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Background: Vaccination remains one of the most effective means of reducing the
burden of infectious diseases globally. Improving our understanding of the molecular basis
for effective vaccine response is of paramount importance if we are to ensure the success
of future vaccine development efforts.

Methods: We applied cutting edge multi-omics approaches to extensively characterize
temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine.
Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal
microbiome profiles, and correlated to final HBV antibody titres.

Results: Using both an unsupervised molecular-interaction network integration method
(NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered
baseline molecular patterns and pathways associated with more effective vaccine
responses to HBV. Biological associations were unravelled, with signalling pathways
such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon
org November 2020 | Volume 11 | Article 5788011
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signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators
of response.

Conclusion: This study provides further evidence that baseline cellular and molecular
characteristics of an individual’s immune system influence vaccine responses, and
highlights the utility of integrating information across many parallel molecular datasets.
Keywords: multi-omic analysis, hepatitis B vaccination, baseline immunity, network analysis, vaccine response
INTRODUCTION

Hepatitis B is a viral infection that primarily affects the liver of
infected individuals, and can cause both acute and chronic
disease. The WHO estimates that 257 million people had a
chronic hepatitis B infection in 2015 (1), with nearly one
million deaths occurring as a result of hepatitis B infections
causing cirrhosis and liver cancer. Fortunately, there are highly
efficacious vaccines available for hepatitis B with rates of
protection above 90% if given in a two- or three-dose schedule
(2). The antibody response to hepatitis B virus (HBV) vaccine is
one of the best correlates of protection from infection with well
characterized quantitative levels associated with degree of
protection, allowing clinicians and researchers to easily
determine if an individual is sufficiently protected after receipt
of the vaccination series.

Unfortunately, the response to vaccination is highly variable
in older adults, with some individuals quickly producing high
levels of HBV antibodies, while others never develop protective
levels (3). While this can be overcome by additional booster
doses, the reasons for this reduced efficacy in older populations
remains unclear. Age-related immuno-senescence is one
proposed mechanism, but a better understanding of the
reasons that underlie this variable response in older adults is
still needed. This could be accomplished with a large study
involving many individuals, but recruiting large numbers of
participants for vaccine studies can be difficult and costly.
Researchers are thus tasked with attempting to draw significant
and meaningful conclusions from relatively small cohorts,
typically assessed using only a small variety of methods. To
overcome this issue, we used multiple omics technologies
together with computational integration methods to generate a
more comprehensive picture of vaccine response.

Here, in a cohort of 15 healthy adults ranging from 44 to 73
years of age, we profiled a broad variety of molecular modalities
from peripheral whole blood, including immune cell composition,
DNA methylation, gene expression, protein abundance, as well as
fecal 16Smicrobiome, to provide the most comprehensive picture of
the immune response to an aluminium-adjuvanted HBV vaccine.
Antibody measurements to HBV surface antigens were used as the
quantitatively defined endpoint in our model to address two main
questions: (1) can we identify baseline immune signatures that
predict vaccine responses and differentiate between responders and
non-responders, and (2) what temporal molecular changes occur
following HBV vaccination? Baseline differences correlating with
final HBV vaccine response could be identified in this small (n = 15)
cohort of adults by using a multi-omics integration approach. This
org 2
general concept of specific baseline immune signatures predicting
vaccine responses has been demonstrated in large cohort studies in
the context of HBV, influenza, and malaria vaccines (4–7).
However, the benefit of integrating multi-omics baseline data in
the context of small sample size has not previously been
documented. This approach has substantial implications not only
in the field of bioinformatics-driven analyses, but also in systems
vaccinology and vaccine development.
MATERIALS AND METHODS

