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Gamma-delta (y8) T cells are a subset of T cells that promote the inflammatory responses
of lymphoid and myeloid lineages, and are especially vital to the initial inflamsmatory and
immune responses. Given the capability to connect crux inflammations of adaptive and
innate immunity, yd T cells are responsive to multiple molecular cues and can acquire the
capacity to induce various cytokines, such as GM-CSF, IL-4, IL-17, IL-21, IL-22, and IFN-y.
Nevertheless, the exact mechanisms responsible for yd T cell proinflammatory functions
remain poorly understood, particularly in the context of the central nervous system (CNS)
diseases. CNS disease, usually leading to irreversible cognitive and physical disability, is
becoming a worldwide public health problem. Here, we offer a review of the neuro-
inflammatory and immune functions of yd T cells, intending to understand their roles in
CNS diseases, which may be crucial for the development of novel clinical applications.
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INTRODUCTION

Together, gamma-delta (Y5) and alpha-beta (otf3) T cells represent two different T cell lineages that
have been defined by their expression of o or ¥d T cell receptors (TCRs) (1). Although yd T cells
share many effector capabilities with o3 T cells (for example, cytotoxicity and cytokine production),
the lineages exhibit different biological properties, such as thymic-dependent or -independent
development, major histocompatibility complex (MHC) restriction, and recognition of soluble
protein and non-protein antigens of endogenous origin (2-5).

Unlike o T cells, Y0 T cells are a relatively minor subset of T lymphocytes in the peripheral
blood (PB), comprising only 1-5% of lymphocytes circulating (6). However, Y3 T cells are abundant
at barrier sites such as the skin, gut, lung, and reproductive tract; up to 20% of intraepithelial
lymphocytes in the human colon express the y3 TCRs (7).

v T cells are divided according to the type of Vy and V& chain they express at the TCRs.
Concerning the Vv chains, a unique feature of murine Y0 T cells is the preferential expression of
different Viy segments in different tissues. For example, V5" y0 T cells are present in the skin, Vy7*
YO T cells lie in the intestinal, Vy6" yd T cells localize to the reproductive mucosa, and Vyl* or Vy4*
YO T cells are found in secondary lymphoid organs (8, 9). The previous studies related to human Y3
T cells have identified VY9 as the most frequently used V7 chain in the PB (10). VY9 chain associates
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with V&2 in most cases, defining a Vy9Vd2 T cell population
(account for 50-95% of Y3 T cells in the PB) that is unique to
humans and other primates (11, 12).

VyoVd2 T cells are known to identify microbe-derived
[HMBPP, (E)-4-hydroxy-3methyl-but-2-enyl pyrophosphate]
and host-derived (IPP, isopentenyl pyrophosphate)
phosphorylated metabolites originating from the isoprenoid
metabolic mevalonate and non-mevalonate pathways, through
association with butyrophilin 3A1 (BTN3A1) and BTN3A2 (13-
16). Moreover, V81" 3 T cells frequently coexpress functional
receptors of innate immune cells, such as activating natural killer
(NK) receptors such as NKG2D (17-20). It includes MHC class I
polypeptide-related chains (MIC) A and B, and UL16 binding
proteins (ULBP) (21-24). Although first described for V81" yd T
cells, interactions of the ULBP and MIC-A/B molecules with
NKG2D are now recognized to stimulate V82" y8 T cells (21, 22).
Besides, V81" ¥ T cells recognize lipids and glycolipids
presented by CD1 molecules (25, 26). Furthermore, both V81"
and V82" Y3 T cells are activated by heat shock proteins (HSP)
(27-29).

