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Gallic acid (GA) is a naturally occurring polyphenol compound present in fruits,

vegetables, and herbal medicines. According to previous studies, GA hasmany biological

properties, including antioxidant, anticancer, anti-inflammatory, and antimicrobial

properties. GA and its derivatives havemultiple industrial uses, such as food supplements

or additives. Additionally, recent studies have shown that GA and its derivatives not

only enhance gut microbiome (GM) activities, but also modulate immune responses.

Thus, GA has great potential to facilitate natural defense against microbial infections

and modulate the immune response. However, the exact mechanisms of GA acts on

the GM and immune system remain unclear. In this review, first the physicochemical

properties, bioavailability, absorption, and metabolism of GA are introduced, and then we

summarize recent findings concerning its roles in gastrointestinal health. Furthermore,

the present review attempts to explain how GA influences the GM and modulates the

immune response to maintain intestinal health.

Keywords: polyphenol, gallic acid, gut microbiome, immune response, gastrointestinal health

INTRODUCTION

Gallic acid (GA), 3,4,5-trihydroxybenzoic acid, is a polyphenol compound (1) and has gradually
won a considerable amount of attention because it is ubiquitous in fruits, vegetables, and herbal
medicines, such as grapes (2–4), gallnuts (5, 6), pomegranates (7, 8), and tea leaves (9, 10). In
1786, Carl Wilhelm Scheele, a famous Swedish chemist, was the first to identify and isolate GA
and pyrogallic acid from plants (11). Since then, reports on GA and its derivatives have gradually
increased, which has increased awareness in the understanding of GA. In addition to the edible
uses of GA and its ester derivatives as flavoring agents and preservatives in the food industry
(12, 13), there are also various kinds of studies on their biological and pharmacological activities,
including antioxidant (14, 15), antimicrobial (16, 17), anticancer (18, 19), anti-inflammatory (20,
21), gastroprotective (22–25), cardioprotective (26, 27), neuroprotective (28–30), and metabolic
disease prevention activities (31–33). To date, however, virtually no published studies exist on the
mechanisms of action of GA through the gut microbiome (GM) and immune response.
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Therefore, in this review, we first cover the physicochemical
properties, absorption, and metabolism of GA and then
summarize recent findings concerning their roles in
gastrointestinal diseases. Moreover, the current review tries
to shed light on the regulatory mechanism of GA through
modulation of the GM and immune response. Finally, we
summarize our findings based on the obtained information
and provide an outlook for further investigations. Relevant
references and data for this review were derived from theWeb of
Science and PubMed databases, from which we chose the most
relevant literatures that have investigated the effect of GA and
its derivatives on the treatment or prevention of gastrointestinal
diseases, especially focusing on the GM and immune response.

PHYSICOCHEMICAL PROPERTIES OF GA

Frequently, polyphenols are mainly divided into two categories,
including flavonoids (anthocyanins, flavanols, flavanones,
flavonols, flavonones, and isoflavones) and non-flavonoids
(phenolic acids, xanthones, stilbenes, lignans, and tannins).
Phenolic acids arise from two major phenolic compounds:
benzoic acids and cinnamic acids, separately based on the C1-C6
and C3-C6 backbones. p-Hydroxybenzoic acid, protocatechuic
acid, vanillic acid, GA, and syringic acid are hydroxybenzoic
derivatives, and hydroxycinnamic acids include p-coumaric
acid, ferulic acid, caffeic acid, and sinapic acid (34, 35). Due to
their different structures, hydroxycinnamic acids show higher
antibacterial activity than hydroxybenzoic acids (36). Tannins
are classified as hydrolysable tannins (HTs) and condensed
tannins (CTs) (11). HTs contain a glucose unit and esterified
gallic acid. As presented in Figure 1, GA is a trihydroxybenzoic
acid with the molecular formula C7H6O5 and molecular weight
of 170.12 g/mol, and hydroxy groups are at positions 3, 4, and
5. It is a colorless or slightly yellow crystalline compound, and
the melting point is 210◦C, with decomposition between 235◦C
and 240◦C producing carbon dioxide and carbon monoxide. Its
density is 1.69 kg/L, its pKa is 4.40, and its log P is 0.70 at 20◦C.
It is soluble in water, alcohol, ether, and glycerol, and practically
insoluble in benzene, chloroform, and ether petroleum (1).
GA is a secondary metabolite widely distributed in several
fruits, vegetables, and herbal medicines (37), and it is used in
photography, pharmaceuticals, and analytical reagents (38).
GA is found both free and as part of HTs. It is the most basic
constituent donor used to synthesize HTs through esterification
of GA with glucose and products of their oxidative reactions.
HTs contains mainly glucogallin, gallotannins, ellagitannins,
and their derivatives (39). Tannase (a glycoprotein esterase)
hydrolyzes GA from gallotannins, thereby increasing available
GA absorbed in the gastrointestinal tract (GIT) (40, 41). The GA
groups are usually bonded to form dimers, such as ellagic acid.