Participant Recruitment and Study Design
A prospective, observational study (ClinicalTrials.gov;
NCT03083158) of immune responses to the HBV vaccine
(ENGERIX®-B) was undertaken, with recruitment occurring at
the Vaccine Evaluation Center (VEC), BC Children’s Hospital
Research Institute in Vancouver, Canada. Participants were
recruited by e-mail, mail and telephone. All participants
enrolled in the study provided written informed consent under
a research protocol (H17-00175) approved by the University of
British Columbia Women’s and Children’s research ethics board.
All initial sample processing was undertaken at the VEC
laboratory. Participants were healthy adults aged 44–73 years
who were seronegative to HBV and with no prior history to HBV
infection or vaccination, with demographics shown in Figure 1.
In brief, screening of participants was performed by blood
sampling to determine their antibody titers to HBV surface
antigens. Participants with anti-hepatitis B surface antigen
(HBs) antibody levels under 3.1IU/L were considered
seronegative and a total of 15 eligible individuals enrolled to
participate in the study. For detailed inclusion/exclusion criteria,
see the HBV vaccine Methods manuscript: Systems biology
methods applied to blood and tissue for a comprehensive
analysis of immune response to Hepatitis B vaccine in adults
(8). Enrolled individuals attended the first study visit involving
the collection of clinical history, a physical examination as well as
pre-vaccination biospecimen collection (blood and fecal
microbiome samples). One ml (20 micrograms) of HBV
vaccine was administered via intramuscular deltoid injection at
three different times throughout the study (0, 28, and 180 days).
At each visit, a number of molecular and clinical tests were
performed on the collected biospecimens (Figure 1). HBV
serology of study participants at baseline were performed at
the BC Centre for Disease Control. In total, participants were
monitored during 12 visits spanning the course of seven months
November 2020 | Volume 11 | Article 578801
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(8). HBV titres were measured once during the screening phase,
and at three additional time points, corresponding to 28, 180,
and 208 days after the first dose of HBV vaccine.

Cellular Profiling, Omics, and Statistical
Analysis of the Time Course
Various omics studies were performed as described in the
Supplementary Materials and Methods, with workflow figure
shown in Supplementary Figure 1. Briefly, peripheral whole
blood cells were profiled by flow cytometry, genome-wide DNA
methylation (Illumina Infinium MethylationEPIC BeadChip),
transcript abundance (whole blood, bulk RNA-Seq), and
proteome-wide protein abundance (mass spectrometry) at
various time points (Figure 1). Additionally, the bacterial
composition (microbiome) of the gut was assessed by 16S
rRNA microbiome profiling pre- (Day -14 and 0) and post-
vaccination (Day 14). The gating strategy used for immune cell
phenotyping is included in Supplementary Figure S3.

To identify global changes pre- versus post- vaccination
across different omics data, we used multi-level principal
component analysis (multi-level PCA) from mixOmics to
Frontiers in Immunology | www.frontiersin.org 3
highlight the effect of vaccination (treatment effect) within
subjects separately from the biological variation that existed
between subjects (9, 10). Based on the temporal trends
observed, Day 1 and 14 post-vaccination were further
investigated using univariate statistical tests within each omics
method to identify differentially methylated CpG sites, expressed
genes, and proteins following vaccination (refer to
Supplementary Materials and Methods for further details on
each of these methods).

Identifying Features Associated With HBV
Vaccine Response From Single Omics
Data
To identify baseline differences between participants who
responded to vaccine and those who did not, we used the
HBV-specific antibody titre levels from Day 180 to divide the
participants into either responders or non-responders, based on
the well-established correlate of protection of 10 mIU/ml (6).
This demarcation was used in analyzing the transcriptomic and
proteomic data. For analysis of the epigenetic data, the same titre
values from Day 180 were instead treated as a continuous
A

B C

FIGURE 1 | Study visit schedule and cohort demographics. (A) Immunization and sampling schedule: Screening of patients eligible for this study occurred 14–60
days prior to the first vaccine dose. Eligible participants returned 14 days prior to vaccination to complete enrolment and have blood and microbiome samples taken.
At day 0, the first vaccine dose was administered after blood and microbiome sampling. Blood sampling then occurred at days 1, 3, 7, and 14 post-vaccination. At
day 28, blood sampling and the second HBV dose was administered. At day 180, blood sampling and the last dose of HBV was given, followed by a final blood
sample taken at day 208. (B) Demographics: Participant sex and age. (C) Patient anti-HBs antibody titres at 28, 180, and 208 days post first HBV vaccination dose.
November 2020 | Volume 11 | Article 578801
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variable. For more details on how each of these datasets were
analyzed, refer to the Supplementary Methods section.

Lists of genes or proteins identified through these
methods were submitted to NetworkAnalyst (11, 12) for
unsupervised construction of Protein-Protein Interaction
(PPI; direct, metabolic or regulatory interactions) networks,
to facilitate biological enrichment of the results. In these PPI
networks, nodes represent individual proteins, while the edges
which connect nodes correspond to a known, curated
interaction between a given pair of proteins. Node tables
representing all members of a network were downloaded
from NetworkAnalyst to test for enriched Reactome
pathways using the R package Sigora (13), with pathways
being considered significantly enriched with a Bonferroni-
corrected p-value of <0.001.

Identifying Features Associated With HBV
Vaccine Response From Multi-Omic Data
To identify features that could be used to predict vaccine
response (anti-HB titres) from baseline omics profiles, we used
two complementary data integration strategies: NetworkAnalyst
and DIABLO.