Recently, some discrete population of T cells that coexpressed
of-yd TCRs and Vy-CB TCRs have been identified (30, 31).
Among them, the o}-yd T cells protected against infection by
licensing encephalitogenic Th17 cells, triggered inflammatory
and immune in the central nervous system (CNS). Moreover, our
research group found that, in addition to diseases of the CNS,
such as multiple sclerosis (MS) and stroke, immune responses
induced by ¥ T cells are also critically implicated in
neuroinflammation associated with spinal cord injury (SCI)
(32-34). These findings raise significant questions concerning
the inflammatory and immune functions of Y3 T cells in CNS
disease that have yet to be addressed (35-37). CNS disease, which
can result in irreversible sensory, motor, and autonomic
impairments, is a severe health problem worldwide. As a
central pathological process in CNS diseases, the inflammatory
response is vital to clinical prognosis. Here, we provide a review
of recent advances in the understanding of Y0 T cells with
relevance to their inflammatory and immune roles in CNS
disease, which suggest potential approaches for future
treatment of CNS diseases (Table 1).

PROINFLAMMATORY CYTOKINES
INDUCED BY v T CELLS IN THE CNS

Activation and development of y0 T cells promoting CNS
inflammation are chiefly mediated by dendritic cells (DCs).
The immunostimulatory component induces IL-1fB, IL-6, IL-
18, and IL-23 by DCs via caspase-1 and inflammasome complex.
Y0 T cells secrete IL-17 in response to IL-1f, IL-18, and IL-23 in
the absence of TCR (38-40). During this process, the retinoid-
related orphan receptor (ROR) -yt and IL-7 coordinate the B and
T lymphocyte attenuator (BTLA) expression, thus regulating yd
T cell inflammatory responses (41-44). Moreover, Shibata et al.
demonstrated that signal transducer and activator of
transcription 3 (STAT3) is dispensable for the development of

IL-17-producing ¥8 T (Y8T17) cells (45). Also, IL-23-activated Yo
T cells suppress the factor forkhead box P3* (Foxp3) -expressing
Treg cells conversion, as well as promoting eftector T (Te) cells
response (46, 47). The capacity of ¥8 T cells to produce a burst of
IL-17 in the absence of activated af T cells is crucial for the
initiation of CNS inflammation (48).

Activated DCs also promotes the induction of other
proinflammatory cytokines from yd T cells, such as
granulocyte-macrophage colony-stimulating factor (GM-CSE),
IL-21, and IL-22 (30, 40) (Figure 1). While IL-17A, IL-17F, and
IL-22 are prominently expressed in CNS inflammation, they may
only marginally contribute to disease development (49-51);
however, McGinley et al. recently demonstrated that IL-17
might recruit IL-1B-secreting myeloid cells that prime
pathogenic Y3 T cells in CNS inflammation (52).

Different from yd T cells, which can produce IL-17 in
response to cytokine (IL-1f, IL-18, and IL-23) signals alone, in
the absence of primary (TCR) and secondary (costimulation)
signals, IL-17-producing T helper (Th17) cells require primary,
secondary, and cytokine (IL-6 and TGF-p) signals to generate IL-
17 (40) (Figure 1). Seminal studies demonstrated that IL-6 and
TGF-B induce Th17 cell differentiation, in which TGF-p is
critical for T cells to differentiate into Foxp3" Treg or Th17
cells (53-58). Moreover, TGF-J is also critical to YOT17 cells (59).
Besides, IL-21 is induced by IL-6 in Th17 cells, which establishes
a feed-forward loop to support Th17 cell amplification, in which
STAT3 and ROR-yt mediate lineage specification (54, 55, 60-63).

During this process, IL-23 acts as a maturation factor for
Th17 cells, and both IL-23 and IL-21 can induce IL-17
expression independently of IL-6 (55, 64-66). Therefore, mice
lacking IL-23 are resistant to Th17-mediated CNS inflammation
(46). To demonstrate the role of IL-23, Awasthi et al. substituted
the green fluorescent protein for the intracellular domain of IL-
23R, to generate a “knock-in” mouse, which demonstrated that
IL-23 is crucial for Th17 cell function (67). IL-23 created a
positive feedback loop, whereby GM-CSF secreted by Th17 cells
induced the generation of IL-23 (68, 69).

