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Asthma represents one of the leading chronic diseases worldwide and causes a high
global burden of death and disability. In asthmatic patients, the exacerbation and
chronification of the inflammatory response are often related to a failure in the resolution
phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized
pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of
asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX),
which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX),
which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving
derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-
Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In
different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and
remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several
inflammatory cells involved in asthma pathogenesis, such as eosinophils, and
presented an antiremodeling effect in airway epithelial, smooth muscle cells and
fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce
macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and
in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients,
there are limitations to their clinical use, since PGE2 caused side effects, while LXA4

presented low stability. Therefore, despite the strong evidence that these AA-derived
SPMs induce resolution of both inflammatory response and tissue remodeling in asthma,
safer and more stable analogs must be developed for further clinical investigation of their
application in asthma treatment.
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INTRODUCTION

Asthma is a high prevalence chronic inflammatory pulmonary
disease, the respiratory symptoms of which include cough,
wheezing, shortness of breath, and chest tightness which leads to
elevated morbidity, mortality, and disease social and economic costs
(1–3). Pulmonary inflammation is the hallmark of asthma, which is
driven by a Th2 immune reponse to inhaled allergens, and
associated with infiltration of the bronchial mucosa with
eosinophils, CD4+ T cells, macrophages and, in exacerbations and
severe cases, neutrophils (4, 5). Macrophages are classified into
classical (M1) or alternative activation (M2a, M2b, M2c, or M2d
subtypes). During allergic asthma, under exposure to Th2 cytokines
(IL-4 and IL-13), macrophages are reprogrammed to M2a profile
and perform diverse functions ranging between protective and
pathogenic roles (6–9). Airway remodelling is another key feature
of asthma pathogenesis and can precede the development of
inflammation (10). It is characterized by mucous gland and
airway smooth muscle (ASM) cells hyperplasia and/or
hypertrophy, deposition of extracellular matrix (EM) proteins,
and myofibroblast proliferation, leading to the thickening and
occlusions of airways (11). In severe asthmatic patients, a failure
in pro-resolving pathways extends the pro-inflammatory
mechanisms, resulting in a chronic inflammation, which is
associated with a major cause of admission to the intensive care
unit and highmortality rates (12, 13). Lipid mediators, such as those
originated by arachidonic acid (AA), are key factors of the
resolution of inflammation, once they orchestrate the clearance of
pro-inflammatory cells and signals promoting tissue restoration (13,
14). In this review, we discussed the impact of AA-derived
specialized pro-resolving mediators (SPMs) in the resolution of
inflammation and remodeling in asthma.
RESOLUTION OF INFLAMMATION

The resolution of inflammation is an active and controlled process
that reduces inflammation through the elimination of danger signals,
leading to the restoration of tissue homeostasis and preventing the
progression towards an uncontrolled chronic inflammatory state.
Thus, catabolization and antagonization of pro-inflammatory
mediators, a decrease in leukocyte numbers at inflammatory sites,
and tissue repair are key events in the resolution process (13). It is
notewothy that different from classical anti‐inflammatory molecules,
the SPMs modulate the end of the inflammatory response, without
promoting unwanted immunosuppression (15). During the
resolution phase, leukocyte apoptosis and metabolization of
Abbreviations: AA, arachidonic acid; AHR, airway hyperreactivity; ASM, airway
smooth muscle; ATLs, aspirin-triggered-lipoxins; BAL, bronchoalveolar lavage;
COX, cyclooxygenase; cPGES, cytosolic PGE synthase; DHA, docosahexaenoic
acid; DPA, docosapentaenoic acid; 15d-PGJ2, 15-deoxy-delta-12,14-PGJ2; EM,
extracellular matrix; EPA, eicosapentaenoic acid; Epi, epimeric; HDM, house dust
mite; H-PGDS, PGD synthase; ILC2, type 2 innate lymphoid cells; KO, knock out;
LOXs, lipoxygenases; LTs, leukotrienes; LXs, lipoxins; mPGES-1, microsomal PGE
synthase-1; NK, natural killer; OVA, ovalbumin; PG, prostaglandin; PPAR-g,
peroxisome proliferator-activated receptor; SPM, specialized pro-resolving
mediator; WT, wild-type.
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intracellular inflammatory signals lead to the clearance of
inflammatory cells by specialized phagocytes. Together, these
events promote the end of the acute inflammatory response and
initiate tissue repair and healing (12, 16).

