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Systemic lupus erythematosus (SLE) is a spectrum of autoimmune disorders
characterized by continuous inflammation and the production of autoantibodies.
Monocytes, as precursors of dendritic cells and macrophages, are involved in the
pathogenesis of SLE, particularly in the inflammatory reactions. Previous studies have
proved that Pam3CSK4, as a synthetic ligand of TLR2, could stimulate monocytes to
differentiated into a M2-like phenotype which presented immunosuppressive functions.
However, the underlying mechanisms remain to be further studied. Here, we reported an
increased expression of PPAR-g in the CD14+ monocytes from SLE patients, particularly
in the treated group of SLE patients and the group with positive anti-dsDNA antibodies.
Additionally, PPAR-g expression decreased in the SLE patients with skin lesion.
Furthermore, we demonstrated that Pam3CSK4 stimulation can decrease the
expression of CCR7, CD80, IL-1b, IL-6, IL-12, and NF-kB which were related to the
M1-like subset of monocytes and increased the expression of ARG1 which was related to
the M2-like subset through upregulated PPAR-g expression and consequently
downregulated NF-kB expression in the CD14+ monocytes in a time-dependent
manner. ChIP-qPCR results further demonstrated that Pam3CSK4 pretreatment could
modulate PPAR-g expression by regulating histone modification through the inhibition of
Sirt1 binding to the PPAR-g promoter. Taken together, our study indicated a protective
role of TLR2/Sirt1/PPAR-g pathway in the pathogenesis of SLE which provided potential
therapeutic strategies.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a complicated
autoimmune syndrome that is distinguished by perpetuated
inflammation and the loss of self-tolerance leading to the
production of autoantibodies produced by autoreactive B cells
(1, 2). The disrupted tolerance and impaired immune responses
in patients with SLE cause damage to multiple organ systems.
Innate immune cells are of significant importance in the
initiation and modulation of inflammatory responses and also
take part in the regulation of acquired immune system (3).
Aberrant function of innate immune cells leads to perpetuated
inflammatory reactions, thus leading to organ impairment (4).

Monocytes, as an important component of the innate
immune system, can defend the host by differentiating into
macrophages and dendritic cells (DCs). Monocytes recruited
constantly from the peripheral blood is important for the
maintenance of the homeostasis of tissue-resident macrophages
and DCs (5). Monocytes express various surface molecules,
including cluster of differentiation (CD)14 and CD16. Based
on the different expression levels of these two molecules,
monocytes are classified into three subsets: the classical subset
(CD14highCD16−), which constitutes the majority of circulating
monocytes, the intermediate subset (CD14+CD16+), and the
nonclassical subset (CD14lowCD16+). Among these subsets, the
classical subset is characterized by significantly lower levels of
toll-like receptors (TLRs) and costimulatory factors but higher
levels of CD36 and CD163. Once stimulated, classical monocytes
can be rapidly recruited to sites of inflammation and undergo
phagocytosis, but they do not support inflammatory responses.
The intermediate subset expresses significantly higher levels of
TLRs than the other two subsets and is CD80hiCD86hi HLA-
DRhi, and this subset exhibits both phagocytic and
proinflammatory properties. The nonclassical subset also
expresses significantly higher levels of CD80 and CD86 and is
proinflammatory (6, 7). The results of the detection of these
monocyte subsets in SLE varies among several studies. There are
reports of an expansion of CD14+CD16+ monocytes or reduced
percentages of CD14lowCD16+ monocytes in SLE patients
compared to healthy controls, while other researchers reported
that there is no significant difference in the percentages of the
three subsets of monocytes between SLE patients and healthy
individuals (5, 7–9). Nevertheless, it is believed that there are
defects in the function of monocytes from SLE patients (10, 11).