The GA derivatives include two types: ester and catechin
derivatives. The most common ester derivatives of GA are
alkyl esters, which are composed mainly of methyl gallate
(MG), propyl gallate (PG), octyl gallate (OG), dodecyl gallate
(DG), tetradecyl gallate (TG), and hexadecyl gallate (HG), and
some of the main catechin derivatives are epicatechin (EC),

epicatechin gallate (ECG), epigallocatechin (EGC), gallocatechin
gallate (GCG), and epigallocatechin gallate (EGCG) (42–45).
In particular, EGCG, a main bioactive compound, has been
observed to have potent anticancer activities and protective
effects on cardiovascular and metabolic diseases with multiple
mechanisms (46–49). Owing to the properties of potent
antioxidants scavenging of reactive oxygen species, several GA
derivatives, such as DG, PG, OG, TG, and HG, are widely used in
the foodmanufacturing, pharmaceutical, and cosmetic industries
(43, 45, 50). The detailed classification and chemical structures of
polyphenols, phenolic acids, GA and its derivatives are shown in
Figure 1.

BIOAVAILABILITY, ABSORPTION, AND
METABOLISM OF GA

It has been widely claimed that polyphenols are good source
of natural health products and are beneficial for human health
(51–55). Oliver et al. found that polyphenols have high instability
to light, heat, and pH due to the existence of multiple hydroxyl
groups (56). To a great extent, these external factors affect
their commercial popularization and application. In addition,
the poor solubility characteristics limit their wide application
in the fields of food products and supplements (57, 58).
Moreover, polyphenols are quickly absorbed in the GIT, with
rapid metabolism within the human gut and a high elimination
rate in vivo, resulting in low and inconsistent oral bioavailability
(59–61). Similarly, as a phenolic acid in polyphenols, GA and its
derivatives also have the above disadvantageous properties, poor
bioavailability, stability, and solubility (3, 62). Fortunately, the
developing colloidal delivery systems could significantly improve
its bioavailability, which brings large possibility for application
in human.

The 4-O-Methygallic acid (4-OMeGA) is the primary
metabolite of GA in human plasma and urine (3, 63, 64). After
oral administration, nearly 70% of GA is absorbed and then
excreted via urine as 4-OMeGA (65, 66). Barnes et al. identified
GA metabolites (pyrogallol-1-O-glucuronide, 4-OMeGA, 4-
OMeGA-3-O-sulfate, pyrogallol-O-sulfate, deoxypyrogallol-O-
sulfate, andO-methylpyrogallol-O-sulfate) in the urine of healthy
volunteers over a 12 h period by tandem mass spectrometry
(MS/MS) analysis after the consumption of 400 g/d Keitt mango
for 10 days (67). Further study indicated that after a single
oral administration of Polygonum capitatum extract at 60 mg/kg
(equivalent to 12 mg/kg GA), GA was distributed mainly in rat
kidney tissue (1,218.62 ng/g); the lung tissue had the second
highest GA content (258.08 ng/g); the concentration of GA in
the liver and heart was slightly lower than that of the lung; the
spleen contained very little GA; and GA could not be found
in brain tissue (62). However, a study suggested that the rat
brain deposition of GA increased with repeated dosing of grape
seed polyphenolic extract (3). In a urinary excretion study,
approximately 16.67% of the intake GA was excreted in an
unchanged form, and the predominant metabolite 4-OMeGA of
GA was detected in the urine sample (62). The theaflavin galloyl
moiety of black tea was consumed by GM, and the released
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FIGURE 1 | Detailed classification and chemical structures of polyphenols, phenolic acids, GA, and its derivatives. HTs, hydrolysable tannins; CTs, condensed tannins;