Endogenous mediators that actively participate in the resolution
process include lipids (i.e., lipoxins, resolvins, maresin, and
protectins), peptides (i.e. alpha-melanocortin-stimulating hormone
and chemerin), proteins (i.e., annexin A1, Galectin-1, TGF-b and
IL-10), and nucleotides (i.e. adenosine and inosine) (17–19). They
promote cessation of polymorphonuclear infiltration into the
inflamed tissue, reprogramming of macrophages and TCD4+ cells
to M2 and T regulatory phenotypes respectively, sequestration and
counter-regulation of pro-inflammatory mediators, apoptosis of
polymorphonuclear cells with subsequent phagocytosis by M2
macrophages, and tissue repair (20–22).

Among the SPMs, the lipid mediators activate many aspects of
the resolution process (23). These endogenous mediators are
biosynthesized in local inflamed tissue microenvironments, and
can control the magnitude/duration of the inflammatory response
as well as the timing of tissue restoration (17). They primarily come
from the metabolism of polyunsaturated fatty acids, such as AA,
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and
docosapentaenoic acid (DPA) (15). Interestingly, several AA-
derived mediators have consistently presented pro-resolving and
tissue protecting activities in asthma (24, 25).
SPMs DERIVED FROM
CYCLOOXYGENASES

Cyclooxygenases (COX), especially COX-2 isoform, play a pivotal
role in the conversion of AA into different pro-inflammatory lipid
mediators, including prostaglandins (PG) and thromboxanes (26).
Despite the clear ligation of COX-2 activity with the development of
the inflammatory response, it has also been proved that the
inhibition of this enzyme impairs leukocyte clearance, indicating
that some COX-2 derived mediators possess pro-resolving action.
This occurs mainly due to the ability of COX-2 to metabolize EPA
into resolvins, which are one of the main classes of SPMs (27). In
asthma, beyond resolvins, the COX-2 activity also culminates in the
formation of other important SPMs, such as PGE2 and 15-Deoxy-
Delta-12,14-PGJ2 (15d-PGJ2), a metabolite of PGD2 (28).

PGE2 is synthesized by three distinct enzymes, microsomal PGE
synthase-1 (mPGES-1), mPGES-2, and cytosolic PGES (cPGES),
which use PGH2 as substrate. The actions of PGE2 are mediated by
four distinct 7TM receptors (EP1–EP4) (29). Although PGE2 is a
pro-inflammatory mediator, several works have shown that this
lipid presents pro-resolving actions in some contexts (30). So, what
determines when PGE2 presents pro-resolving effects? There are
three major factors, not mutually exclusive: i) time: the kinetics of
PGE2 release can separate its pro-inflammatory and pro-resolving
effects due to the presence of different targets (31, 32); ii) context: eg.
PGE2 can inhibit ERK activation and MMP-1 secretion by gastric
epithelial cells in the presence of cytokines, however, in their
absence, PGE2 does the opposite (31, 33, 34); iii) concentration:
eg. very low PGE2 concentrations inhibit chondrocyte-dependent
December 2020 | Volume 11 | Article 580598
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collagen cleavage in osteoarthritis cartilage, while higher
concentrations enhance it (35).

IL-4 and IL-13, essential cytokines in the asthma pathogenesis
(4), suppressed PGE2 production by dendritic cells through
reduction of COX-2 and mPGES-1 expression (36). Also,
asthmatic patients presented an inverse correlation between the
sputum levels of PGE2 and eosinophil numbers (37, 38), suggesting
that PGE2 may reduce airway eosinophilia in these patients. Inhaled
PGE2 markedly inhibits the early and late bronchoconstrictor
response to an allergen in asthmatic patients (39); however, these
effects may be related only to the PGE2-induced ASM relaxation
(40). Nevertheless, COX-1 knock out (KO) and EP2KO mice that
were ovalbumin (OVA)-sensitized and challenged showed
increased eosinophilia and Th2 cytokines levels in the lungs and
bronchoalveolar lavage (BAL), respectively, compared to wild-type
(WT) mice (41, 42). Besides, treatment with PGE2 inhibited the
house dust mite (HDM)-induced lung eosinophilia (43), and OVA-
provoked accumulation of eosinophils and Th2 cytokines in the
BAL (42), probably because PGE2 can inhibit b2 integrin and L-
selectin function with a consequent reduction in eosinophil
migration (44, 45). Furthermore, prior studies of our group
showed that PGE2 derived from eosinophils induced an early
resolution of allergic pleural edema (25, 46).

