated long
term neurocognitive impairment (123). In a study of ICU
patients, higher levels of IL-8, IL-1RA, MCP-1, and IL-10 were
associated with delirium (124). Animal studies suggest a role for
impaired perfusion of cerebral microvessels during sepsis (125).

Systemic infections such as influenza can be associated with
rapidly developing diffuse cerebral edema, an infrequent but
devastating complication especially in younger patients (126).
Elevations of IL-6, IL-10, and sTNFR1, but not IL-2, IL-4, and
IFNg,gwere associated with poor outcome in influenza-associated
encephalopathy, with serum levels of cytokines usually higher than
in the CSF (127, 128). Children with HHV-6 related
encephalopathy had increased levels of serum IL-6, IL-10,
sTNFR1, and CSF IL-6 and TNFR1 (129). The histopathologic
appearance of influenza-related cerebral edema (Reye-like
syndrome) is strikingly similar to cases of cerebral edema in
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ICANS, with generalized brain edema, plasma extravasation
around cerebral vessels, and increased macrophages along the
vessels. Similar fulminant cerebral edema can occur with
macrophage activation syndrome, a disorder of systemic immune
dysregulation that can lead to uncontrolled cytokine storm (130).

In summary, there is marked overlap between signs and
symptoms, laboratory markers and imaging findings in sepsis-
associated encephalopathy and ICANS. The population of
patients with sepsis is likely more heterogenous than patients
undergoing CAR T therapy with less opportunity for baseline
assessments. Therefore, it will be highly informative to exchange
ideas and findings between the two fields of investigation.

Inflammatory Mediators in Cerebral
Malaria
Cerebral malaria is another disorder that may provide clues to
the pathophysiology of CAR T neurotoxicity. In a subset of
patients, infection with Plasmodium falciparum causes diffuse
encephalopathy and cerebral edema, with resultant high
mortality (131, 132). One possible mechanism is sequestration
of infected red blood cells in the cerebral microvasculature,
where they adhere to the endothelium via the P. falciparum
erythrocyte membrane protein (Pfemp) and impair brain
perfusion (133). Retinopathy is a common feature of cerebral
malaria that is likely due to microvascular dysfunction, a finding
which has not been seen in patients with severe ICANS who had
ophthalmologic exams (11). Endothelial activation has also been
implicated in the pathogenesis of cerebral malaria. Systemic
Ang-1 levels increase during recovery in patients with severe
malaria, and systemically delivered Ang-1 improved survival in a
mouse model of cerebral malaria (103).

The second proposed mechanism is cytokine-related CNS
dysfunction and brain swelling, which is plausible because
microvascular sequestration is not always observed in cases of
fatal cerebral edema, and because pro-inflammatory cytokine
elevations are common in severe malaria. Multiple clinical
studies have examined the association of systemic cytokine
levels with risk of cerebral malaria, although results have been
inconsistent. Some studies reported that IFNg, TNF, IL-1b, IL-4,
IL-6, IL-8, IL-10, IL12p70, and/or CXCL10 were elevated in
children with cerebral malaria compared to those with
uncomplicated malaria (134–136), while others reported no
difference in cytokine levels between the groups (137). The
degree of brain swelling was independent of plasma levels of
IL-1b, IL-6, IL-8, and IL-10 in children with cerebral malaria,
while IL-12 and TNF were elevated in patients with more severe
edema (138).

Thrombotic Microangiopathy
Disturbances of brain microvascular perfusion can lead to
neurologic dysfunction, cerebral edema, and death.
Thrombotic microangiopathies, such as hemolytic uremic
syndrome or thrombotic thrombocytopenic purpura, entail a
cascade from endothelial activation, formation of microthrombi,
and obstruction of capillaries with resulting dysfunction of
organs including the kidneys, lungs, gut, and brain (139). This
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pathologic sequence can be affected by systemic cytokine release
and therefore is an important consideration in ICANS (7).