MG, methyl gallate, C7H5O5-CH3; PG, propyl gallate, C7H5O5-(CH2)2-CH3; OG, octyl gallate, C7H5O5-(CH2)7-CH3; DG, dodecyl gallate, C7H5O5-(CH2)11-CH3; TG,

tetradecyl gallate, C7H5O5-(CH2)13-CH3; HG, hexadecyl gallate, C7H5O5-(CH2)15-CH3; EC, epicatechin, C15H14O6; ECG, epicatechin gallate, C22H18O10; GCG,

gallocatechin gallate, C22H18O11; EGC, epigallocatechin, C15H14O7; EGCG, epigallocatechin gallate, C22H18O11.

GA was further transformed to 3-O-methyl GA (3-OMeGA),
4-OMeGA, pyrogallol-1-sulfate, and pyrogallol-2-sulfate, which
were excreted via urine amounts to 94% of the intake (68).
Figure 2 shows the absorption, metabolism, and distribution of
GA in vivo.

These research results indicate that GA undergoes extensive
metabolism after digestion, but its effectiveness is limited
because of rapid metabolism and elimination. How to improve
the bioavailability of GA remains a problem. To overcome
these challenges, colloidal delivery systems have been tested

to increase the intestinal absorption of GA and subsequently
enhance its bioavailability in corresponding target organs and
tissues. Natural proteins, polysaccharides, and biopolymer-based
delivery systems have been widely used in the research of
polyphenols (69), and colloidal encapsulation could enhance
the efficacy of polyphenols in the field of food and biomedical
applications (70, 71). Similarly, the phospholipid complexation
delivery system also shows a good effect on GA. GA–
phospholipid complex improved the bioavailability of GA
by increasing absorption, decreasing elimination rate, and
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FIGURE 2 | The absorption, metabolism, and distribution of GA. GA, gallic acid; 4-OMeGA, 4-O-methygallic acid; 3-OMeGA, 3-O-methygallic acid; H, M, and L

represent the high, middle, and low content of GA in corresponding tissues and organs, respectively; the 4-OMeGA in black boxes represent that it is the primary

metabolite of GA in different organs.

lengthening duration of action in rat serum (72). GA liposomes
decorated with lactoferrin (LF-GA-LIP) could be developed as a
favorable delivery system because it displayed a delayed-release
effect in simulated digestion (73). Recent studies reported that
the addition of tannase could enhance GA bioaccessibility in
green tea and mango juice (40, 41). Repeated dosing and the use
of structural analogs or derivative compounds of GA also were
effective measures to improve the plasma levels of GA (3).

However, the application of these colloidal delivery systems
still has many difficulties, such as the astringent taste of GA, and
the bioavailability and potential toxicity of GA complexations
should be explored through in vitro and in vivo trials. A more
comprehensive understanding of GA is necessary. Only then can
GA complexations be used safely and reasonably as supplements
and drugs in production.

GA IN GASTROINTESTINAL HEALTH AND
DISEASE

Over the past decade, researchers have provided plenty of
emerging evidence that the GM plays a crucial role in the

maintenance of physiological homeostasis within the GIT,
and microbiome dysbiosis is directly related to many health
problems, such as gastrointestinal disease. Several studies in
animal models investigate the effects of GA consumption on
gastrointestinal diseases and its mechanisms of action.

Gastric Cancer
Gastric cancer (GC) is one of the main causes of cancer deaths
in the world and over 1 million new cases were diagnosed in
2018 (74). Gastric microbiota plays an initial role in GC (75),
and infection with Helicobacter pylori (H. pylori) is the strongest
risk factor linked to GC (76). Almost all cases of GC can be
related to H. pylori (77). An aqueous extract of ginger (GA and
cinnamic acid) could protect the gastric mucosa against stress
induced mucosal lesions by suppressing H. pylori, blocking H+,
K+-ATPase action, and providing antioxidant protection (25).
The study suggests that GA has potential for prevention and
treatment of GC through decreasing H. pylori; however, the
aqueous extract was a mixture instead of pure GA; thus, the
mechanism of action is uncertain, and further research is needed.
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Meanwhile, GA has potent therapeutic effects on the
non-steroidal anti-inflammatory drug (NSAID)-induced
gastric mucosal damage by preventing oxidative stress and
inhibiting the activation of the mitochondrial pathway of
apoptosis in gastric mucosal cells (78). Similarly, gastric
adenocarcinoma cell metastasis was inhibited by GA, whose
possible mechanism may occur through inhibitory effects on
the Ras/PI3K/AKT signaling pathway and transcriptional factor
NF-κB, resulting in the antimetastatic effects (79). A study
verified the protective mechanism of GA and its novel derivative
[(E)-3,4,5-trihydroxy-N-(2-(piperazin-1-yl) ethyl) benzimidic
acid] against ethanol-induced gastric ulcerogenesis, suggesting
that the gastroprotective activity may be related to antioxidant