In response to microenvironmental stimuli, monocytes can
polarize into M1-like or M2-like macrophages. M1-like
Abbreviations: ARG1, Arginase-1; CD, cluster of differentiation; ChIP,
Chromatin Immunoprecipitation; CCL, chemokines; CCR, C-C chemokine
receptor; DC, dendritic cell ; H3(4), Histone 3(4); HATs, histone
acetyltransferases; HDACs, histone deacetylases; HLA, Human leukocyte
antigen; HMGB1, High mobility group protein-1; I3C, Indole-3-carbinol; IL,
Interleukin; MDMs, monocyte-derived macrophages; NF-kB, nuclear
transcription factor-kB; PBMC, peripheral blood mononuclear cell; PBS,
Phosphate Buffered Saline; PCR, Polymerase Chain Reaction; PPAR,
Peroxisome proliferator activated receptor; Sirt1, Silent information regulator 1;
SLE, Systemic lupus erythematosus; TACI, transmembrane activator and calcium-
modulator and cyclophilin interactor; TLR, Toll-like receptor; VPA,
Sodium valproate.
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macrophages are proinflammatory with increased expression of
costimulatory factors and production of proinflammatory
cytokines, whereas M2-like macrophages are immunosuppressive
(12, 13). Recent studies suggest that an imbalance between the M1
andM2 phenotypes is closely related to SLE pathogenesis (14). An
increased M1 to M2 ratio is associated with SLE flares and disease
activity (12, 15). Adoptive transfer of M2-like macrophages
ameliorates SLE-like symptoms in the activated lymphocyte-
derived-DNA-induced SLE mouse model (16). Previous research
found that the TLR1/TLR2 receptor ligand Pam3CSK4 can skew
monocyte differentiation in favor of an immunosuppressive M2
phenotype (17). However, the underlying mechanisms need
further exploration.

In this study, we discovered an elevated expression level of
PPAR-g in the circulating monocytes isolated from SLE patients
compared to those isolated from healthy controls. Moreover, we
confirmed that TLR2 activation by Pam3CSK4 could induce the
differentiation of monocytes toward the M2-like phenotype by
improving the expression of PPAR-g. Further study verified that
elevated acetylation levels of histone H3 in the PPAR-g promoter
contributed to its increased expression, which was regulated by
the decreased enrichment of Sirt1 in the promoter region of
PPAR-g. These findings revealed a protective role of PPAR-g in
SLE patients and the epigenetic regulatory mechanism of the
expression of PPAR-g upon stimuli, which may provide an
adjuvant therapeutic target for SLE.
METHODS

SLE Patients and Healthy Individuals
All the enrolled patients in this study fulfilled at least four of the
SLE classification criteria of the American College of
Rheumatology (18). Disease activity was assessed by Disease
Activity Index (SLEDAI) (19). The SLE patients were recruited
from dermatological clinics, and the age- and sex-matched
healthy individuals were recruited from staff at the Second
Xiangya Hospital. All participants were informed and signed
informed consent forms. Peripheral venous blood was collected
from all participants. The monocytes were divided by CD14
magnetic beads (CAT 130-050-201) according to the instructions
provided by the Miltenyi company; Cellular purity was generally
>95% detected with flow cytometer. Demographic data and
medical data of all enrolled SLE patients were recorded at the
time of blood sample collection (see Supplementary Table S1).
The Human Ethics Committee of the Second Xiangya Hospital
give authority to this study.

RNA Isolation and qPCR
Monocytes were suspended by Trizol reagent (Thermo Fisher
Scientific) to extract total RNAs. Complementary DNAs
(cDNAs) were synthesized from 1-mg extracted RNAs using a
PrimeScript® RT Reagent Kit with gDNA Eraser (TaKaRa), 2-ml
cDNA, 10-ml SYBR Premix Ex TaqTM (TaKaRa), and 400 nM
forward and reverse primers formed the reaction mixture of a
final volume of 20 ml. Real-time PCR was performed on a
January 2021 | Volume 11 | Article 579372
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LightCycler® 96 System (Roche). The relative gene expression
was normalized to GAPDH through the comparative CT
method. All the primer sequences used in our study are
provided in Supplementary Table S2.