Until now, there has been no agreement on the effects of PGE2
on the differentiation of naïve T cells to Th1, Th2, or Th17 (47);
however, type 2 innate lymphoid cells (ILC2), that emerged in the
literature as novel Th2 cytokine-producing cells, strongly express
both EP2 and EP4. PGE2 inhibited proliferation, activation, and
release of cytokines by ILC2 (48, 49). Besides, alveolar macrophages
from asthmatics presented a reduction in the EP2 expression (50)
and PGE2 generation, in parallel with decreased efferocytosis of
apoptotic cells (51). PGE2 is a well-known inductor of M2
macrophage reprogramming (52). Furthermore, PGE2 induced
IL-10 production by macrophages in vitro, and the adoptive
Frontiers in Immunology | www.frontiersin.org 3
transfer of those PGE2‐treated macrophages led to fewer
infiltrating eosinophils, macrophages, activated TCD4+, and
regulatory T lymphocytes in lungs of HDM‐exposed mice (43).

In lung fibroblasts, there is an inverse relationship between
COX-2 and mPGES-1 expression and the number of allergen
challenges, resulting in a reduction in PGE2 production by those
cells (53). Besides, mPGES-1 KO mice showed an augmentation of
allergen-induced vascular smooth muscle cell numbers and
thickness of intrapulmonary vessels (54). PGE2 also inhibited
fibroblast migration, proliferation, collagen deposition, and
myofibroblast differentiation in the lung (55). In vitro, PGE2
decreased the expression of tenacin C and fibronectin by human
fibroblast and ASM cells (56), reduced the proliferation of ASM cells
derived from asthmatic patients (57), and upregulated the
expression of the anti-inflammatory protein tristetraprolin in
human ASM cells (58). Prior investigations of our group revealed
that the instillation of glucagon induced a high production of PGE2
into the lungs (59). Also, we reported that a non-selective COX
inhibitor decreased the inhibitory effect of glucagon on OVA-
induced collagen deposition in the lungs (60), suggesting that the
anti-remodeling effect of glucagon depends on PGE2 production.
Interestingly, inhaled PGE2 showed bronchodilator capacity in
small clinical trials with asthmatic patients (61, 62) (Table 1).

Despite the possible benefits of PGE2 in asthma, non-selective
COX inhibitors improved specific airway conductance and airway
constriction of asthmatics (63, 64), suggesting that COX-derivatives
may play a role in the development or worsening of asthma.
Nevertheless, patients with mild allergic asthma treated with
specific COX-2 inhibitors did not present an effect on lung
function and eosinophil accumulation in the sputum (65) (Table
1). Although PGE2 acts directly in the resolution of inflammation, it
can also drive a pro-inflammatory response in human fibroblast and
ASM cells (56). Furthermore, PGE2 apparently desensitized b2
adrenergic receptors during asthma exacerbation triggered by
TABLE 1 | Summary of clinical studies using mediators related to arachidonic acid metabolism pathways in asthma.

Drug Classification Key Results Side Effects Ref.

PGE2 PGE2 Inhalation of PGE2 inhibited the early and late bronchoconstriction response to inhaled allergen in
asthmatic patients

Cough and retrosternal
soreness transient

(39)

PGE2 PGE2 Inhalation of PGE2 reduced exercise-induced bronchoconstriction
in asthmatic patients

Cough and retrosternal
soreness transient

(61)

PGE2 PGE2 Aerosolization of PGE2 had a bronchodilator effect in patients with bronchial asthma Headache, cough and
irritation of the pharynx

(62)

Indomethacin COX inhibitor Oral administration of Indomethacin induced a slight decrease in allergy sensitivity measured by
specific airway conductance in asthmatic patients

No side effects were
evaluated

(63)

Indomethacin COX inhibitor Inhalation of Indomethacin reduced exercise-induced bronchoconstriction
in asthmatic children

No side effects were
evaluated

(64)

Etoricoxib COX-2
inhibitor

Etoricoxib had no effect on allergen-induced airflow obstruction and sputum eosinophils, basal
lung function, or methacholine responsiveness in mild asthma patients