Disordered regulation of von Willebrand factor (VWF) is a
key feature in the pathogenesis of thrombotic thrombocytopenic
purpura, and may be involved in other types of thrombotic
microangiopathies (140). When endothelial cells are injured,
ultralarge VWF multimers are released from endothelial
Weibel-Palade bodies. The VWF multimers can remain
adherent to the endothelium, where they serve as binding sites
for platelets and leukocytes and induce microvascular
thrombosis (141, 142). In vitro, IL-8 and TNF cause increased
release of VWF strings, and IL-6 impairs their cleavage (143). In
addition, TNF, IFNg, and IL-4 impair the production of the
protease ADAMTS13, which is key for cleaving VWF
strings (144).

The presence of thrombocytopenia and increased Ang2/1
ratio in patients with severe CAR T neurotoxicity (7, 12) raises
the question whether endothelial activation and resultant
thrombotic microangiopathy may contribute to neurologic
dysfunction in CAR T cell patients. However, associated organ
dysfunction such as kidney failure typically does not occur
concurrently with ICANS, and histopathologic findings and
serum marker signatures consistent with endothelial
dysfunction are not seen in all CAR T studies. This indicates
either a microvascular pathophysiology that is distinct from
other thrombotic microangiopathies, differences across patient
populations, or the fact that CRS may be a driver of these
findings (64). Brain microvascular thrombi rich in platelets
and van Willebrand factor were observed in one patient with
fatal cerebral edema after CAR T cell treatment (7), but were
absent in another case with similar clinical presentation (54). In
adult patients with ALL, NHL or CLL, ICANS was associated
with elevations in serum VWF and IL-8, as well as
thrombocytopenia, elevated D-dimer, and decreased fibrinogen
levels, all indicative of coagulopathy (7, 12, 145). Interestingly,
serum of patients with severe ICANS induced decreased
formation of VWF strings on human umbilical vein
endothelial cells, possibly due to depletion of available high
molecular weight VWF (7). In contrast, in pediatric patients
with ALL who received CD19-directed CAR T cells, there was no
association of ICANS with serum markers of coagulopathy and/
or endothelial activation, including VEGF-A, VWF, Ang-1, Ang-
2, Ang-2/1 ratio, peak INR and D-Dimer, or nadir fibrinogen
levels and platelet counts (8). In summary, a possible causative
role of endothelial dysfunction and microangiopathy in ICANS
remains to be clarified in further studies.

CNS Infections
There is mounting evidence that the brain injury during CNS
infections is partially due to the resultant immune response, in
addition to the destructive effects of the pathogen itself (146–
149). CSF inflammatory cytokine levels are generally much
higher in patients with CNS infections compared to those with
neuroinflammatory disorders or brain tumors (150), and higher
systemic and/or CSF levels of cytokines such as IL-1b, IL-6, and
TNF have been variably associated with worse outcomes (151,
152). Acute cerebral edema is an infrequent but devastating
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complication of acute meningitis and encephalitis. In a study of
1038 children with acute encephalitis, 25 developed fulminant
cerebral edema and 16 died (153). Similarly to CAR T cell
patients, no consistent risk factors for cerebral edema during
CNS infection have been identified to date. Although the
pathophysiology is incompletely understood, it likely involves a
vicious cycle of inflammatory host reaction with alteration of
BBB integrity, additional local release of pro-inflammatory
mediators, and dysregulation of cerebral blood flow (148).

Hepatic Encephalopathy
Acute liver failure can cause rapidly progressive and fatal
cerebral edema, which has been attributed to toxic effects of
ammonia and other metabolites (154). While the underlying
mechanisms of CAR T treatment related cerebral edema
are different, and metabolic derangements such as
hyperammonemia or hyponatremia are not typically observed
in CAR T patients with cerebral edema, it may be instructive to
understand whether there could be a final common pathway.
Such overlaps in pathophysiology may involve dysfunction of
glial water handling at the neurovascular unit, excitotoxicity, and
energy failure (155). Inflammatory mediators may also modulate
responses to metabolic challenges, and affect individual
susceptibility to brain edema. For example, in mice, the
induction of edema by ammonia injection requires expression
of toll-like receptor 9 (TLR9), which is also required for the
inflammatory response to bacterial meningitis (126). In rats,
cerebral edema from hepatic encephalopathy induces microglial
activation and upregulation of brain IL-1b, IL-6, and TNF, and
treatment with minocycline decreases edema, microglial
activation, and cytokine increases (156). Intracerebral injection
of IL-1b and TNF in rats causes vasogenic edema (157), and anti-
TNF antibodies reduce cerebral edema, possibly via reduction of
matrix metalloproteinase production (158). At this point, it
remains uncertain whether the cytokine increases observed in
the brain during cerebral edema from liver failure play a
causative role, or whether they simply represent a response
to injury.
EFFECTS OF THE CAR T–ASSOCIATED
INFLAMMATORY SECRETOME ON
COMPONENTS OF THE CNS