Western Blotting
At leas t 3 × 106 monocytes were lysed in radio
immunoprecipitation assay (RIPA) buffer containing a
proteinase and phosphatase inhibitor (Beyotime) for 30 min at
4°C. Lysates were centrifuged for 15 min at 14,000g at 4°C and
the supernatant was discarded. Protein concentration in cell
lysates were measured via the Bradford assay (HyClone-Pierce,
USA). Proteins were separated by electrophoresis using 12%
vertical dodecyl sulfate-polyacrylamide gel and transferred onto
nitrocellulose membranes (Millipore, USA). The PVDF
membranes was immersed in 5% skim milk for 1 h at room
temperature and then immunoblotted with primary antibodies,
icluding rabbit anti-human P50 (ab7971, 1:5,000, Abcam, USA)
or mouse anti-human PPAR-g antibody (ab41928, 1:1,000,
Abcam, USA) for 12–16 h at 4°C, followed by incubation with
the secondary Goat anti-mouse or anti-rabbit IgG antibody
(H&L) (GenScript, USA). The band intensity was measured by
an ECLWestern blot detection kit (Thermo Scientific, USA). The
expression level of PPAR-g and P50 was quantified by
densitometry with normalization to GAPDH.

Flow Cytometry
Surface markers and cytokines were detected using an FACS
Canto II cell analyzer (BD Biosciences, San Jose, California).
CD14 on monocytes was labeled with anti- APC anti-human
CD14 (BD Biosciences, Cat. No. 325607). For cytokines detection,
supernatant of CD14+ cells stimulated by Pam3CSK4 for 5 days
were collected. The concentrations of proinflammatory cytokines
secreted by CD14+ cells were detected by a Legendplex Kit
(human inflammation panel, Cat. No. 740118, Biolegend)
according to the manufacturer’s instructions. In brief, the
supernatant was incubated with buffer, antibodies-conjugated
microbeads and biotinylated detection antibodies for 2 h. Then,
we added PE-labeled streptavidin (SA-PE) into the mixture to
incubate for 30 min. After washed, the samples were detected by
the FACS Canto II cell analyzer. The results were collected and
analyzed with FlowJo software (FlowJo LLC, Ashland, Oregon).

Chromatin Immunoprecipitation Assays
ChIP analysis was conducted with a ChIP Assay Kit (Millipore)
following the manufacturer’s instructions. Sorted monocytes
were cross-linked in 1% formaldehyde for 10 min at room
temperature, and then, we added glycine to stop the reaction.
The fixed cells were washed with 20 ml ice-cold phosphate-
buffered saline twice and then lysed. The cell lysates were
centrifuged and resuspended before being sonicated to
generate 500- to 1,000-bp fragments. After that, the indicated
antibodies were added and incubated with the sheared DNA. The
immune compounds were precipitated with protein A agarose
beads, and then washed and eluted. The precipitated DNA was
purified, and then, the target DNA was amplified by qPCR.
The primers used are presented in Supplementary Table S3.
Frontiers in Immunology | www.frontiersin.org 3
Anti-PPAR-g (Abcam, ab41928) and anti-SIRT1 antibodies
(Abcam, ab12193) were of ChIP grade and were purchased
from Abcam. An anti-histone H3ac (pan-acetyl) antibody (pAb)
(cat. no. 39139) and an anti-histone H4ac (pan-acetyl) antibody
(pAb) (cat. no. 39243) were purchased from Active Motif.

Pam3CSK4 Stimulation and Inhibitor
Treatment
Isolated human monocytes were equally divided into
experimental and control groups. A total of 3 × 106 monocytes
in each group were cultured in six-well plates and activated by 5
mg/ml Pam3CSK4 (Invivogen, CAS No. 112208-00-1) or a
negative control. The cells were harvested for mRNA and
protein analysis 5 days later. The supernatant was collected to
detect the levels of secreted inflammatory cytokines. For the
inhibitor treatment experiment, the monocytes in the
experimental group were pretreated with the PPAR-g inhibitor
T0070709 (10 mmol) for 2 h, and then, Pam3CSK4 (5 mg/ml) was
added to stimulate the monocytes in both groups. After 5 days,
the cells were harvested for mRNA and protein analysis.