properties, immunomodulatory markers, Hsp70 and Bcl-2-
associated X protein, and inhibition of mitochondrial apoptosis
(80). Interestingly, the combination of GA plus famotidine
exhibited a synergistic role in the protection of rat gastric mucosa
(81). This study provides a possibility for GA to enhance the
therapeutic effect of antibiotics.

Colorectal Cancer
Colorectal cancer (CRC) has the third highest cancer incidence
around the world, and it constitutes a major global health
burden threatening public health (82). The high number of
studies have found that the GM plays a crucial role in colorectal
carcinogenesis (83). Previous studies reported that dietary

TABLE 1 | The antimicrobial activity of GA observed in vitro.

Form MIC/MBC Change of strain References

GA MIC in biofilm: 2 mg/mL;

Minimal biofilm eradication concentration: 8 mg/mL

Inhibited E. coli biofilm formation by regulating

pgaABCD genes expression

(105)

GA MIC: 2 mg/mL; MBC: 8 mg/mL Inhibited Shigella flexneri biofilm formation by

regulating the expression of the mdoH gene and the

OpgH protein

(106)

GA MIC in suspension and in biofilms was 2 and 4

mg/mL

Inhibited S. aureus biofilm formation by regulating

the expression of the ica operon

(107)

GA MIC: 2.5 mg/mL; MBC: 10 mg/mL Reduced the activity of Pseudomonas spp.,

Enterobacteriaceae, and Eumycetes

(108)

GA MIC for dermatophyte strains: 43.75 ∼ 83.33 mu

g/mL

MIC for Candida strains: 12.5∼100.0 mu g/mL

Antifungal activity for dermatophyte strains

(T. rubrum, Trichophyton mentagrophytes,

Trichophyton violaceum, Microsporum canis,

Trichophyton verrucosum, Trichophyton

schoenleinii) and Candida strains (Candida glabrata,

C. albicans, Candida tropicalis)

(109)

GA The 50% effective inhibition concentration (EC50):

2.6 mu g/mL;

The 50% cytotoxic concentrations (CC50): 22.1 mu

g/mL

Inhibited influenza A (H1N1) virus infection (110)

GA 7.01 mu g/mg anti-HBV (111)

GA + octyl gallate MIC for GA: 3,150 mu g/mL; MIC for octyl gallate:

30 mu g/mL

Enhanced the inhibition of Enterococcus faecalis

compared with the efficacy of individual compounds

(112)

Laccase-catalyzed chitosan–GA

derivative

MIC for S. aureus: 0.2 mg/mL; MIC for E. coli: 0.4

mg/mL

Inhibited the growth of E. coli and S. aureus (113)

GC-AgNps MIC: 1 mu g/mL Exhibited good antibacterial activity against E. coli (114)

LF-GA-LIP – Exerted higher antibacterial properties against

E. coli and S. aureus than GA-LIP

(73)

GA-g-chitin-glucan complex – Showed better antibacterial activity in comparison

to unmodified chitin-glucan complex

(115)

GAGO 50–500 mu g/mL Had potential anti-bacterial against S. aureus (116)

Functionalized ZnO

nanoparticles with GA

– Displayed good antibacterial activity against

methicillin-resistant S. aureus and E. coli compared

to non-functionalized ZnO nanoparticles

(117)

GA and its derivatives (octyl

gallate, propyl gallate)

– The octyl gallate and propyl gallate had significant

inhibition against Carnobacterium divergens ATCC

35677 and Leuconostoc carnosum ATCC 49367

originating from meat in comparison to GA

(17)

GA esters MIC: 0.015 mg/mL The 3-chloropropyl 3, 4, 5-trihydroxybenzoate

against resistant gram-negative strains such as

P. aeruginosa, E. coli and E. aerogenes

(118)