Access of systemic molecules and cellular traffic to the CNS is
tightly regulated by the blood-brain-barrier (63). In this section,
we will examine two related but separate questions: 1) which
components of the CNS mediate the physiologic response to
systemic inflammatory signaling? and 2) how do systemic
inflammatory mediators affect the function of specific
components of the CNS? We will focus specifically on the
neurovascular unit as the hypothesized primary locus of injury
during ICANS (7). From the vascular lumen to the brain
parenchyma, the neurovascular unit is comprised of
endothelial cells connected by tight junctions, covering
pericytes, endothelial basement membrane, and glia limitans
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with adjacent tightly tiled astrocyte endfeet (159) (Figure 3).
Along the penetrating vessels, the endothelial side is separated
from the glia limitans by a perivascular space that is contiguous
with the CSF (160). When interpreting clinical data, it is
important to recognize that multiple different barriers are in
play when considering transport of signaling molecules from the
blood to the CNS. Cells or molecules may traverse the choroid
plexus barrier or meningeal vessels to enter the CSF, while still
being unable to gain access via the microvascular BBB to enter
the brain or spinal cord parenchyma (161). In ICANS, there is
evidence of increased leakiness of blood-CSF barriers with transit
of cells and inflammatory mediators into the CSF (see CSF
analysis above). The presence of vasogenic or interstitial edema
on brain imaging and histopathologic examination in patients
with CAR T–associated cerebral edema suggests leakage of
plasma around the vessels and, potentially, into the brain
parenchyma (see Imaging above). We have less evidence of
disruption of the various blood-CNS barriers in milder cases of
reversible ICANS that are characterized primarily by acute
language and/or cognitive dysfunction, where imaging is
frequently normal. Thus, in addition to the BBB, we will also
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examine possible direct effects of cytokines on neuronal function,
behavior and cognition.

Brain Microvascular Endothelial Cells
Brain microvascular endothelial cells are a key regulator of access
to the CNS by systemic inflammatory signals, as they mediate the
central febrile response, synthesize additional inflammatory
cytokines, and regulate adhesion and transit of peripheral
immune cells. Brain endothelial cells express receptors for IL-
1b, IL-6, and TNF (63). When challenged with inflammatory
stimuli such as lipopolysaccharide or IL-1b, they synthesize
prostaglandins (162), which then induce a febrile response by
binding to thermoregulatory neuronal circuits in the
hypothalamus (163). The brain endothelium also locally
produces cytokines including IL-6, IL-8, GM-CSF, and TNF in
response to pathogenic stimuli, where they can act in an
autocrine fashion to accentuate the pro-inflammatory response
and alter endothelial transporter function (164–167). Cytokines
acting on brain endothelial cells regulate trafficking of immune
cells by changes in expression of leukocyte adhesion molecules,
which is additionally enhanced by the presence of fever (168). IL-
A B

C

FIGURE 3 | Model of blood-brain barrier disruption during ICANS. (A) Around cerebral microvessels, the normal blood-brain barrier (BBB) protects the brain
parenchyma and neurons by regulating transit of leukocytes and cytokines into the perivascular space. (B) High concentrations of systemic cytokines such as IFNg,
IL-6, and TNFginduce endothelial cell activation, resulting in release of angiopoietin-2 (Ang-2) and von Willebrand Factor (VWF) from endothelial Weibel-Palade bodies.
VWF binds activated endothelium and sequesters platelets. Activated CAR T cells cross the endothelial barrier into the perivascular space and cerebrospinal fluid
(CSF). (C) The concentrations of cytokines such as IFNg and TNFgincrease in CSF due to transit from plasma across the disrupted BBB and/or secretion from CAR
T cells or other immune cells undergoing diapedesis. High concentrations of IFNg and TNF induce secretion of IL-6 and VEGF from brain vascular pericytes and
induce pericyte stress, amplifying endothelial activation and BBB disruption. In the most severe cases, this may lead to breakdown of the parenchymal basement
membrane and vascular disruption, with thrombotic microangiopathy, acute edema, red blood cell extravasation, microhemorrhage, and neuronal death. a, astrocyte
end foot; e, endothelial cell; ebm, endothelial basement membrane; n, neuron; p, pericyte; pbm, parenchymal basement membrane; plt, platelets; pvs,perivascular
space and cerebrospinal fluid; r, red blood cell; t, CAR T cell. Figure adapted with permission from (7).
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b and TNF induce different patterns of adhesion molecule
expression (169). Endothelial cell injury and systemic toxins or
inflammation can cause endothelial activation, adhesion of
leukocytes, platelet thrombus formation, and concomitant
microvascular dysfunction (discussed in detail above under
Thrombotic Microangiopathy).