NetworkAnalyst
NetworkAnalyst is an online tool which leverages known
protein-protein interactions to construct biological networks in
an unsupervised manner to provide biological insights (11, 12).
Genes or proteins identified when comparing responders and
non-responders (using Day 180 titres as detailed previously)
using combinations of three different omics data (epigenetics,
proteomics, and transcriptomics) were uploaded to
NetworkAnalyst and combined to build minimally-connected
first order PPI networks, with the commonly-occurring
promiscuous node UBC (Ubiquitin C; 10,837 known
interactions at www.innatedb.com) removed. To highlight
novel nodes in the combined networks, networks were
constructed individually for the different omics methods and
their node tables downloaded to enable comparison to the node
table from the combined network. This allowed identification of
nodes that were present in the combined network, but absent
when examining each omics network separately. Node tables
downloaded from NetworkAnalyst were tested for enriched
Reactome or KEGG pathways using the R package Sigora as
previously described (13, 14).

DIABLO
DIABLO, part of themixOmics framework, is a supervised, data-
driven, hypothesis-free multi-omics integration approach that
has been successfully applied, by us and others, to derive novel,
robust biomarkers, and increase our understanding of the
molecular regulatory mechanisms that underlie health and
disease (15–17). DIABLO extends sparse Generalized
Canonical Correlation Analysis (sGCCA) for multi-omics and
supervised integration (18, 19). DIABLO performs multivariate
dimensionality reduction and selects correlated variables across
different datasets by maximizing the covariance between linear
combinations of variables (latent component scores), across
Frontiers in Immunology | www.frontiersin.org 4
datasets (blocks; flow cytometry, epigenomic, transcriptomic,
and proteomic profiling, fecal 16S rRNA microbiome) and an
outcome variable (response; log-transformed anti-HBs IgG level
measured at the final follow-up). Feature selection is performed
internally using lasso penalties. The data are then projected into a
smaller dimensional subspace spanned by the components for
prediction. The ability of the integrative model to predict final
anti-HBs IgG titres was then evaluated using leave-one-out
cross-validation.

Mapping of Identifiers to Facilitate
Biological Interpretation
To facilitate biological interpretation, features were mapped,
where possible, to HUGO Gene Nomenclature Committee
(HGNC) gene symbols. Methylated CpG dimers were
mapped using the annotation provided by Illumina
(IlluminaHumanMethylationEPICanno.ilm10b2.hg19 R package).
Ensemble gene IDs and UniProt protein IDs were mapped using
the Biomart service from Ensembl (20). Gene set enrichment was
assessed against the Broad Institute’s MSigDB (C2 collection:
manually curated gene sets from KEGG, REACTOME, etc.) using
a hypergeometric test, or Sigora, as detailed previously (13).
RESULTS

Response of Older Adults to a Three-Dose
Schedule of HBV Vaccine
To enable analyses aimed at identifying differences between HBV
vaccine responders and non-responders, we first examined the
titre levels for each participant over the course of this study. As
described previously, participants’ anti-HB titres were measured
three times following the first dose of HBV vaccine (Figure 1C).
At the first antibody titre measurement on Day 28, after only a
single dose of HBV vaccine, 2 out of 15 participants (aged 63 and
72, both female) showed titres that would classify them as
responders, with titre levels above the correlate of protection,
10 mIU/ml. Based on a multi-level PCA, we saw little difference
between these two individuals and the remainder of our cohort
(Supplementary Figure S5). By Day 180, after having received
two doses, 13 of 15 participants showed titre levels equal to or
greater than 10mIU/mL, measures which have been shown to
correlate well with protection. At the final titre measurement 30
days after the third vaccination (208 Days after the first dose), all
but a single participant showed titre levels above the correlate of
protection. We also examined if there was any relationship
between DNAm-based age acceleration and titre levels at Day
180, and found no correlation (Supplementary Figure 4).

Immune Cell Phenotyping
To identify potential immune cell types important for HBV
vaccine responses, Spearman correlation analysis was performed
using the baseline counts of various immune cell types (defined
by 15 anchor makers; Supplementary Table 1) and the HBV
antibody titres measured at Day 180. No statistically significant
baseline cell type differences were identified from correlations to
November 2020 | Volume 11 | Article 578801
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Day 180 titres (Supplementary Figure 2). However, we observed
a trend of positive correlation between CD3+ T cells on Day 7
and 14 to HB antibody titres measured at Day 180. In contrast,
we observed a trend of negative correlation between CD56dim

CD16+/- NK cell populations on Day 7 and 14 to HB antibody
titres measured at Day 180. While there was no definitive
immune phenotype that could potentially identify vaccine
responders to non-responders, our data suggested that T cell
subsets might potentially be important in the immune response
to hepatitis B during infection or vaccination (21).