MIC, minimum inhibitory concentration; MBC, minimal bactericidal concentration; GA, gallic acid; GC-AgNps, GA-chitosan-modified silver nanoparticles; LF-GA-LIP, GA liposomes

decorated with lactoferrin; GA-g-chitin-glucan complex, GA-grafted chitin-glucan complex; GAGO, GA-loaded graphene oxide-based nanoformulation.
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polyphenols benefit colorectal tissue integrity and function, gut
bacterial growth and activities (84, 85). Although there is no
direct evidence to suggest that GA prevents the occurrence of
CRC by changing GM, we can indirectly speculate that GA
influence the GM of CRC based on the related literatures of
polyphenols and CRC.

GA and its derivative 3-OMeGA decreased human colon
cancer cell viability by suppressing cell proliferation and
regulating the signaling pathways of NF-κB, AP-1, STAT-1, and
OCT-1 (86). Additionally, polymer nanoparticles assembled from
GA-grafted chitosan (GA-g-CS) and caseinophosphopeptides
(CPPs) were developed to deliver (-)-EGCG as novel functional
foods. The GA-g-CS-CPP nanoparticles demonstrated powerful
antioxidant activity and cytotoxicity against Caco-2 colon
cancer cells, and the EGCG-loaded GA-g-CS-CPP nanoparticles
further amplified the anticancer activity against Caco-2 cells
(87). Similarly, GA-conjugated chitosan efficiently inhibited
pulmonary metastasis of CT26 mouse colorectal carcinoma cells
(88). In 1,2-dimethyl hydrazine-induced colon carcinogenesis
in rats, the activity of phase II enzymes decreases, and phase
I enzymes increases, whereas it is interesting to note that
GA treatment could shift the above changes toward normal
levels (89).

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD), including Crohn’s disease
(CD) and ulcerative colitis (UC), has long been doubted to
correlate of an abnormal host reaction to GM (90). Both diseases
are chronic and inflammatory disorders in the GIT with an
increasing incidence rate being related to the rapid development
of industrialization (91). Patients with these disorders have
greater incidence to evolve into colon cancer (92, 93). Numerous
experimental and clinical studies have indicated that various
dietary polyphenols have beneficial effects against IBD (94–96).

GA could inhibit inflammation in dextran sulfate sodium
(DSS)-induced colitis in mice through the suppression of
p65-NF-κB and IL-6/p-STAT3Y705 activation (22), and
suppress lipopolysaccharide (LPS)-induced inflammation in
transgenic mice by regulating immune system processes and
downregulating the NF-κB pathway (97). Li et al. was the first to
perform 16S gene sequencing on mice fecal and combined with
metabolomics analysis; the results indicated that GA significantly
attenuated UC by influencing composition of mice GM and
metabolites (98). What makes us delighted is that a pilot study
in patients with IBD found mango pulp (gallotannins and GA)
intake markedly increased the abundance of beneficial bacteria
such as Lactobacillus spp., Lactobacillus plantarum, Lactobacillus
reuteri, and Lactobacillus lactis, which was accompanied by
increased fecal butyric acid production (99).

However, there is only very limited evidence on the
effectiveness of GA in GIT health, and very few human studies
have been conducted on the impact of GA on GIT health. There
is no adequate evidence to confirm the impact of GA on GIT
health and disease. Further high-quality researches are needed to
establish the mechanism of action of GA and its derivatives on
GIT health. Several human studies have preliminarily interpreted

the link between the GM and IBD. Thus, the GM could be a
research direction between GA and GIT health in the future.

EFFECTS OF GA ON THE GM

The GM is a key modulator of human health (100, 101).
Trillions of microbes living in GIT finely regulate homeostasis
in GIT ecosystem, most of which are beneficial to human
health, affecting maintenance of the metabolic function of the
host, development of the innate and adaptive immune systems,
and resistance against invasion of enteric pathogens (102).
In recent years, it has become a popular research hotspot
in biomedical research because researchers have identified
relationships between GM compositions and health (103). The
microbial diversity and homeostatic configuration of the GM are
affected by various factors, and diet appears to exert the greatest
influence on the GM. Dietary components are utilized by the GM
to produce energy and metabolites, which can mostly enter the
bloodstream to affect intestinal function and the immune system
(104). As an active ingredient in dietary polyphenols, GA has
potent antimicrobial properties and is beneficial to human and
animal health.