Single-cell RNA sequencing data is now opening new
perspectives on the diversity of brain endothelial cells, but data
on changes in the endothelial transcriptome in inflammatory
disease are just emerging (170–172). For example, a novel group
of interferon-responsive brain endothelial cells was discovered by
scRNAseq, whose functional role has yet to be studied (173). In
summary, the interaction of systemic secreted mediators with the
brain endothelium is an area that deserves intense further
scrutiny in attempts to understand the pathophysiology
of ICANS.

Pericytes
The role of pericytes in neuroinflammation is an active field of
investigation (174, 175). Pericytes cover the parenchymal side of
the brain endothelial cells, where they play an important role in
maintaining the integrity of the neurovascular unit (176).
Pericytes secrete angiopoietin-1, which maintains endothelial
quiescence. When exposed to angiopoietin-2, pericytes detach
from vessels during angiogenesis (177). It is becoming
increasingly clear that pericyte adhesion to the endothelium is
required for regulating leukocyte diapedesis during systemic
inflammation (178). For example, pericyte deficient mice have
increased expression of the leukocyte adhesion molecules
VCAM-1 and ICAM-1 on cerebral endothelial cells, leading to
increased perivascular immune cell infiltration (179). After
systemic LPS injection, pericytes detach from the basal lamina,
thereby increasing BBB permeability to infiltrating cells (166).
TNF and IFNg induce secretion of IL-6 and VEGF from pericytes
in vitro, which in turn may lead to endothelial activation (7).
Although pericytes have not yet been directly implicated in the
pathophysiology of CAR T neurotoxicity, their involvement
deserves further study given the extensive crosstalk between
pericytes, brain endothelial cells, and astrocytes in regulating
the function of the neurovascular unit (80).

Microglia
In their role as CNS resident myeloid cells, microglia play an
important role in modulating CNS inflammation (180).
Microglia are consistently activated during systemic
inflammatory challenges such as sepsis. Microglial activation
was noted to be widespread on histopathology of a patient with
CAR T–associated cerebral edema (54), whereas it was limited to
a perivascular distribution in another case (7). Microglia are
activated via microbial or cellular injury signals binding toll-like
receptors, which trigger cytokine release, microglial proliferation,
and migration (181). In vitro studies show that TNF, IL-1b, and
IFNg can activate microglia as well, although this response may
be weaker (182, 183). The study of the microglial response to
systemic inflammation is complicated by rapid perivascular
infiltration of monocytes/macrophages, which are difficult to
distinguish from microglia by surface markers, and secrete
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additional proinflammatory cytokines that may cause further
microglial activation (184). The role of activated microglia has
been extensively studied in chronic neurodegenerative disorders
such as Parkinson’s and Alzheimer’s diseases (185). Here, there is
evidence a protective role in a brain that has been injured by
primary degenerative processes, but also the possibility of
additional injury via an accelerated inflammatory response
(186). Single cell and single nucleus RNA sequencing are now
rapidly advancing our understanding of microglial responses in
CNS inflammation (187). A proinflammatory signature has been
shown in a subset of human microglia (188, 189). It is not yet
known whether this subclass has a distinctive response to
systemic pro-inflammatory stimuli, but distinctive responses
appear to occur during localized CNS inflammation. In mice,
single cell RNA-seq shows upregulation of a interferon-response
gene signature in a subpopulation of microglia after
demyelinating brain injury (190, 191). In patients with
multiple sclerosis, single nucleus RNAseq reveals marked
expansion of microglia, with transcriptional changes toward a
phagocytosing phenotype (192). Importantly, microglia retain
memory of peripheral inflammatory stimuli by long-lasting
epigenetically mediated changes in gene expression (193),
which could contribute mechanistically to long-term
neurologic sequelae in ICANS (8).