Statistical Analysis
The data are presented as mean± SEM. The Student’s t test or
Kolmogorov-Smirnov test was conducted to compare the
continuous normally distributed variables between two groups
based on the sample size, and the one-way ANOVA was
conducted to compare the variables among multiple groups.
The paired Student’s t-test was conducted to compare variables
between different culture conditions in in vitro assays. Mann-
Whitney U test was conducted to compare the variables that
were not normally distributed. Pearson’s correlation was used to
analyze linear relationship between two variables. All of the
diagrams and graphs illustrating cumulative data were created
with GraphPad Prism version 6.0 software. Statistical
significance is presented as *P < 0.05, **P < 0.01 and ***P < 0.001.
RESULTS

PPAR-g Expression Is Increased in CD14+

Monocytes From SLE Patients
Detection of the mRNA level of PPAR-g in the circulating CD14+

monocytes demonstrated that PPAR-g expression is upregulated
in SLE patients when compared with healthy controls (Figure
1A). To further understand the effects of various medications on
the expression of PPAR-g, we analyzed the mRNA expression
level of PPAR-g in the CD14+ monocytes from SLE patients
treated with different drugs, including 6 patients treated with
glucocorticoids, 9 patients treated with glucocorticoids combined
with hydroxychloroquine, and 9 untreated patients; CD14+

monocytes from 21 healthy controls were also included in this
experiment. Notably, the mRNA expression levels of PPAR-g
between the normal controls and the untreated SLE patients
showed no statistical significance. However, the PPAR-g
expression in the CD14+ monocytes increased significantly in
the treated group compared with the control group, and
January 2021 | Volume 11 | Article 579372
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glucocorticoid or hydroxychloroquine treatment elevated the
expression level of PPAR-g in CD14+ monocytes (Figure 1B).
Furthermore, we analyzed the mRNA level of PPAR-g in CD14+
Frontiers in Immunology | www.frontiersin.org 4
monocytes from SLE patients of different phenotypes. The
results showed that PPAR-g expression decreased in the SLE
patients with involvement of skin (Figure 2A). However, the
mRNA level of PPAR-g showed no statistical difference between
the SLE patients with or without involvement of the blood
system, kidney, and joints (Figures 2B–D). In addition, we
further analyzed the association between autoantibodies and
the expression of PPAR-g in SLE circulating CD14+ monocytes
and found a higher mRNA level of PPAR-g in the SLE patients
with positive anti-dsDNA Abs compared to those with negative
anti-dsDNA Abs (Figure 2E). However, there was no significant
difference of the PPAR-g expression in CD14+ monocytes
between the groups of SLE patients with or without anti-Sm
Abs (Figure 2F). Moreover, there lacked a strong association
between PPAR-g expression and the SLE disease activity index
(SLEDAI) as the R squared was only 0.1612 (Figure 2G).

TLR2 Stimulation Drives Monocytes to
Differentiate Into an M2-Like Phenotype
In addition to the abnormal activity of T and B cells, the imbalance
ofmacrophage subsets is emerging to be an important player in the
development of SLE (20). Therefore, inducing monocytes to
preferentially shift from an inflammatory M1-like phenotype
into an immunosuppressive M2-like phenotype may be a
potential therapeutic strategy. Recent work suggested that
Pam3CSK4 could normalize the M1:M2 ratio in SLE patients
through activating TLR2/1 (17). However, the exact regulatory
mechanism is unclear. In our study, we sorted and cultured CD14+

monocytes from healthy controls, and we stimulated these cells
in vitro with phosphate buffered saline (PBS) and Pam3CSK4 for
5 days. We then detected the mRNA expression levels of critical
proinflammatory cytokines by Real-time Polymerase Chain
Reaction (RT-PCR) including C-C chemokine receptor (CCR)7,
Arginase-1 (Arg-1), CD80, Interleukin (IL)-1b, IL-12, and
nuclear transcription factor-kB (NF-kB). The results showed
that the Pam3CSK4-treated group significantly suppressed the
transcription of CCR7, CD80, IL-1b, IL-12, and NF-kB, and
induced the Arg-1 expression (Figure 3A). In addition, we
collected the cell culture supernatants to analyze the secreted
levels of proinflammatory cytokines by flow cytometry and found
similar inhibition of the secretion of IL-1b and IL-6 (Figure 3B).
Taken together, these results showed that the molecules related to
the M1-like subset were decreased, and the molecules related to
the M2-like subset were increased. These results suggested that
Pam3CSK4 pretreatment drove monocytes to differentiate toward
the M2-like phenotype.