No side effects were
observed

(65)

Pioglitazone PPAR-g
agonist

Pioglitazone had no effect on symptoms, airflow obstruction and inflammation in patients with
severe asthma

Peripheral edema and
presumptive angioedema

(66)

LXA4 LXA4 Nebulization of LXA4 inhibited LTC4-induced airway obstruction in asthmatic patients No side effects were
observed

(67)

5(S),6(R)-LXA4

methyl ester
LXA4 analog Inhalation of 5(S),6(R)-LXA4 methyl ester improved pulmonary function in asthmatic children with

acute episodes
No side effects were
observed

(68)

BML-111 LXA4 receptor
agonist

Inhalation of BML-111 improved pulmonary function in asthmatic children with acute episodes No side effects were
observed

(68)
December 20
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Rhinovirus infection (69). A high dose of PGE2 can also induce
airway contraction in asthmatic patients, probably through
activating different receptors (70), and cough by activation of EP3
receptor (71). As the most of pro-resolving actions of PGE2 are
related to the activation of EP2, the development of selective
agonists of this receptor can be a good strategy to be consider for
treating asthma in the future.

15d-PGJ2 is formed spontaneously by a series of dehydration of
PGD2 (72), and it is produced abundantly in the inflamed site,
making it important in the resolution of the inflammation (73).
Most of the pro-resolving actions of 15d-PGJ2 depend on the
peroxisome proliferator-activated receptor-gamma (PPARg)
activation, but some of its effects are independent of this receptor
(74). In asthmatic patients, there is a reduction in the PPARg
expression in BAL cells (75). Furthermore, polymorphism of the
PPARG gene may be related to an increased risk of asthma
development (76). Activation of PPARg by synthetic agonists
reduced the levels of Th2 cytokines and inhibited AHR, the influx
of eosinophils and structural changes in the airway wall in murine
OVA-challenge models of asthma (77, 78). Together, these data
indicate that the reduction in PPARg expression by inflammatory
cells in asthmatic patients may be one of the mechanisms that
contribute to the development of chronic asthma.

In a model of carrageenin-induced pleurisy, 48h after the
provocation, when mononuclear cells dominate the reaction up to
the resolution, there was an immense increase in COX-2 protein
expression and 15d-PGJ2 levels coincident with inflammatory
resolution and associated with minimal exudate PGE2 levels. In
this model, the use of both nonselective or selective COX-2
inhibitors, 24h after carrageenin challenge, increased the number
of inflammatory cells and exudate volume in parallel to a reduction
in the 15d-PGJ2 levels. In addition, 15d-PGJ2 reversed the selective-
COX-2 inhibitor-induced rise in cell number and exudate volume,
indicating that the production of 15d-PGJ2 is important to the
resolution in this model (79). The pro-resolving effect of 15d-PGJ2
was related to an induction of apoptosis of inflammatory cells (80).
Besides, 15d-PGJ2 also regulates the balance of cytokines and
chemokines that control leukocyte trafficking during acute
inflammation, promotes M2 macrophage differentiation, as well
as the efflux of macrophage to draining lymphatics, facilitating the
resolution of inflammation (81). This pro-resolving effect of 15d-
PGJ2 may be dependent on PPARg, once IL-4-induced PPARg
activity becomes indispensible for M2 activation (82, 83).

In an OVA-induced asthma model, KO mice for PGD synthase
(H-PGDS), an enzyme that catalyzes PGH2 into PGD2, showed
accelerated chronic allergic lung eosinophil inflammation in parallel
to an increase in the local levels of TNFa and eotaxin-1.
Furthermore, the exogenous administration of 15d-PGJ2 decreased
the excessive eosinophilic infiltration and TNFa and eotaxin-1 levels
noted in those mice (84). Furthermore, the activation of PPARg
reduced OVA-induced eosinophilia and IL-4, IL-5, and IL-6 levels in
the lungs of mice (85). We previously showed that interventional
treatment with 15d-PGJ2 inhibited both OVA- and HDM-induced
eosinophils accumulation and IL-5 and IL-13 levels in the lungs (86).
The pro-resolving effect of 15d-PGJ2 on lung eosinophilia is probably
related to its ability to block the traffic and induce apoptosis of these
Frontiers in Immunology | www.frontiersin.org 4
granulocytes (87). The inhibitory effect of 15d-PGJ2 on eosinophil
migration is possibly dependent on PPARg, once the activation of
this receptor by synthetic agonists inhibits chemotaxis of eosinophils
(85). However, the pro-apoptotic effect of 15d-PGJ2 is independent
of PPARg (87). 15d-PGJ2 also inhibited T lymphocyte proliferation
in a mechanism probably dependent on PPARg, as it is mimicked by
PPARg synthetic agonists (88, 89).