Astrocytes
Astrocytes are likely key to understanding the CNS response to
systemic cytokine elevation. In children with acute ICANS, CSF
levels of glial fibrillary acidic protein (GFAP) increased
significantly during acute toxicity when compared to
pretreatment levels, indicating acute astroglial injury (8). In
addition, astrocyte activation and gliosis are consistently seen on
histopathology of patients who died from cerebral edema, or with
chronic sequelae after ICANS (7, 8, 54). The astrocyte endfeet are a
critical component of the neurovascular unit, and disturbances of
solute handling by the astrocyte cause derangements in the
exquisitely controlled interstitial electrolyte concentrations and
subsequent neuronal excitotoxicity (194). Astrocyte swelling
occurs during cerebral edema secondary to stroke, ischemic
brain injury, acute liver failure, or blood hypoosmolarity,
indicating a final common pathway. Astrocyte swelling is
associated with energy failure and extracellular K+ and
glutamate accumulation, and mediated by water uptake via
aquaporin-4 channels (194, 195). In vitro, astrocyte swelling can
be induced by IL-6, IL1b, TNF, or IFNgg (196). The astrocyte
endfeet also pose a key barrier to trafficking of immune effector
cells into the brain parenchyma from the perivascular space.
Systemic cytokines affect the astrocyte barrier; for example, IL-
1b induces release of VEGF from astrocytes, which then disrupts
tight junctions in the endothelial barrier and increases leukocyte
extravasation (197). In addition, astrocytes produce pro- and anti-
inflammatory cytokines in a complex response to various
mechanisms of inflammatory brain injury (198, 199).

Neurons
Although the brain parenchyma is well shielded from serum
inflammatory mediators, neurons do develop dysfunction in
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response to systemic inflammatory stimuli. There are putative
direct pathways that affect behavior in response to infection or
inflammation via vagal afferents and/or the circumventricular
organs (162, 200), although these are unlikely to result in the
severe neurocognitive dysfunction that is seen in ICANS. In
contrast, dysfunction of the neurovascular unit and alteration of
glial solute handling likely play a very important role in the
disturbance of neuronal function and possible excitotoxicity
during systemic inflammation. Serum levels of IFNg, IL-6, IL-
8, IL-10, and IL-1RA were higher in children who developed
febrile seizures, compared to levels in children with fever alone
(201). When patients with ICANS develop seizures, these are
often multifocal and without clear imaging correlates, indicating
the presence of diffuse disturbance of neuronal function (49). In
addition, CSF levels of glutamate and the excitotoxin quinolinic
acid were increased in patients with ICANS compared to pre-
and post-treatment levels, indicating the presence of
excitotoxicity (12). There is compelling in vitro evidence that
IL-1b and TNF directly alter neuronal excitability, but much less
work has been done on other pro-inflammatory mediators
implicated in ICANS (202). Systemic IL-1b or TNF release
causes sickness behavior in mice, with decreased activity and
food intake (203). In a study of patients hospitalized for any
cause, those with higher serum levels of IL-6 or IL-8 were
significantly more likely to develop delirium, supporting the
concept that transient neurologic dysfunction during illness is
cytokine related (204).
APPROACHES TO MODULATING ICANS

Current research focuses on cytokine-based mechanistic
interventions for ICANS. However, there is still no convincing
evidence that blockade of a single specific inflammatory
mediator can prevent or improve ICANS. Thus, corticosteroids
remain the most commonly used intervention, as they reduce
CNS edema and have broad immunosuppressive effects that
reduce both cell-based inflammatory responses and secreted pro-
inflammatory mediators. The possible benefit of treating ICANS
must be balanced by the risks, chief of which is suppression of the
CAR T cell response and impaired persistence, which could put
the patient at increased risk of insufficient response or relapse.
Because many cases of ICANS appear to be self-limited, and it is
still not well known whether apparently reversible ICANS has
any long-term sequelae, some investigators continue to treat
mild ICANS with supportive care only (9). However, in light of
the success of early and aggressive CRS treatment, others
advocate early treatment of ICANS with immunomodulators
to decrease the risk of rare but life-threatening cerebral edema
(48, 205).