Pam3SCK4 Induces Monocyte Polarization
Accompanied by Increased PPAR-g
Expression
PPAR-g is a transcription factor (TF) with immunomodulatory
properties and has been proposed to promote the expansion of
the M2 subpopulation (21). In our study, monocytes were
isolated from the peripheral blood mononuclear cells (PBMCs)
of SLE patients by CD14 magnetic beads. Then, Pam3CSK4
(5 mg/ml) was utilized to stimulate the TLR2 receptors on
A

B

FIGURE 1 | PPAR-g expression is increased in the CD14+ monocytes from
SLE patients. (A) Both the mRNA level (n1 = 21, n2 = 28) and the protein
level (n1, n2 = 8) of PPAR-g were significantly higher in the circulating CD14+

monocytes derived from SLE patients than healthy controls. One
representative blot is shown. (B) The mRNA expression level of PPAR-g was
significantly increased in the CD14+ monocytes from the treated SLE patients
(n = 17) compared with those from the normal controls (n = 21), and
glucocorticoid (n = 6) or combined with hydroxychloroquine (n = 9) could
elevate the expression of PPAR-g in the SLE patients. RT-PCR results were
normalized to GAPDH. Each symbol represents an individual healthy control
or patient (n1 represents healthy controls, n2 represents SLE patients.
*P < 0.05, **P < 0.01, ****P < 0.0001).
January 2021 | Volume 11 | Article 579372
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monocytes, and the cells were harvested after 8 h, 12 h, 1 day, 3
days, and 5 days. We measured the mRNA and protein levels of
PPAR-g by qPCR and Western blot, respectively. The results
showed that Pam3CSK4 pretreatment elevated PPAR-g
expression in the CD14+ monocytes from SLE patients in a
time-dependent manner (Figures 4A, B).
Frontiers in Immunology | www.frontiersin.org 5
PPAR-g Inhibitor Prevents Monocyte
Polarization Toward the M2-Like
Phenotype
Similarly, when the monocytes were pretreated with the PPAR-g
inhibitor T0070709 (10 mmol) for 2 h, Pam3CSK4 failed to
induce monocyte polarization toward the M2-like phenotype.
A B

D

E F

G

C

FIGURE 2 | Correlations between PPAR-g levels and phenotypes, autoantibody levels and SLEDAI. (A) PPAR-g expression in the SLE patients without skin
manifestations was higher than that in the SLE patients with skin manifestations (n = 23). (B–D) PPAR-g expression in the SLE patients with involvement of the blood
system (B) (n = 7), kidney (C) (n = 11), and arthrosis (D) (n = 10) showed no significant differences compared with that in their control groups. (E) PPAR-g
expression in the anti-dsDNA Abs-positive SLE (n = 9) patients was higher than that in the anti-dsDNA Abs-negative SLE patients (n = 15). (F) The expression of
PPAR-g in the SLE patients was not affected by anti-Sm Abs (n = 16 for anti-Sm Abs positive patients and n = 10 for anti-Sm Abs negative patients). (G) The
correlation between PPAR-g expression and SLEDAI (n = 25). The RT-PCR results were normalized to GAPDH. Each symbol represents an individual healthy control
or patient (ns: no significance, *p < 0.05, **p < 0.01).
January 2021 | Volume 11 | Article 579372
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A

B

FIGURE 3 | TLR2 stimulation by Pam3CSK4 drives monocytes to differentiate into the M2-like phenotype. (A) The RT-PCR results showed that the expression
levels of critical proinflammatory cytokines, including CCR7, CD80, IL-1b, IL-12, and NF-kB, significantly decreased and that the expression level of ARG1 increased
in the Pam3CSK4-treated group compared with the control group. (B) Flow cytometry analysis revealed inhibition of the secretion of IL-1b and IL-6 after Pam3CSK4
treatment while the secreted levels of IL-8, IL-10, and MCP-1 were not decreased. RT-PCR results were normalized to GAPDH. Data represent the mean of three
independent experiments (*P < 0.05, NS: No statistical significance and P > 0.05).
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The transcription levels of CCR7, CD80, IL-1b, IL-12, and NF-
kB were promoted, while the level of Arg-1 was decreased
(Figure 5).