Alongside IL-17, GM-CSF is also essential for CNS
inflammation. Further, the activation of the microglial cell, but
not macrophage in the periphery, is a GM-CSF-dependent
process (70). El-Behi et al. demonstrated that GM-CSF
neutralization attenuated CNS inflammation (68). Although
both IL-12 and IL-23 can induce Te cells to generate GM-CSF,
IL-23 is crucially required for GM-SCF generation (69, 71). In
addition to DCs and Th17 cells, ¥ T cells generate large amounts
of GM-CSEF, resulting in neuroinflammation (72).

v T CELLS IN CNS DISEASES

Multiple Sclerosis and Experimental
Autoimmune Encephalomyelitis

MS is a chronic inflammatory demyelinating CNS disease,
resulting in progressive cognitive, sensory, and motor
disorders. Experimental autoimmune encephalomyelitis (EAE),
a murine MS model, is used to research the proinflammatory
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FIGURE 1 | Activation and development of y8 T cells in the periphery. Differentiated dendritic cells and macrophages generate proinflammatory cytokines via toll-like
and NOD-like receptors. yd T cells sense IL-1B, IL-18, and IL-23, producing an initial burst of IL-17. The differentiation of Th17 cells is induced by IL-6 and TGF-p.
Y0117 cells secrete IL-21, which further ampilifies their proliferation, and also that of Th17 cells.

mechanism underlying CNS (73). Before the discovery of Th17
cells, IEN-y-producing Thl cells were considered the primary
pathogenic cell inducing MS and EAE, which puzzled
immunologists for many years, since both IFN-y”~ and IFN-
YR™™ mice enhanced EAE development (74-77). Besides,
deficiencies of IL-12 and IL-12R, which are critical to the
development of Thl cells, also exhibited exacerbated EAE (64).
Together, findings to date indicate that Thl cells are not the
initial T cell involved in EAE. IL-12 and IFN-y (Th1-associated
molecules) negatively regulate tissue inflammation in EAE (78).
Nonetheless, Thl cells are vital to EAE, as they are detected in
active EAE.

Subsequently, the identification of IL-23 and Th17 cells partly
worked out this issue (61, 65) (Figure 2). IL—23p40’/ ~and IL-
23p19’/ ~ mouse strains are both resistant to EAE (64). The
depletion of Th17 cells or IL-17 resulted in reduced EAE severity
(78). Although Th17 cells are thought to be the major mediators
of EAE, y3T cells can also be a potent producer of IL-17, and are
dominant over Th17 cells in CNS inflammation (79). Several
researchers demonstrated that Y0 T cells are frequently present in
the peripheral blood (PB) and cerebrospinal fluid (CSF) of MS
patients, as well as in the brains of mice with EAE (27, 28, 80-82).
During the chronic and acute phases of EAE, the absence of ¥ T
cells notably reduces the CNS inflammation, suggesting that Y T
cells are significant in EAE, and their inflammatory mobilization
is related to the pathogenesis of CNS autoimmunity (83-87).
Indeed, an enormous population of CD4" T cells (IL-17 and
IEN-y double-positive) is observed at the peak of EAE (88).
Using a fate-tracking system, 5-10% of Y3T17 cells were shown

to express IFN-y in the CNS, indicating that IL-17-IFN-y-yd T
cells might be consequential intermediates in EAE
pathogenesis (89).

Moreover, Vy4" v3 T cells were identified as the major Y3117
cells in EAE, while Vy5" and V36" ¥ T cells were present (40).
Vo1*, Va2', and V9" y8 T cells were also observed in acute
demyelinating plaques of MS patients (27, 90). Besides, the
biological drugs designed to suppress the activity of Y3 T cells,
such as fingolimod (FTY720) and Natalizumab, partly contribute
to the clinical therapeutic effects of MS. (90-92). Further, HSP60
and HSP90 compared with normal CNS tissues are
overexpressed in MS plaques, while Selmaj et al. showed the
colocalization of HSP65 and yd T cells in immature
oligodendrocytes in MS lesions (27, 80, 93). The multitude of
YO T cells collected from MS patients proliferated in response to
HSP70, but not to HSP65, revealing that HSPs may be the
antigens responsible for promoting the ¥d T cells proliferation
(28). CNS inflammation is associated with altered expression of
HSPs, which may function as targets in the development of the
chronic disease. Interestingly, IL-15-producing yd T (y0T15)
cells, another subset of Y0 T cell, were recently discovered;
however, whether these cells produce other proinflammatory
cytokines in EAE is not well elucidated (94).