Corticosteroids
Corticosteroids (glucocorticoids) have broad activity against
production of many pro-inflammatory effectors, including IL-
1b, IL-6, and TNF, by T cells (206), monocytes/macrophages
(207), and vascular pericytes (208). They reduce expression of
endothelial adhesion molecules, which limits tissue infiltration
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by circulating leukocytes (209). Additionally, they decrease
production of VEGF, thereby reducing vascular permeability
(210). Consequently, corticosteroids are a mainstay of ICANS
treatment (14, 211), although there is unfortunately no high
quality evidence that they are effective for this indication.
Dexamethasone is most frequently used for ICANS, since it
has excellent CNS penetration and is the standard treatment for
vasogenic brain edema related to trauma or tumors (119, 212).
While steroid use could theoretically impair CAR T cell
proliferation in vivo, so far no adverse effect on anti-tumor
efficacy has been definitively shown. Response rates were not
affected by dexamethasone in a pediatric study of CD19-CAR T
cell treatment for ALL (96). In adults with non-Hodgkin
lymphoma, increased use of steroids and the IL-6 receptor
blocker tocilizumab was associated with lower rates of CRS
and neurotoxicity, without changes in tumor response or CAR
T cell expansion (213).

Oral prednisone and methylprednisolone have well
established efficacy and safety for neuroinflammatory disorders
such as multiple sclerosis and acute demyelinating
encephalomyelitis (214, 215). High-dose methylprednisolone is
typically reserved for ICANS that is refractory to dexamethasone
(7), since high-dose steroids may lead to more profound
impairment of T cell proliferation and/or persistence (216).
Given the relative rarity of their use, the effect of high dose
steroids on CAR T cell proliferation or persistence has not been
established. No clinical trials are currently registered to further
investigate the role of steroids in the treatment of ICANS.

IL-6 Blockade
Given the key role of IL-6 in the pathogenesis of CRS, IL-6
blockade with tocilizumab quickly emerged as standard of care
for the treatment of CRS (217–219). Although high-quality
evidence is not yet available, FDA approval for this indication
was granted in 2017 after retrospective analyses showed sufficient
likelihood of efficacy and safety (95, 96). There has been
longstanding concern in the field that tocilizumab may worsen
ICANS. The reason for this possible paradoxical effect is that the
large size of the tocilizumab molecule likely prevents it from
crossing the BBB. Since tocilizumab blocks the IL-6 receptor, and
production of IL-6 may increase after receptor blockade, the CNS
could theoretically be exposed to higher level of free IL-6 that can
act unopposed (220, 221). A nonhuman primate study indeed
showed that tocilizumab has poor penetration into the CSF when
administered systemically, while direct administration into the
intrathecal space was well tolerated and achieved levels similar to
therapeutic serum levels (222). The published clinical evidence,
however, is conflicting, and high quality randomized controlled
trials are needed to resolve the question. In a study of 43 children
and young adults treated with CD19-directed CAR T cells, the
incidence of ICANS was similar between an early cohort that
received tocilizumab only for dose limiting toxicities that did not
resolve with standard medical intervention, and a follow-up
cohort that received tocilizumab for persistent mild CRS (96).
In addition, the timing of tocilizumab administration relative to
the time of CRS onset did not change the severity of ICANS
relative to CRS grade (8). In an open-label trial of prophylactic
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tocilizumab in adults with NHL, administration of tocilizumab
to all patients on day 2 after CAR T cell infusion was associated
with a decrease of grade ≥ 3 CRS, but increased incidence of
grade ≥ 3 ICANS compared to an earlier cohort where
tocilizumab was given only after toxicity developed (10, 53).
However, a safety expansion cohort of the same FDA-approved
CAR T product (axicabtagene ciloleucel) showed lower rates of
grade ≥ 3 ICANS compared to earlier cohorts which used
tocilizumab less frequently (213). Currently, the use of
tocilizumab remains institution-dependent, with most using
tocilizumab only for CRS but not as a first line therapy for
ICANS (223). However, in clinical practice, CRS and ICANS are
often present concurrently, leading to administration of
tocilizumab while ICANS signs and symptoms are present. It
will be crucial to examine outcomes rigorously when trying to
balance the risk of CRS with the risk of ICANS.