Pam3SCK4 Stimulation Drives Monocytes
Polarization Toward the M2-Like
Phenotype by the PPAR-g/NF-kB Pathway
In studies of DCs, the NF-kB pathway is indicated to be involved
in the regulation of TLR- and PPAR-g-modulated signaling (22).
Based on the cell experiments described above, after the sorted
monocytes were treated with Pam3CSK4, we also detected the
expression level of NF-kB. The results showed that the
expression level of NF-kB was rapidly initially upregulated by
Pam3SCK4 stimulation but then promptly decreased after 3
days, which was possibly due to the activation of PPAR-g
(Figure 6A). To confirm this conclusion, we designed another
in vitro experiment. We pretreated the monocytes with the
PPAR-g inhibitors T0070709 and GW9662 before adding
Pam3CSK4. To detect the expression levels of PPAR-g and
NF-kB, we performed Western blotting 5 days later. As
Frontiers in Immunology | www.frontiersin.org 7
expected, the inhibition of PPAR-g reversed the Pam3SCK4-
induced decreased expression of NF-kB (Figure 6B).

Histone Deacetylase Sirt1 Modulates
PPAR-g Expression by Increasing H3
Acetylation
Previous studies have demonstrated that expression of PPAR-g is
regulated by multiple epigenetic modifications. To explore the
detailed mechanism by which Pam3CSK4 pretreatment induces
PPAR-g expression, we conducted another in vitro experiment.
First, we collected the CD14+ monocytes after stimulation with
or without Pam3CSK4 for 48 h and detected the histone(H)3 and
H4 acetylation levels in the PPAR-g promoter by ChIP-qPCR.
We used the JASPAR database (http://jaspar.genereg.net/) to
predict the TFs binding sites of PPAR-g promoter region and we
found that the region from −300- to 0–base pair (bp) upstream of
transcription starting site (TSS) is a high-density area of TFs and
a key modulatory region. Therefore, we evaluated the histone
acetylation levels of H3 and H4 and the enrichment of Silent
information regulator 1 (Sirt1) in this region (Figure 7A). The
A

B

FIGURE 4 | Pam3CSK4 induces monocyte polarization accompanied by increased PPAR-g expression. (A) The Western blot and (B) RT-PCR results showed that
Pam3CSK4 stimulation elevated PPAR-g expression in the CD14+ monocytes from SLE patients in a time-dependent manner. RT-PCR and Western blot results were
normalized to GAPDH. Data represent the mean of three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.001, NS: No statistical significance and P > 0.05).
January 2021 | Volume 11 | Article 579372
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nucleotide sequence of this region is provided in Supplementary
Data Sheet 1. We observed that the H3 acetylation level
significantly elevated in the Pam3CSK4-treated group
compared with the control group, while the H4 acetylation level
exhibited no significant changes (Figures 7B, C). The histone
acetylation state is determined by histone acetyltransferases
(HATs), such as P300/CBP, and histone deacetylases (HDACs),
such as HDAC1 and Sirt1. Therefore, we determined whether the
H3 acetylation level in the PPAR-g promoter was regulated by
histone modification enzymes. The chromatin immunoprecipitation
(ChIP)–qPCR assays showed that the enrichment level of Sirt1 in the
PPAR-g promoter was significantly decreased in the Pam3CSK4
group (Figure 7D). These data indicated that Pam3CSK4
pretreatment modulates PPAR-g expression by regulating histone
modification through the inhibition of Sirt1 binding to the
PPAR-g promoter.
DISCUSSION

Compelling evidence suggests pivotal roles for monocytes and
monocyte-derived macrophages (MDMs) in autoimmune
diseases, including SLE (23, 24). Monocytes are an essential
part of innate immunity. It is traditionally believed that defects
in the phagocytosis and antigen presentation functions of
monocytes result in the accumulation of apoptotic debris,
leading to autoimmune responses (11, 25). The excessive
secretion of pro-inflammatory cytokines from circulating and
tissue-infiltrating Mo/Mf facilitates perpetuated inflammation
in SLE patients (26). Recent studies have increasingly focused
on aberrations of monocytes and MDMs in SLE. M1-like
Frontiers in Immunology | www.frontiersin.org 8
macrophages derived from monocytes can defend the host
against infection. However, these M1-like macrophages exhibit
pro-inflammatory properties in SLE patients, whereas the
reduced populations of M2-like macrophages derived from
monocytes play an immunomodulatory role (27, 28). The
circulating monocytes from SLE patients displayed an M1-like
phenotype that was influenced by the environment, including
the presence of cytokines and the elevated level of high mobility
group protein-1 (HMGB1) (12). Macrophage polarization
toward the M1 phenotype is associated with flare in SLE
patients (15). Murine studies showed that the adoptive transfer
of M2 macrophages significantly reduced SLE severity in lupus-
prone mice (16). Moreover, macrophages with transmembrane
activator and calcium-modulator and cyclophilin interactor
(TACI)–deficient present an M2-skewed phenotype and
improved the survival of MRL-Fas/Lpr mice, and the transfer
of macrophages from TACI−/− Lpr-mice ameliorated SLE-like
symptoms in age-matched, sick, wild-type mice (29).