Antimicrobial Properties in vitro
GA has broad-spectrum therapeutic properties including
antibacteria, antifungal, and antiviral activities in vitro (Table 1).
An in vitro study reported that GA suppressed viable bacteria
and Escherichia coli (E. coli) biofilm formation by regulating
pgaABCD gene expression (105); meanwhile, GA effectively
inhibited Shigella flexneri biofilm formation and activity
by regulating the expression of the mdoH gene and the
OpgH protein (106), and had a specific antibiofilm effect on
Staphylococcus aureus (S. aureus) by regulating the expression
of the ica operon (107). Additionally, GA not only has potent
anti-bacteria activity, but also against Eumycetes (36, 119).
A storage test performed on fresh black truffles revealed the
antimicrobial activity of GA observed in vitro, with a dramatic
decline in the abundances of not only Pseudomonas spp., but also
Enterobacteriaceae and Eumycetes (108), and it was observed
that GA has a broad-spectrum antifungal activity for all tested
dermatophyte strains (Trichophyton rubrum, Trichophyton
mentagrophytes, Trichophyton violaceum, Microsporum canis,
Trichophyton verrucosum, and Trichophyton schoenleinii) and
Candida strains (Candida glabrata, C. albicans, and Candida
tropicalis) (109). In addition, GA might be a sensitive reagent
inhibiting influenza A (H1N1) virus infection (110) and has anti-
HBV activity (111). Based on its powerful antimicrobial activity,
GA is used to synthesize a kind of antimicrobial agent, such as
trimethoprim, to treat some microbial infectious diseases (120).

The synergistic effects of natural antimicrobial compounds
could increase the antimicrobial potential. A combination of
GA and octyl gallate enhanced the antimicrobial activity for
Enterococcus faecalis compared with the efficacy of individual
compounds (112). A laccase-catalyzed chitosan–GA derivative
markedly suppressed the growth of E. coli and S. aureus, and it
could disrupt their cell membranes causing leakage of cytoplasm
and increasing relative conductivity. Further, the cytotoxicity
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FIGURE 3 | Proposed principle pathways for GA in the colonic microbiota and mammalian phase II metabolism. Red arrows indicate microbiota-mediated steps, and

blue arrows represent mammalian enzyme-mediated conversions. The names in yellow boxes indicate the main metabolites accumulating in urine after GA intake.

This figure is quoted from Pereira-Caro et al. (68).

was notably decreased by proper modification of chitosan
with GA (113). Furthermore, synthesized GA-chitosan-modified
silver nanoparticles (GC-AgNps) exhibited good antibacterial
activity against E. coli (114). LF-GA-LIP also exerted greater
antibacterial capabilities against E. coli and S. aureus than GA-
LIP (73). A GA-grafted chitin-glucan complex (GA-g-chitin-
glucan complex) showed better antibacterial activity than the
unmodified chitin-glucan complex (115). Shamsi et al. reported
that a GA-loaded graphene oxide-based nanoformulation
(GAGO) could be used as a potential antibacterial agent against
S. aureus (116). The ZnO nanoparticles functionalized with
GA displayed stronger antibacterial activity against methicillin-
resistant S. aureus and E. coli compared with non-functionalized
ZnO nanoparticles (117). Similarly, a study on chickens displayed
a synergistic effect of GA and eugenol in reducing the heat
lethality of Salmonella spp. (121).

GA and its derivatives (octyl gallate, propyl gallate) as
well as binary combinations exhibit significant inhibition
against Carnobacterium divergens ATCC 35677 and Leuconostoc
carnosum ATCC 49367 originating from meat, and octyl gallate
and propyl gallate weremore effective than GA (17). Halogenated
GA analogs might be promising drugs. Sherin et al. synthesized

fifteen novel GA esters, and the most effective compound found
was 3-chloropropyl 3,4,5-trihydroxybenzoate, a debenzylation
of gallic acid ester, specifically against resistant gram-negative
strains, such as P. aeruginosa, E. coli and E. aerogenes (118).

Such meaningful observations in vitro indicate that GA
and its derivatives have antimicrobial activities, which can be
strengthened by a favorable delivery system. However, in vitro
studies raise a question of whether GA exerts healthy effects by
changing the GM composition in vivo. Thus, studies in vivo in
animals and humans need to be carried out.