To avoid the possibility of a paradoxical IL-6 increase in the
CNS after IL-6R blockade, siltuximab has been proposed as an
alternative IL-6 antagonist. Siltuximab binds the IL-6 molecule
directly and blocks it from binding both soluble and membrane-
bound IL-6R (220, 224). However, the evidence for its use in
ICANS remains anecdotal, and it is typically reserved for
tocilizumab-refractory CRS since it is not FDA approved for
the indication. Siltuximab has been used in the setting of CRS
and/or ICANS after CD19-CAR T therapy (225), and for
neurologic adverse events in a patient who received EGFRvIII-
targeted CAR T cells for glioblastoma (41). No clinical trials of
siltuximab for CAR T cell patients are registered at this time.

IL-1 Blockade
The role of IL-1 signaling in CRS and ICANS has been
established in several preclinical animal models (90, 226),
prompting consideration of IL-1 blockade for treatment of
these toxicities. Anakinra is a recombinant IL-1 receptor
antagonist (IL-1RA), which is FDA approved for the treatment
of multiple rheumatologic disorders (227), but safety and efficacy
in CAR T cell patients have not been established. It is
theoretically attractive for treatment of ICANS because it
crosses into the CSF and is effective against CNS inflammation
(89). Several open label clinical trials are in planning or
underway to evaluate the efficacy of anakinra for prevention of
ICANS and/or CRS after CD19-CAR T cell treatment in adult
patients. No blinded, randomized, or prospective pediatric
studies are currently active. Registered trials include:

• NCT04150913: subcutaneous anakinra to be administered to
patients with non-Hodgkin lymphoma on days 0–6 after CAR
T cell infusion. Primary outcome measure is incidence of
grade 2+ neurotoxicity;

• NCT04359784: subcutaneous anakinra to be given on days 0-
13 after CAR T cell infusion. The primary outcome measure is
absence of any grade CRS; ICANS grade is a secondary
outcome measure;

• NCT04148430: cohort 1 will receive anakinra on days 2–10 or
while fever is present, whichever is longer. If cohort 1 shows
adequate disease response and neurotoxicity rates, the study
will proceed to cohort 2, where anakinra is given from days 0–
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6, with dose escalation if fever or ICANS develop. The
primary outcome measure is the rate of grade ≥ 3
neurotoxicity or any seizure; and

• NCT04205838: anakinra to be administered to all patients
who develop ICANS of any grade, or grade ≥ 3 CRS. Primary
outcome measures are feasibility and rate of grade ≥ 3 ICANS.
GM-CSF Blockade
Based on animal studies indicating efficacy of GM-CSF blockade
against CRS and neurotoxicity (94), the anti-GM-CSF antibody
lenzilumab has been proposed as a rational therapy for ICANS
(93). An open-label trial of lenzilumab for prevention of ICANS
in adults receiving CD19-targeted CAR T cells is in planning,
with a primary outcome measure of grade ≥ 2 neurologic events
(NCT04314843). There is no published data yet in humans yet
describing the effects of GM-CSF blockade for the treatment or
prevention of ICANS.

Other Therapeutic Approaches Targeting
Secreted Mediators
Removal of pro-inflammatory mediators from the blood has
been proposed for the management of refractory CAR T
toxicities, similar to the use of plasma exchange in septic shock
(228). Case reports describe resolution of CD19-CAR associated
refractory CRS with or without ICANS after treatment with
cytokine adsorption plus standard hemodialysis (229), plasma
exchange (230), and hemofiltration not otherwise specified (231).
An extracorporeal cytokine adsorption technology (CytoSorb) is
currently being evaluated in a randomized controlled pilot study
to reduce IL-6 levels in patients with CRS and/or
ICANS (NCT04048434).