Molecular Changes Following Vaccination
Our goal was to first define the molecular changes that occurred
following HBV vaccination. To do this while removing intra-
individual differences, we performed multi-level PCA of the flow
cytometry, epigenomic, transcriptomics, and proteomic data
(Figure 2). For both the epigenomic and transcriptomic
profiles, we observed rapid changes one day after HBV
vaccination, followed by a return to baseline on Day 14
(Figures 2B, C). In contrast, cell population and proteomic
profiles were most distinct from baseline two weeks after HBV
vaccination (Figures 2A, D).

From the epigenomic data, we identified a total of 18 unique
DNA methylation sites using a univariate analysis, located in
Frontiers in Immunology | www.frontiersin.org 5
twelve genes that were significantly differently methylated
following vaccination, when compared to baseline (Figure 3A,
Supplementary Table 2). A number of these genes are known to
participate in immune functions, including: BAIAP2L1 that
plays a role in actin organization; a cytotoxic and regulatory T
Cell-associated molecule (CRTAM); a negative regulator of TGF-
b signalling LDL receptor (LDLRAD4); a transcriptional
repressor of activation protein-1 (ZNF12); anti-viral and
cytidine deaminase (APOBEC3A_B); and a guanine exchange
factor and endosome dynamics regulator (ANKRD27). Similarly,
we observed minimal transcriptomic changes following HBV
vaccination, with only 14 significantly differentially expressed
(DE) genes (adjusted p-value <0.05 and absolute fold change
>1.5; Supplementary Table 3) when comparing Day 14 to pre-
vaccination Day 0 (Figure 3B). Among these were the genes
CAMP (22), encoding host defence peptide LL-37 that has a
known association with immune and inflammatory responses,
and the neutrophil-associated elastase gene ELANE (23), which
can alter the roles of NK cells, monocytes, and granulocytes.
These results point to a detectable change in the immune
response of inoculated individuals as early as two weeks after
having received the vaccine. No statistically significant changes
were observed in proteomics or the fecal microbiome following
vaccination (Figures 3C, D).
A B

D

C

FIGURE 2 | Temporal response profiles following HBV vaccination differs across omics compartments. Low dimensional projection of the flow cytometry (A),
epigenomic (B), transcriptomic (C), and proteomic (D) data using multilevel principal component analysis to visualize global changes across time. In each panel,
different post-vaccination time points for each individual are shown in red (Day 0), green (Day 1), and blue (Day 14). We observed differing global temporal patterns of
change following vaccination across the various omics compartments. Epigenomic and transcriptomic profiles changed rapidly post-vaccination (Day 1; green vs.
blue/red) before returning to baseline by Day 14. Conversely, flow cytometry and proteomic profiles were most distinct by Day 14 (blue vs. red/green).
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Influence of Immune Baseline on Vaccine
Response
We then turned our attention to identifying baseline differences
between participants who responded to the HBV vaccine and
those who did not based on the well-established correlate of
protection of 10 mIU/ml. Comparing the responders and non-
responders (defined at Day 180) using only the pre-vaccine
transcriptomic data, 40 differentially expressed (DE) genes
were identified, and used to construct a minimally-connected
first-order PPI network (a first order network in which the
interconnecting grey nodes that connect to only a single DE
gene are removed), as shown in Figure 4A. Some of the genes
found to be differentially expressed (adjusted p-value <0.05;
Supplementary Table 4) included up-regulation of CD8A
and CD8B that are involved in cytotoxic T-cell mediated
immune responses, THEMIS, implicated in T-cell lineage
selection and maturation, and transcription factor RORA that
regulates cytokine expression in T-regulatory cells (24, 25).
Downregulated genes included CEBPB that acts in the
suppression of T-cells through transcription factor MYC and
SLC11A1, a divalent metal ion transporter important for iron
metabolism and host resistance to pathogens (26).

For the proteomic analysis, we were able to identify 267
unique peptides that changed in expression when comparing
responders and non-responders at the pre-vaccine baseline
(adjusted p-value <0.05; Supplementary Table 5). Some of the
proteins identified by this analysis include: monocyte marker
CD14, calcium binding inhibitor of HCV replication S100A6
(27), and TRIM25, a mediator of signal transduction in response
to viral infections (28, 29). Pathway enrichment with Sigora
(Bonferroni-corrected p-value <0.001; Supplementary Table 6)
yielded multiple pathways, including “Neutrophil degranulation”
and “Gene and protein expression by JAK-STAT signalling after
Interleukin-12 stimulation”. The greatest number of changes
were observed in the epigenomic analysis, with identification of
898 DNA methylation CpG sites located within 632 genes (p-
value ≤0.005 and change in beta >5%, with beta defined as
proportion of methylated DNA at a particular locus;
Supplementary Table 7). These genes were enriched for
ERBB4 signalling pathways, a tyrosine protein kinase involved
in downstream signalling of the B Cell Receptor, Notch-HLH
transcription pathways, and implicated in various inflammatory
diseases (p-value ≤ 0.005) (full list in Supplementary Table
8) (30).