In contrast to the above observations, Y0 T cells are also
reported have a protective function in EAE. Ponomarev et al.
reported that ¥0 T cells of wild-type (WT) reconstitute o T
cell”’” mice, but not FasL dysfunctional y5 T cells, diminishing
inflammation in EAE (95). These findings suggest that the Y0 T
cell-mediated Fas/FasL-induced T cells apoptosis regulates CNS
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inflammation. Indeed, the mechanism by which yd T cells
regulate proinflammatory chemokine and cytokine expression
in CNS, as well as infiltrating cell heterogeneity, warrant
detailed investigation.

Ischemic Brain Injury

The main consequence of ischemic brain injury is manifested as
the CNS tissue necrosis, due to the loss of nutrition. The tissue
necrosis leads to a secondary inflammation, involving the
accumulation of specific immune cells, especially neutrophils,
macrophages, and T cells, which is a critical factor to the entire
pathophysiology (96, 97).

IL-17 has a specific role in the delayed phase of the ischemic
brain injury inflammatory cascade (98). Shichita et al.
demonstrated that Y3T17 cells play a significant role during late-
stage ischemic brain injury, and that they, rather Th17 cells, are
(surprisingly) the major origin of IL-17 (99). Moreover, increased
IL-17 levels are present in the PB of patients who have suffered a
stroke, relative to healthy individuals (100). IL-23, generated by
macrophages or monocytes from stroke initiation, is an essential
contributor for inducing IL-17 by yd T cells during the delayed
phase of encephalic ischemia. Thereby, IL-23p19™'~ mice
illustrated a diminishment in infarct extent only 1 day after the
ischemic injury, whereas IL-17 deficiency led to reduced infarct
size after 4 days. Long-term, deficiencies of IL-17 and IL23
demonstrated obviously diminished CNS injury, relative to WT,

)
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FIGURE 2 | y3 T cells execute proinflammatory functions in the CNS. Activated yd T cells breach the blood-brain barrier to carry out proinflammatory functions in the
CNS. Differentiated microglia/macrophages secrete IL-23 within the CNS to facilitate the production of ¥3 T cells and Th17 cells. y3 T cells result in CNS inflammation
by improving Th17 cell effector functions, restraining Tregs cell suppressive functions, and generating IFN-v, to induce M1 phenotype macrophages secreting TNF-c.

or even IFN—Y_/_, mice (99). Gelderblom et al. demonstrated that
injection of IL-17-neutralizing antibody to mice within the post-
stroke 3h could reduce infarct volume and improve disease
prognosis after 3 days (101).

Overall, the available evidence demonstrates that 0 T cells
are the main source of IL-17. The mechanism of antigen-
independent T cell activation post-stroke remains unclear;
however, it has been owed chiefly to Y0 T cells. Nevertheless,
Kleinschnitz et al. demonstrated that 8 T cell-deficient mice
remain susceptible to ischemic insult, indicating an extra
function for other immune cells in ischemic brain injury.
Furthermore, the fact that transgenic-TCR mice are susceptible
to stroke implies that, besides 3 T cells, Th17 cells may also have
a prominent role in stroke, whereas the precise function of Th17
cells in inducing stroke is not exact (102).