Action of GA on the GM in Animals and
Humans
Most plant-derived polyphenols must be transformed
through the GM and intestinal enterocyte enzymes to be
absorbed at enterocyte and colonocyte levels. The GM could
transform polyphenols to final bioactive derivatives exhibiting
antimicrobial properties. Therefore, an appropriate GM is
extremely important for fighting against infectious diseases
(122). Similarly, metabolism of GA in the GIT also requires
the participation of the GM and intestinal enterocyte enzymes.
As described in Figure 3 by Pereira-Caro et al. the principle
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pathways for GA in the colonic microbiota and mammalian
phase II metabolism are proposed (68). The effect between
the GM and GA is mutual; intestinal bacteria has the ability
to metabolize GA, and GA also can induce changes in the
microbiota toward a more favorable composition and activity,
including the production of short-chain fatty acids (SCFAs) in
the colon (22).

From the GM point of view, A recent study of animal model
on the attenuation of DSS-induced rat UC by GA showed that
GA dramatically decreased the GM abundance but had little
impact on diversity. Changes in microbiota induced by DSS were
characterized by a decrease in some probiotics predominantly in
the Lactobacillaceae and Prevotellaceae families, and an increase
in some pathogenic bacteria dominated by the Firmicutes and
Proteobacteria phyla; GA reversed the above-mentioned changes
and make them similar to the control group (22). Because fecal
metabolites are byproducts of the interplay between the host and
microbiota, changes in metabolites in vivo can act as evidence
for alteration of the microbiota. Detection of the fecal SCFAs
by gas chromatography concluded that the SCFAs contents
were higher in the control group than GA and DSS group.
Analysis of nuclear magnetic resonance-identified metabolites
further revealed GA-induced metabolites changes mainly in
increasing carbohydrate metabolism and bile acid metabolism
and decreasing amino acid metabolism (22). All of above results
demonstrate that GA-induced alterations in metabolites and GM
in DSS-colitis provide new insight into the attenuation of UC
by GA. Metabolomics data of rat plasma, liver, urine, and feces
were analyzed by nuclear magnetic resonance whose results
showed that changes in metabolites correlates to GA intake,
and GA effectively promoted glycogenolysis, glycolysis, and TCA
cycle and had positive effects on the metabolism of nucleotides,

choline, bile acids, and amino acids (123). Fecal propionate and
butyrate are fermentation products of insoluble polysaccharides
and proteins (124). Remarkable increases in the levels of fecal
propionate and butyrate and decreases in the levels of pyruvate,
2-ketoglutarate, lysine, alanine, and keto-acids suggested that
GA could promote the GM fermentation of both proteins and
polysaccharides. Research evidence suggests that GA has a great
potential to be a natural antifungal agent for clinical application.
A study in mice proved that intraperitoneal injection of GA
markedly improved the rate of curability in a mouse model of
systemic fungal infection (109).

In summary, available results in vitro and limited animal
researches in vivo show GA can positively affect the composition
of the GM or suppress the growth of pathogenic bacteria.
However, it is a great pity that studies on the effects of GA and
its derivatives on the human GM are lacking. The analysis of
metabolites levels in human feces, urine, and blood combined
with metagenomic analysis could offer a in-depth understanding
of the impact of GA on humans.

GA IN IMMUNOMODULATION

The gut is an immune organ in which more than half of
all immune cells are concentrated. The gut immune system
linked to obesity, diabetes, food allergies, and IBD (125), thus,
the gut immune function is closely related to human health.
Various factors affect the development of the gut immune
system, especially the GM and antigens, and they can drive the
maintenance of gut barrier function and the development of
the mucosal immune system (126). The mucus layer serves as
the first protective barrier of the gut composed of an outer,
loosely adhered layer and an inner, denser layer adhered to the

FIGURE 4 | The possible mechanism of action of GA on the remission of immune-related diseases. The red box represents animals with immune-related disorders,

and the green box indicates the attenuation effect of GA on immune-related disorders. The up arrows indicate a rising trend, and the down arrows show a declining

trend.

Frontiers in Immunology | www.frontiersin.org 8 September 2020 | Volume 11 | Article 580208

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Gallic Acid on Gut Health

underlying epithelium; the outer mucus layer is generally related
to the GM (127). Immune dysfunction in the intestinal mucosa
increases the risk of diarrhea in the host and has a negative
impact on the balance of the GM (128), which could result
in many serious consequences. Many studies have confirmed
the regulatory role of plant-derived polyphenols in gut immune
function (129, 130), thus fruits and vegetables rich in polyphenols
are considered to be a preventive agent to promote intestinal
health via modulating the intestinal mucosal immune response
(127, 131).