Multi-Omics Data Integration by a
Functional Approach, NetworkAnalyst,
Identified Novel Pathways Contributing to
Vaccine Responses
Since we were only able to identify limited baseline molecular
differences between responders and non-responders from the
individual omics data, we next applied a proven (14) multi-omics
integration method to identify consistent signatures associated
with robust vaccine responses. To determine the molecular and
immunological differences that might influence vaccine
responses, an integrative analysis was performed using either
Frontiers in Immunology | www.frontiersin.org 6
two or three omics datasets (transcriptomics, proteomics and/or
epigenomics) comparing responders vs. non-responders using
NetworkAnalyst (Figure 4). Both integrations revealed a dense
minimally-connected network containing many novel nodes
(Figures 4B, C, highlighted in orange), including: EOMES
(eomesodermin), which is involved in the differentiation of
CD8+ T cells, active against viral infections (31); VCP involved
in T cell activation (32); and EGR1 that stimulates T cell
activation and promotes IL2 production (33). Interestingly the
T-cell modulatory genes found using transcriptomics were well
integrated into this network and several new T-cell modulators
were identified, including ILF2 that mediates expression of IL2
by T-cells, PP1A that modulates T-cell cytokine expression, and
FN1 which is Th1-specific in humans (34).

To gain mechanistic and biological insight into the immune
pathways, we then tested the nodes from Figures 4B or C for
enriched pathways with Sigora, using both Reactome and
KEGG databases. Some of the significant pathways
include innate immunity pathways such as “Neutrophil
degranulation”, “Gene and protein expression by JAK-STAT
signaling after Interleukin-12 stimulation”, and “Toll-like
Receptor 4 (TLR4) Cascade”. In addition, we identified some
signatures of adaptive immune responses such as “IL17
signaling” and “Th17 cell differentiation”, providing further
insights into immune differences between responders and non-
responders. In particular, JAK-STAT is a major anti-viral
pathway that when activated can lead to inhibition of HBV
infections (35), while TLR4 activation suppresses HBV
infections (36). The full list of enriched pathways is included
in Supplementary Tables 9–12.

Multi-Omics Data Integration Using a
Data-Driven Approach Improved Our
Understanding of Vaccine Response in a
Small Cohort
In addition, we used the supervised, data-driven, multivariate
integration method DIABLO to identify baseline (pre-
vaccination) predictors of vaccine responses based on multiple
high-throughput datasets (flow cytometry, epigenomic,
transcriptomic, and proteomic profiling, as well as fecal 16S
rRNA microbiome profiling). To determine whether integrating
the data in this manner resulted in models with better predictive
performance, we fit DIABLOmodels of varying complexity (total
number of variables selected), and compared them to sparse
partial least squares regression [sPLS (18)] models fit on each of
the individual high-throughput datasets with similar number of
variables selected. We assessed predictive performance using
leave-one-out cross-validation and found that the integrative
DIABLO model generally outperformed single-omic sPLS
models (Supplementary Figure 6).

Based on this rigorous statistical assessment, we chose to
characterize the variables selected by the DIABLO (17) model
that achieved the best overall performance (lowest error rate;
Figure 5A). Where possible (CpGs, transcripts, proteins)
individual features were mapped to gene symbols, while
features identified by either the integrative model or by models
derived from the individual omics datasets were compared.
November 2020 | Volume 11 | Article 578801
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Interestingly there was very little overlap between gene symbols
identified by the individual omics models and the integrative
model (Supplementary Figure 7). To rule out the possibility that
the approaches were simply identifying different, but
functionally-redundant, genes (involved in the same biological
functions), the feature sets were assessed for pathway over-
representation, and it was found that the various models
identified largely distinct biological pathways (Supplementary
Figure 7). Moreover, the features identified by the integrative
model were enriched for a larger number of curated gene sets
(Broad Institute MSigDB C2 collection), when compared to
those identified individually based on data for the individual
Frontiers in Immunology | www.frontiersin.org 7
omics methods, suggesting that the integrative model features
were consistent with well annotated biological pathways. We
have made similar observations in a number of larger multi-
omics studies (14, 17).