We previously demonstrated that interventional treatment with
15d-PGJ2 reversed structural changes related to airway remodeling,
including epithelial thickening, mucus exacerbation, and EM
deposition, in both OVA and HDM murine models of asthma
(86). These antiremodeling effects of 15d-PGJ2 may be related to its
ability to reduce differentiation of fibroblasts into myofibroblasts,
the proliferation of myofibroblasts (90), and fibroblast growth
factor-induced human ASM cell proliferation (91). Although
PPARg agonists are extremely promising to asthma therapy,
unfortunately severe asthmatic patients treated with pioglitazone
did not present with an improvement in asthma features and
showed significant side effects (66) (Table 1).
SPMs DERIVED FROM LIPOXYGENASES

5- Lipoxygenase (LOX) and 15-LOX are the main LOXs involved in
the metabolization of AA (92), resulting in the formation
leukotrienes (LTs) and lipoxins (LXs). While LTs are recognized
to exert broad proinflammatory effects, LXs present pro-resolving
actions (93). Endogenously, LXs are typically produced by three
main pathways. In one route, LXA4 and LXB4 are produced by 5-
LOX (94), and in other by 12-LOX (95). It is described that aspirin
treatment can also promote the synthesis of LXs epimers
denominated aspirin-triggered lipoxins (ATLs), including 15-
epimeric (epi)-LXA4 and 15-epi-LXB4 (94). LXA4 and ATLs act
primarily on a 7TMN receptor denominated ALXR (96). ALXR is
expressed in several tissues, including lungs, and different cell types
such as leukocytes, fibroblasts, and bronchial epithelial cells. LXA4

can also activate the aryl hydrocarbon receptor, and both LXA4 and
ATLs are antagonists of the cysteinyl leukotriene receptor 1 (97).
Nevertheless, the LXB4 receptor has not yet been identified (98).

The failure in the generation and action of LXs is associated with
more severe airway inflammation (99). Indeed, severely asthmatic
patients presented a reduction of LXA4 levels in BAL fluid, sputum,
and whole blood compared to moderately asthmatic individuals.
This reduction in LXA4 concentrations observed in severe asthma
was associated with a higher degree of airway obstruction (24).
Eosinophils from the blood of asthmatic patients presented a
decreased ALXR expression compared to those obtained from
healthy individuals (100). Furthermore, transgenic mice that
overexpress ALXR showed a reduction in OVA-induced
eosinophilia in the BAL and lung tissue (101). We previously
showed that 15-epi-LXA4 analogs inhibited OVA-induced pleural
eosinophil influx by reducting local eotaxin and IL-5 generation
(102). We also noted that 15-epi-LXA4 analogs accelerate the
drainage of OVA-induced pleural edema (25). In human
eosinophils, LXA4 inhibited chemotaxis toward chemoattractants
(103), and granulocyte-macrophage colony-stimulating factor-
December 2020 | Volume 11 | Article 580598
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induced IL-13 and eotaxin release in vitro (104). In spite of
inhibiting eosinophil migration, 15-epi-LXA4 is a potent
chemoattractant to monocytes in vitro (105) and restored the
balance between M2 and M1 populations into the lungs in a
murine model of pulmonary damage induced by bleomycin
(106). Furthermore, LXA4 stimulates macrophage efferocytosis of
apoptotic polymorphonuclear cells and cellular debris (107).

Among the ILC family, natural killer (NK) cells and ILC2s are
important in the control and exacerbation of asthma, respectively.
NK cell depletion induced a persistent allergic airway inflammation
in association with reduction of the LXA4 levels in the BAL (108).
LXA4 enhanced activated NK cells-induced eosinophil apoptosis
throughALXR activation (109). Meanwhile, the blood and sputum
of patients with severe asthma presented elevated numbers of ILC2
compared tomild asthmatics,whichwas related topersistent airway
eosinophilia (110). LXA4 inhibited both PGD2- and IL-25 plus IL-
33-induced IL-13 release by ILC2 in vitro in a mechanism
dependent on ALXR activation (109).