There are multiple other clinical trials underway that target
cytokines in CAR T cell patients. The majority of these trials
focus on CRS but not ICANS as a primary outcome measure,
although we expect that results will be reported on ICANS as
well. For example, an open-label study at Children’s Hospital of
Philadelphia is underway to determine whether early
administration of tocilizumab in patients with high tumor
burden can reduce grade ≥ 4 CRS, while ICANS is not
included as a predefined outcome measure of the study
(NCT02906371) (232).

Another agent under investigation is defibrotide, an
oligonucleotide derived from porcine DNA, whose mechanism
of action is incompletely understood but likely involves
modulation of endothelial cell-leukocyte interaction (233). Given
the putative role of endothelial activation in the pathogenesis of
ICANS (7), a clinical trial to evaluate its activity in preventing
ICANS is currently enrolling (NCT03954106).

Dasatinib is a tyrosine kinase inhibitor that can reversibly shut
off CAR T cell activity and reverse CRS in a mouse model (234).
This occurs via halting of T cell proliferation and cytokine
production (235), but it is not known whether this intervention
can also decrease cytokine production by themyeloid compartment.

Other mechanistically directed therapeutic approaches
may include angiopoietin-1 augmentation or platelet
hypertransfusion to counteract endothelial activation and
December 2020 | Volume 11 | Article 577027

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gust et al. Cytokines CAR T Neurotoxicity
coagulopathy (7, 100). There is no published clinical experience
yet with these approaches in CAR T cell patients. Prospective
studies are also needed to clarify the role of supportive care and
neuroprotective measures, the clinical utility of ancillary studies
such as EEG and imaging, and safety and efficacy of
interventions such as intrathecal chemotherapy and therapies
to lower intracranial pressure (14).
DISCUSSION

CAR T cell related neurotoxicity is a novel syndrome that
presents with a clinical spectrum ranging from reversible
neurocognitive dysfunction, to severe neurologic disturbances
such as seizures and coma, to rare but extremely serious cerebral
edema. It is clearly associated with increased systemic cytokine
levels and CRS, but there appears to be a missing
pathophysiologic link. Not all patients with severe CRS develop
ICANS, and not all patients with ICANS have CRS. It is possible
that the common manifestations of ICANS, especially language
disturbance, have a different mechanism than the more
dangerous manifestations, particularly cerebral edema, but no
consistent distinguishing parameters have yet been uncovered to
explain why ICANS manifests differently in different patients. As
we gain experience with CARs other than CD19-directed
therapies, we will achieve increasing clarity whether different
targets are associated with different toxicity profiles, or whether
ICANS is truly a single syndrome that represents a final common
pathway of neuroinflammation related to immune-effector cell
engaging cancer therapies.

The current state of the field supports a strong association of
IFNg, GM-CSF, IL-6, IL-10, IL-15, and possibly other
inflammatory signaling molecules with ICANS. Based on our
rich and complex knowledge of neuroinflammation, one could
make a plausible case for any of these as directly causative, or at
least modulating the development of neurocognitive
dysfunction. We have limited data from patients to elucidate
immune cell behavior during CRS/ICANS, and consequently
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there is uncertainty on which immune cell subsets to target with
therapeutic interventions. Single cell expression analysis of
patient-derived immune effector cells during toxicity will
provide further insights.

Despite the mounting support for a key role of pro-
inflammatory cytokines in the pathogenesis of ICANS, there is
no high-quality evidence in humans to help us understand
whether cytokine blockade can prevent or alleviate neurologic
symptoms. To solve this problem, a multi-pronged approach is
needed. First, careful clinical phenotyping and comprehensive
collection of outcome data will be required to define research
questions. Next, dedicated cytokine analysis will need to be
conducted to include putative neuro-active inflammatory
mediators that have been incompletely characterized in
ICANS, such as IL-1b signaling. Future studies need to be
designed to increase the number of time points and
compartments (serum and CSF) to better understand the effect
of CRS on cytokine profiles. Based on the hypotheses generated
from clinical data, relevant preclinical animal models can then be
used for mechanistic studies and testing of novel therapeutic
approaches to design future prospective clinical trials.

As CAR T therapy approaches the mainstream and the field’s
focus is first and foremost on anti-cancer efficacy, it will be
important to continue to build in investigations to closely
monitor, understand and treat toxicities.
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