Additionally, to assess the biological function of DIABLO
selected features (from transcriptomics, proteomics, and
epigenomics), we used NetworkAnalyst to construct PPI
networks to determine whether these genes and proteins
formed an interconnected biological network (Figure 5B).
Importantly the resultant first-order minimally-connected
network was highly integrated and composed of nodes from
each of the omics methods, indicating that transcriptomic,
A B

C

FIGURE 4 | Network analysis of transcriptomics and proteomics data reveal baseline differences between vaccine responders and non-responders. (A) Minimum-
connected network from the 40 DE genes identified when comparing responders to non-responders (defined using Day 180 titre measures). (B) Minimally-connected
first-order integrated protein-protein interaction network of the same 40 DE genes combined with the 267 differentially expressed proteins when comparing
responders to non-responders (Day 180 post-vaccination). (C) Minimally-connected first-order integrated protein-protein interaction network of differentially
expressed transcripts and proteins from B with the addition of differentially methylated genes (898 CpG sites) when comparing responders to non-responders (Day
180 post-vaccination). Novel nodes, not present in individual transcriptomic or proteomics networks are highlighted in orange.
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proteomic, and epigenomic data were reporting on the same
underlying biology. Furthermore, we identified additional nodes
from this network that might provide insights into the
effectiveness of the vaccine response, including: VDR (vitamin
D receptor, involved in T cell function and influences HBV
responses) (37); IL18 (pro-inflammatory cytokine for T-helper
and NK cells) (38, 39); IKBKE (modulates T cell responses and
essential for antiviral responses) (40); and ILF3 (participates in
the innate antiviral response) (41); TMEM173 (innate immune
signalling) (42); and BCL2L1 (minor role in inflammation
attenuation) (43). As previously observed, pathway enrichment
using both the statistical integration method DIABLO and
biologically-driven PPI integration method NetworkAnalyst
separately identified similar functional enrichments,
highlighting potential pathways at immune baseline that
predict HBV vaccine response (Figure 5C; Supplementary
Figures 8, 9; Supplementary Tables 13, 14).

Plotting integration by DIABLO- or NetworkAnalyst-selected
features showed that IRF9 (promotes inflammation and type III
interferon signaling) was more highly expressed in non-
responders (Figure 5D). In contrast, NEDD4 (E3 ubiquitin
ligase that inhibits inflammatory pathways p38a and TNFa)
(44) demonstrated lower expression in non-responders (Figure
5E). We observed similar correlation patterns in the baseline
proteomics data with T cell activation, and proinflammatory
dendritic cell, myeloid cell response, positively and negatively
correlated, respectively, with vaccine response. This was further
supported by a previous transcriptomic study demonstrating that
an enrichment of pro-inflammatory pathways at immune
baseline leads to a poor HBV vaccine response (45).

Finally, DIABLO identified a number of taxa from the
baseline microbiome data, including Butyricicoccus and
Phascolarctobacterium, which were positively associated with
anti-HB antibody titre response (Supplementary Figure 10A).
Interestingly, these two taxa have both been previously shown to
regulate host immune responses. Butyricicoccus is a butyrate
producer that has been used to modulate immune responses (46–
48), while Phascolarctobacterium showed evidence of reduced
abundance in individuals with an anti-inflammatory signatures
(based on low lipopolysaccharide-binding protein and C-reactive
protein) (49).
DISCUSSION

A better understanding of the complex regulatory interplay
involved in the immune response to vaccination is a necessary
step in the development of precision vaccinology. Leveraging
systems biology approaches and collections of high-dimensional
molecular immune readouts obtained from clinical cohorts may
yield important insights. While these datasets are complex to
synthesize and analyze, the complementary information they
encode may strengthen biological findings and improve the
accuracy of predictive models derived from them. Here we
performed extensive molecular profiling of individuals
receiving HBV vaccine to investigate vaccine response in
Frontiers in Immunology | www.frontiersin.org 8
adults. To our knowledge, this study constitutes the most
comprehensive set of molecular immune readouts on a
common set of individuals before and after HBV vaccination.
Fifteen healthy HBV-seronegative adults received three doses of
HBV vaccine to assess the correlate(s) of protection. We profiled
the blood of participants before and after vaccination and
defined both temporal changes in the various omics following
vaccination, as well as baseline characteristics associated with a
robust vaccine response (Figure 1).