In addition, astrocytes can respond to IL-17 and promote
stroke induction and development (101). For instance, IL-17
produced by ¥0 T cells and TNF-o. secreted by macrophages act
synergistically on astrocytes, by inducing the expression of
CXCLI, a neutrophil chemoattractant (101, 103). Recently,
periventricular leukomalacia (PVL), a distinctive form of brain
injury in premature infants, was demonstrated to be caused by
developmental immaturity of the cerebral vasculature in mid to
late gestational age, and large numbers of Y3 T cells were
observed in postmortem brains from preterm infants (104).
Although there were increased IL-17 and IL-22 in mouse
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brains after injury, neither cytokine contributes to preterm brain
injury (104).

In summary, Y0 T cells and IL-17 have essential roles in
ischemic brain injury. Hence, Y0 T cells and IL-17 should be
considered potential therapeutic targets to decrease secondary
inflammation after ischemic brain injury (105, 106).

Central Nervous System Infection

The CNS infections commonly lead to the disruption of the
blood-brain barrier (BBB) protectiveness and subsequent
tissue inflammation; however, inflammation is also crucial
to CNS immunity, as reduced 0 T cell expansion leads to
increased host vulnerability to viral infection (107, 108). For
example, MS patients treated with Natalizumab, a monoclonal
antibody against o4-integrin, undergo fatal viral infections,
due to the immune cells fail to infiltrate the CNS and eliminate
the infection (109).

In contrast to viral infection, there are some (although limited)
researches involving the function of ¥ T cells in models of CNS
bacterial infection (110). For example, children with bacterial
meningitis exhibit high yd T cell fractions in the CSF (111).
Nichols et al. suggested that the Y0 T cell was an alternative
pathway available to respond to Grampositive bacteria CNS
infection. They found that TLR2™~ brain abscess mice (TLR2 is
a critical receptor for eliciting responses to Grampositive bacteria)

were detected elevated IL-17, and y0 T cells were the source of IL-
17 (112-114). Similarly, IL-17R signaling regulates Y0 T cell
infiltration, as well as bacterial clearance, during S. aureus-
induced brain abscess formation (115). Also, IL-17 expression is
augmented in the CNS of mice infected with Toxoplasma gondii
(116). An increased percentage of Y3T17 cells was observed in the
PB and lesion in children with bacterial meningitis, and the
condition was reversed after antibacterial therapy (111). High
levels of IL-17 can also be detected in the abscess formation of
humans; however, such researches are only associated, since no
direct evidence can be demonstrated (117). Nevertheless, evidence
for the involvement of Y8 T cells in any CNS infection is sparse,
and more studies are needed to establish a relation between Yy T
cells and CNS infections.

Central Nervous System Traumatic
Diseases

Immune responses and neuroinflammation involving yd T cells
are also critically involved in CNS traumatic diseases. Diseases
resulting from CNS trauma usually involve irreversible sensory,
motor, and autonomic impairments (118). Peripheral immune
mechanisms establishment is related to the pathological
processes of traumatic brain injury (TBI). Richard et al. found
that CD4+ and CD8+ T cells, Tregs, and yd T cells, increased in
number within 24 h after TBI (119).

TABLE 1 | The role of y3 T cells in CNS diseases.