The majority of immune-related disorders, such as pathogen-
mediated infectious diseases, allergic diseases, and cancers, linked
to inflammation (132). In the allograft model, GA accelerated
the differentiation of T cells, increased the number of Tregs
and exerted an anti-inflammatory effect, so GA has potential
to treat diseases caused by excessive activation of immune cells
(20). GA could decrease the exacerbated response of the body
against an infectious agent to enhance innate immune activation
by reducing the anti-apoptotic role of LPS, blocking the induction
of neutrophil extracellular traps and preventing the formation of
free radicals induced by LPS (133).

GA exhibited a protective effect against oxidative stress-
induced cellular injury in human lymphocytes through
immunomodulatory, antioxidant, and cytoprotective properties
(134) and provided effective prevention against complications
relating to immunological and thrombo-regulatory mechanisms
via reverting the ATP and ADP hydrolysis and adenosine
deaminase activity in lymphocytes, and preventing the increase
in nucleoside triphosphate diphosphohydrolase, and adenosine
deaminase activities in platelets (135). Additionally, GA
inhibited the production of reactive oxygen species and nitric
oxide, proinflammatory cytokine release, and phagocytes-
induced lymphocyte proliferation in human peripheral blood
mononuclear cells (136). The synergistic effect of GA and
asparaginase also improved the antiproliferative effect on
lymphoblastic cells (137).

GA could improve immunomodulatory activity by increasing
of phagocytic capability, lysosomal volume, nitrite release, and
intracellular calcium (Ca2+i ) levels in macrophages (138) and
downregulate the MAPK-linked phagocytic signaling pathway
in mouse murine macrophages (139). The efflux transporters P-
glycoprotein and multidrug resistance proteins might participate
in the transport of GA, and paracellular transport appeared to
be the major limiting factor for the uptake of GA in Caco-2 cell
monolayers (140). Polysaccharide nanofibers improved GA and
EGCG permeability by opening the tight junctions of human
differentiated epithelial Caco-2 cell monolayers and inhibiting
efflux transporters (141). Cotreatment with curcumin and GA
normalized the circulatory pro-inflammatory, anti-inflammatory
cytokines, chemokines, N-εCML, CRP, and HbA1c (142). In
addition, The GA derivatives (G-4, G-7, G-9, G-10, G-12, and
G-13) also exhibited immunomodulatory activity and had high
binding affinities for the INFα-2, IL-6, and IL-4 receptors, among
which G-7 has the greatest immunomodulatory activity (143).

The possible mechanism of action of GA on the remission of
immune-related diseases is summarized in Figure 4.

The immunomodulatory activities of GA have not been deeply
studied, and researchers should conduct a large number of
experiments and preclinical studies on the immunomodulatory
potential of GA to provide enough evidence to confirm the
effectiveness and safety of GA. Furthermore, patients with
immune-related diseases should be chosen as the research objects
so that GA is further developed as a therapeutic agent for
immune-related disorders.

CONCLUSION AND OUTLOOK

This review summarizes the physicochemical properties and
bioavailability of GA, and reports related to the impact of GA on
gastrointestinal health focus mainly on GM, immunomodulation
and mechanisms of action. According to these existing studies,
GA and its derivatives have the potential to be novel agents
for the treatment and prevention of gastrointestinal diseases
through interaction with the GM and modulation of the immune
response. Current in vitro evidence and results in animal models
confirm the pharmacological and therapeutic interventions of
GA. However, there is very limited clinical evidence for the
effectiveness of GA in human gastrointestinal health and disease,
and the exact underlying mechanisms of action are still obscure
and unexplored. To clarify the interactions among the GM,
immune response, and gastrointestinal disease in humans upon
GA intervention, further investigation in other animal models
and in humans is needed to verify the previous findings from
animal models. Additionally, more efficient GA delivery systems
need to be developed to improve GA bioavailability. With the
rapid development of omics techniques, it is necessary and
important to integrate genomics, transcriptomics, proteomics,
and metabolomics to phenotyping to explore the molecular
effects of GA in order to clarify its underlying mechanism
of action.
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