Using multi-omics integration strategies described herein, we
were able to identify significant biological features and pathways
from a small sample size of 15 participants. Where possible, we
leveraged resampling strategies (leave-one-out cross-validation)
to ensure the robustness of our findings, though we acknowledge
the limits of doing so in so few samples. While larger studies will
be able to provide more robust results, ours was designed to
further demonstrate the feasibility of a multi-omics approach to
studying vaccine response, even when applied to a relatively
small cohort. As omics-based vaccine studies with large numbers
of participants are prohibitively expensive to conduct, our
integrative multi-omics strategy on a smaller cohort will help
ensure these larger studies are conducted in a manner which
extracts as much biological meaning as possible. Select findings
could then be targeted for further validation in larger cohorts,
using cost-effective platforms with more well-defined paths to
clinical implementation.

When analyzing patterns of change over time following
vaccination, we were able to detect certain differences between
pre- and post-vaccination samples (Figures 2, 3). In particular,
despite the very substantial impact of variation in underlying
genetics, diet, environment and microbiome, transcriptomic
analyses of participants 14 days post-vaccination compared to
each individual’s baseline pre-vaccination still revealed certain
changes in the expression of genes such as ELANE and CAMP,
both known to have important roles in the immune responses of
many immune cells (50, 51). It is also interesting to note that the
greatest differences identified by transcriptomics and epigenomics
came from different time points, reinforcing the idea that using
multiple omics methods can provide a more complete picture of
complex biological phenomena through complementation.

Given that baseline immune profiles are known to predict
vaccine responses to many agents (7, 45, 50), we were interested
in identifying baseline molecular patterns associated with anti-
HBs antibody titre response. When we analyzed each omics
dataset separately with respect to vaccine responses, as measured
by antibody titre (at Day 120, Day 208), we found only modest
differences in the immune baseline between responders and non-
responders. However, when this small number of methylation
sites, differentially expressed transcripts, and proteins were
projected onto PPI networks using NetworkAnalyst integration
methods, we uncovered potential biological themes based on the
principle of “guilt by association” (52). Specifically, PPI linkages
between two nodes imply that there is shared biology (given that
PPI are based on curated interactions, involving direct binding,
consecutive positions in metabolic pathways, or regulatory
interactions), such that PPI networks can be mined for
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mechanistic information, based not on single gene products but
consortia of gene products reflecting pathways and ontologies.
Thus, when we used NetworkAnalyst to perform multi-omics
integration based on function-related PPI networks, novel nodes
and enriched pathways important in HBV vaccine response were
identified (Figure 4, Supplementary Figures 8, 9). The
Frontiers in Immunology | www.frontiersin.org 9
integrated networks shown in Figure 4 demonstrate the benefit
of this approach, since a multitude of novel nodes that provide
the “glue” to optimize the network, were identified.

In addition, we applied a multivariate statistical method to
carry out multi-omics data integration (DIABLO) and identify
baseline features that could predict vaccine response. A
A B

D E F

C

FIGURE 5 | Multi-omics integration to reduce overfitting by identifying of more biologically relevant features. (A) Comparison of the performance of a multi-omics
model (DIABLO) to that of single-omics models of equivalent complexities, fit separately to individual omics datasets (otu, operating taxonomic units of the fecal
microbiome; cpg, blood-based DNA methylation; protein, plasma proteomics; flow, cell counts by flow cytometry; mrna, whole blood transcriptomics). Mean
squared error (MSE) differed significantly across all models (Kruskal-Wallis test; p = 0.0023), with the multi-omics model achieving significantly lower error (and better
performance) when compared to all other models, with the exception of the proteomics-derived model (p = 0.068). (B) Integrated minimally-connected first-order
network of features identified by DIABLO from transcriptomic, proteomics, and epigenetic data. Novel nodes identified from integration are highlighted in orange.
(C) Selected enriched pathways and (D–F) selected enriched genes (mRNA) or proteins (proteomics) identified from integration (NetworkAnalyst, DIABLO, or both
methods) are shown.
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particular concern with these methods is overfitting, particularly
in studies with a relatively small n i.e. few (tens, up to a hundred)
biological samples, and a substantially larger p i.e. number of
molecules or variables (several tens of thousands). This is
sometimes referred to as the “small n big p” (or p>>>n)
problem and can result in poor reproducibility and/or models
that fail to generalize well to new data. DIABLO implements a
number of strategies to tackle these challenges. First, it reduces
the influence of noisy variables by means of dimensionality
reduction techniques that summarise and/or identify useful
and robust information from the data, leveraging penalisation
(lasso) to carry out variable selection (18, 19). Second, it cross-
references information across biological spaces by utilizing
different types of data and looking for reinforcing biological
dynamics, which works as long as these data report on the same
basic underlying biological mechanisms.