Disease Species ¥ T subset Tissue/organ Cytokine/antigen Conclusion References
MS Human VYO/NV&1 /82 Brain HSPB0/HSP90 Detrimental (27)
MS Human VY231V S2 PB/CSF HSP70 Detrimental (28)
MS Human V81/NV82 PB/CSF - Detrimental (81)
MS Human - PB/CSF IL-17 Detrimental (82)
MS Human - Brain/CSF HSP72 Detrimental 87)
MS Human Va1 PB IFN-y Detrimental (90)
MS Human - Brain HSP65/HSP90 Detrimental 93)
EAE Mouse - Spinal cord HSP60 Detrimental (80)
EAE Mouse - Brain/Spinal cord IL-12 Detrimental (83)
EAE Mouse - Spinal cord - Detrimental (84)
EAE Mouse - Spinal cord MIP-10/MCP-1 Detrimental (86)
EAE Mouse \Vy4/\YE/V 36 Brain IL-17/IL-21/1L-22 Detrimental (40)
EAE Mouse Vy4 PB IL-17 Detrimental (92)
EAE Mouse - Spleen IL-15 Detrimental (94)
EAE Mouse - Brain/Spinal cord - Protective (95)
Stroke Mouse - Brain IL-17 Detrimental (99)
Stroke Human/Mouse - Brain IL-17 Detrimental (101)
Stroke Mouse Y6 Brain IL-17/TNF-ou Detrimental (103)
Stroke Mouse - Brain/PB IL-17 Protective (124)
PVL Human/Mouse - Brain IL-17F/IL-22 Detrimental (104)
WNV infection Mouse - Brain/Spleen/PB - Protective (107)
HSV-1 infection Mouse - Brain/Trigeminal ganglia - Protective (108)
Bacterial meningitis Human VYO/V$2 PB/CSF IL-17 Protective (111)
Brain abscess Mouse - Brain IL-17 Protective (112)
Brain abscess Mouse - Brain IL-17 Protective (115)
TBI Mouse - Brain/PB - Detrimental (119)
SCl Mouse Vyd Spinal cord/CSF IFN-v/TNF-o. Detrimental (34)
Epilepsy Human - Brain IL-17/GM-CSF Detrimental (125)
RE Human Va1 Brain = Detrimental (126)

MS, multiple sclerosis; HSP, heat shock protein; PB, peripheral blood; CSF, cerebrospinal fluid; EAE, experimental autoimmune encephalomyelitis; MIP, macrophage-inflammatory
protein; MCP, monocyte chemoattractant protein; PVL, periventricular leukomalacia; WNV, west nile virus; HSV, herpes simplex virus; TBI, traumatic brain injury; SCI, spinal cord injury; RE,

rasmussen encephalitis.
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Further, recent results from our laboratory found that 8 T
cells, particularly Vy4" y3 T cells, exert a detrimental role in SCI,
probably by providing an important origin of IFN-y, which
induces macrophages to adopt the M1 phenotype, with
increased secretion of inflammatory cytokines, such as TNF-o
(34) (Figure 2). Moreover, one significant discovery from our
studies was that bone marrow-derived macrophages (BMDMs)
respond to IFN-y. This was supported by two sets of findings.
First, IFN—yR‘/ ~ mice, chimeras with IFN—yR_/ ~ bone marrow,
and mice receiving adoptively transferred IFN-yR™'~ peritoneal
macrophages, all showed similar recovery following SCI. Second,
numbers of M1 macrophages and proinflammatory cytokines are
reduced in IFN-YR '~ compared with WT controls (34). Besides,
the treatment of SCI with anti-V7y4 antibodies has a beneficial
effect, similar to that obtained with anti-TNF-o (34). In
conclusion, manipulation of y§ T cell functions may be a
potential treatment approach for future CNS traumatic diseases.

Other Central Nervous System Diseases
The pathological and clinical outcome of CNS diseases can also
be affected by the intestinal microflora in the context of
autoimmunity (120-124). This relationship has been
particularly well established for the response to bacteria,
including pathogens and commensals, within the intestinal
compartment and its effects on the CNS, a connection that was
recently termed the gut-brain axis. The gut environment has
been found to significantly influence CNS diseases such as MS,
EAE, and ischemic brain injury; however, immune cell
mechanisms are unclear. In addition, the pathogenesis of
intractable epilepsy is related to y8 T cells, where
proinflammatory y0 T cells were concentrated in epileptogenic
lesions, and their numbers positively associated with disease
severity (125-127).

CONCLUSION

Since the identification of ¥ T cells, there has been a boom in
related studies and discoveries. Equipped with functions of both
innate and adaptive immune cells, ¥ T cells can provide
consequential functions in the development of CNS diseases,
such as recognizing a diverse array of antigens, rapid production
of inflammatory mediators, and influencing the differentiation of
their o} counterparts. Recently, understanding the inflammatory
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