Some drugs can induce the differentiation of monocytes into
an M2-like phenotype and alleviate SLE symptoms. Indole-3-
carbinol (I3C) is a ligand of the aryl hydrocarbon receptor. Upon
ligation, I3C could regulate inflammatory responses and
cytokine expression in murine models of SLE and prolong the
lifespan of lupus-prone mice (30, 31). Ex vivo experiments
demonstrated the effects of I3C on the skewing of MDMs from
SLE patients toward the M2-like phenotype, which inhibited the
secretion of pro-inflammatory cytokines and enhance the
secretion of anti-inflammatory cytokines (32). Sodium
valproate (VPA), as a histone deacetylase inhibitor, could
successfully promote the anti-inflammatory reaction by
supporting the polarization of MDMs from SLE patients
FIGURE 5 | PPAR-g inhibition prevents monocytes from polarizing toward the M2-like phenotype. The transcription levels of the M1 or M2-like phenotype-
associated cytokines were detected by RT-PCR in vitro. The expression levels of CCR7, CD80, IL-1b, IL-12, and NF-kB were increased while the expression level of
ARG1 was decreased in the PPAR-g inhibitor T0070709 (10 mmol)-pretreated group compared with the control group. RT-PCR results were normalized to GAPDH.
Data represent the mean of three independent experiments (*P < 0.05).
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toward the M2-like phenotype (33). Another study also reported
that Pam3CSK4, a TLR2 agonist, could stimulate SLE patient-
derived monocytes to differentiate into M2-like macrophages,
leading to an improved outcome of murine lupus (34).
Frontiers in Immunology | www.frontiersin.org 9
Moreover, pioglitazone, a PPAR-g agonist, could induce the
generation of the M2 population and consequently enhance
immunomodulation in SLE patients (21).

Our results also demonstrated that Pam3CSK4 could drive
MDMs differentiate into an M2-like subset with increased Arg-1
expression and decreased expression of CD80, NF-kB, and pro-
inflammatory cytokines IL-1b, IL-6, and IL-12, as well as CCR7.
Arg-1 is a surrogate for polarized alternative macrophages and is
significant enhancement to the production of nitric oxide (35).
Increased Arg-1 along with decreased CD80 are regarded as
markers of the M2-like phenotype of MDMs (36). IL-1b, IL-6,
and IL-12 are associated with the M1-like phenotype and are
elevated in a multitude of immune-mediated diseases, including
SLE (36–39). CCR7 is a chemokine receptor that interacts with
CCL19 and CCL21. Increased expression of CCR7 supports
migration to lymph nodes and potentially drives the
inappropriate localization of autoantigen-presenting cells (40).
Pam3CSK4 decreased the expression of CCR7, which may
impede the migration of MDMs. However, further exploration
of the role of downregulated CCR7 expression on monocytes in
the pathogenesis of SLE is needed. NF-kB acts as a TF that
promotes the transcription of many pro-inflammatory cytokines
(4). The decreased expression of IL-1b, IL-6, and IL-12 may be
attributed to the downregulation of NF-kB by Pam3CSK4.