We used DIABLO to derive a multi-omics model capable of
predicting vaccine response from baseline molecular profiles.
Critically, this DIABLO model outperformed models of
comparable complexity derived from the individual omics
analyses, highlighting the utility of multi-omics integration
(Figure 5). Further, we tested whether the improved
performance could be due to a reduced tendency to overfit
data as a result of the additional imposed constraints, i.e.
enforcing covariance across the omics datasets. We compared
the features identified by our integrative model with those
identified with single omics approaches, and found these to be
almost entirely distinct. Moreover, features selected by DIABLO
can be used to construct coherent and highly interconnected
protein-protein interaction networks (48). These DIABLO
selected features were enriched for a greater number of
annotated gene sets, and critically delivered data overlapping
with our functional integration approach using NetworkAnalyst
(Figure 5, and Supplementary Figures 8, 9). Taken together, the
superior performance in cross-validation and selection of largely
distinct sets of features demonstrate that DIABLO was less likely
to identify spurious associations and overfit the data on which it
was trained. Furthermore, these results suggest that, by taking
advantage of the differing effect of background noise and
technical confounders across the various omics, and focusing
on the consensus information related to the outcome, multi-
omics integration can reduce overfitting and result in more
robust and generalizable models (14, 17), even in studies
where p>>>n.

Functionally, pathway enrichment of our integrative analyses
comparing responders and non-responders using NetworkAnalyst
and DIABLO yielded some of the same pathways that provide
insights into immune baseline features that may contribute to
HBV vaccine response (Figure 5, and Supplementary Figures 8,
9). This overlap in significant biological phenomena reinforces the
validity of these two approaches used separately and conjointly
since they converged on the same (or similar) biology, including
several key innate immune pathways such as JAK-STAT
signalling/IL-12 stimulation, TLR activation and neutrophil
degranulation. The JAK-STAT signalling pathway is an anti-
viral pathway, and modulation of this pathway would play an
Frontiers in Immunology | www.frontiersin.org 10
important role in an effective response to infection, and most
likely, vaccination (53). The apparent role of TLR4 signalling is
also in agreement with studies showing the important role of this
signalling pathway during chronic HBV infection (54) and T cell
activation (55). Furthermore, TLR4 signalling cascade as well as
IL12 and TLR/IL-1 signaling, are important in the response to
vaccines with aluminum-based adjuvants (which is used in
ENGERIX®-B), suggesting that individuals who respond to
vaccination may have greater intrinsic responses to adjuvant
compared to non-responders (54, 56). Additionally, pathway
enrichment of both integration methods revealed adaptive
immune signatures such as IL-17 signalling and Th17 cell
differentiation. Lastly, interferon signaling, identified by both
integration methods, may play a role in linking innate and
adaptive immunity through signal transduction via
inflammasomes (such as the NLRP3) (57, 58).

In this study, two participants did not reach the minimum
titre threshold to be considered protected against HBV infection,
even after receiving all three vaccine doses. These individuals
were 63 and 72 years of age, placing them in the upper end of the
range within our cohort of 15 adults. This implies that
immunosenescence (3) may be a contributing factor towards
their lack of response to HBV vaccination. To investigate this
possibility further, we examined the potential relationship
between titre (measured at Day 180) and age acceleration as
defined through DNA methylation markers (59–61), and saw no
correlation between the two (Supplementary Figure 4). It also
warrants mention that other participants of equivalent or older
age did respond well by the clinical endpoint, indicating that
there is likely more than age-related immune changes at play.

One important limitation of our integration paradigm is that,
in order to increase statistical power, the information extracted
from the data in this manner must be statistically independent,
implying a null correlation between sets of identified
information. The proposed framework is only attainable if
complementary information exists between data sets (i.e. flow
cytometry, epigenomic, transcriptomic, and proteomic profiling,
and fecal 16S rRNA microbiome), and can be extracted with a
statistical model that will appropriately aggregate independent
information to increase statistical power. Such a requirement
may seem to go against the key biological assumption that
molecular data are inherently interrelated, i.e. it is believed that
they act in unison within biological pathways. However, it
remains unclear whether interrelatedness between molecules of
different types directly implies statistical correlation (62, 63). The
distinct patterns of temporal response across molecular data
identified in the current study suggests the underlying biological
complexity will be difficult to adequately capture statistically, as
e.g. DNA methylation and transcript abundance leading to
delayed changes in protein and cell abundances follow different
time lines.

In summary, single omics analysis revealed some important
signatures and showed trends when contrasting vaccine
responder groups. In line with previous studies, our work
demonstrated that integrative data analysis across several
biological domains can provide a comprehensive view of the
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molecular pathways and biological networks important in
vaccine responses (14, 64, 65). Importantly, our findings
revealed that data integration of pre-immunization multi-
omics signatures in a small sample size can predict response to
HBV vaccination.
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