PPAR-g is a nuclear hormone receptor that acts as a ligand-
activated transcriptional factor (41). PPAR-g can inhibit the
activation and regulate the differentiation of macrophages and
consequently ameliorate SLE (42). As mentioned above, the
PPAR-g agonist pioglitazone could enhance the alternative
activation of MDMs from SLE patients (21). Furthermore,
mouse experiments revealed that mice lacking PPAR-g
expression in macrophages showed deficiencies in phagocytosis
and developed autoimmune glomerulonephritis (43). And the
expression and activity of PPAR-g decreased in MRL/Lpr-
derived primary mesangial cells which further exacerbated the
disease state (44). However, rosiglitazone, a PPAR-g agonist,
decreased renal injury in a female mouse model of SLE (45). To
investigate the mechanism by which Pam3CSK4 regulates MDM
polarization, we measured the expression level of PPAR-g and
found that PPAR-g expression increased over time. Inhibiting
PPAR-g with its antagonist T0070709 reversed the modulatory
effects of Pam3CSK4 on MDMs. These results demonstrated that
Pam3CSK4 regulates the polarization of MDMs via the
activation of PPAR-g. In addition, we verified that the mRNA
and protein levels of PPAR-g were increased in monocytes from
SLE patients, specifically in patients with anti-dsDNA antibodies,
which suggested that PPAR-g may act as a feedback regulator
that ameliorates SLE.

To further understand how Pam3CSK4 upregulated PPAR-g
expression, we detected the histone H3 and H4 acetylation levels
in the PPAR-g promoter. We found that the histone H3, but not
H4, acetylation levels significantly increased in the promoter
region of PPAR-g upon Pam3CSK4 stimulation. Moreover, the
enrichment of the deacetylase Sirt1 significantly decreased in the
same region of PPAR-g promoter, which indicated that
Pam3SCK4 could decrease the enrichment of Sirt1, thus
increasing the histone acetylation level and promoting the
A

B

FIGURE 6 | Pam3SCK4 stimulation drives monocytes to differentiate toward
the M2-like phenotype via the PPAR-g/NF-kB pathway. (A) The results of
western blot showed that the expression level of NF-kB was rapidly
upregulated within 8 h after the Pam3SCK4 stimulation, while it rapidly
decreased 3 days later. Meanwhile the expression level of PPAR-g increased
gradually. (B) PPAR-g inhibitors T0070709 and GW9662 could inhibit the
protein level of PPAR-g while increase the expression of NF-kB on the fifth
day. The western blot results were normalized to GAPDH. Data represent the
mean of three independent experiments. (*P < 0.05, **P < 0.01). NS, No
statistical significance.
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expression level of PPAR-g. Histone acetylation is a kind of
epigenetic modification (46). Histone acetylation favors gene
transcription due to the relatively uncondensed chromatin status
(47). Sirt1 is an NAD-dependent lysine deacetylase that can
modulate the histone acetylation status (48). The relationship
between Sirt1 and TLR2 activation was observed in a previous
study, which proved that TLR2 ligation was associated with
decreased Sirt1 expression (49). Our results particularly highlight
the relationship between TLR2 ligation and Sirt1 enrichment in
the promoter region, and these results are more convincing.
Interestingly, the roles of Sirt1 in SLE are different in different cell
types. Expression of Sirt1 increased significantly in CD4+T cells
from patients with active lupus which indicated increased Sirt1
expression is related to the development of SLE (50). However,
another study pointed out that ultraviolet B (UVB) exposure
could inhibit activity of DNA methyltransferase1 (DNMT1) via
suppression of Sirt1 in CD4+T cells from SLE patients which
implied that inhibited expression of Sirt1 contributed to the
pathogenesis of SLE (51). Recently, Eri Katsuyama et al. found
that decreased expression of Sirt1 in CD8CD38high T cells
participated in the mediation of cytotoxicity of CD8 T cells
and was associated with the infection tendency in SLE patients
(52). These results showed that Sirt1 exhibited antithetic effects
under different circumstances.
CONCLUSION

Our results demonstrate that Pam3CSK4 can induce monocytes
to polarize toward an M2-like phenotype with increased
Frontiers in Immunology | www.frontiersin.org 10
expression of Arg-1 and decreased expression of CD80, NF-kB,
IL-1b, IL-6, IL-12, and CCR7. This process is mediated by
PPAR-g, whose expression is elevated in the monocytes from
SLE patients. Pam3CSK4 regulates PPAR-g expression by
downregulating Sirt1 enrichment in the PPAR-g promoter and
consequently increasing H3 acetylation. Taken together, our
results suggest a protective role of the TLR2/Sirt1/PPAR-g
signaling pathway in the pathogenesis of SLE and shed light on
potentially novel treatment strategies.
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