In vitro, LXA4 and 15-epi-LXA4 reduced IL-8 secretion
induced by serum amyloid A in a human alveolar A549 cell
line (111). Also, activation of ALXR by LXA4 increased basal
proliferation and wound repair of human airway epithelial cells
(112). In a murine model of asthma caused by OVA, airway
epithelial cells presented with an increased expression of ALXR
(101) and LXB4 reduced mucus production (113). ASM
hypertrophy and hyperplasia, as well as accumulation of
Frontiers in Immunology | www.frontiersin.org 5
muscle cells in the subepithelial layer, are some of the changes
observed in asthma remodeling. It was shown that LXA4 reduced
both LTE4- and IL-13–primed ASM migration toward platelet-
derived growth factor in vitro (114). Another critical pathological
feature of airway remodeling in asthma is the EM deposition in
the peribronchiolar area. It is noteworthy that both fibroblasts
and myofibroblasts can express ALXR (115). Moreover, LXA4

inhibited connective tissue growth factor-induced human lung
fibroblast proliferation in vitro (115) and blocked TGF-b-
triggered increase in a-smooth muscle actin expression and
collagen release by human myofibroblasts in vitro (116).
Besides, treatment with 15-epi-LXA4 reversed bleomycin-
promoted fibrosis and lung damage in mice (106). Altogether,
these data suggest a potential role of LXs in the resolution of the
airway and peribronchiolar remodeling observed in asthmatics.

Due to the possible therapeutic application of LXA4, some
clinical trials using this LX, its analogues, or LXA4 receptor
agonist BML-111 were administered in asthmatic patients. The
nebulization of LXA4 reduced LTC4-induced bronchoconstriction
(67); however, the rapid inactivation and significant instability to
exposure to light and acids of LXA4 (117) make its clinical use
difficult. Furthermore, the inhalation of LXA4 analog or BML-111,
which is more potent and stable than LXA4 itself (118), improved
the lung function (68) (Table 1). Interestingly, both LXA4

analog and BML-111 were well tolerated and presented no side
effects (68).
FIGURE 1 | Proposed mechanisms whereby COX- and LOX-derived lipid mediators may accelerate the resolution of lung inflammation in asthma. Some COX- and
LOX-derived lipid mediators, including PGE2, 15dPGJ2, LXA4, and LXB4, have demonstrated several pro-resolving actions over immune cells (blue squares) and
structural cells (orange squares) involved in asthma. Pro-resolving effects of COX- and LOX-derived lipid mediators are: i) inhibition of EOS chemotaxis and
stimulation of apoptosis on those cells; ii) inhibition of ILC-2 proliferation and cytokine production; iii) inhibition of Th2 lymphocytes proliferation; iv) stimulation of
efferocytosis and IL-10 production by MFs; v) induction of macrophage reprogramming to alternative M2 phenotype. Besides, these SPMs derived from COX and
LOX present some important antiremodeling effects in asthma, like: i) inhibition of mucus production by globet cells and stimulation of airway epithelial cells
proliferation; ii) inhibition of proliferation and migration of SMCs and stimulation of relaxation of these cells; iii) inhibition of proliferation, migration, and extracellular
matrix deposition by fibroblasts; iv) inhibition of fibroblast differentiation into myofibroblasts. EOS: Eosinophil. ILC-2: Type-2 innate lymphoid cells. LXA4: Lipoxin A4.
15-LXA4: 15-epimeric (epi)-LXA4. LXB4: Lipoxin B4. MFs: Macrophages. M2: M2 macrophage phenotype. PGE2: Prostaglandin E2. PGJ2: 15-Deoxy-Delta-12,14-
PGJ2. SMCs: Smooth muscle cells. Th2: Type-2 CD4+ T helper. The arrow represents stimulation while the flat arrow represents inhibition.
December 2020 | Volume 11 | Article 580598
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CONCLUSION

This mini-review presents several aspects of the pro-resolving
effects of COX- and LOX-derivative mediators in asthma
(Figure 1), addressing their efficacy and current limitations for
clinical use. Nevertheless, the review presents several strong
pieces of evidence that support the development of new drugs
based on analogs of PGE2, 15d-PGJ2, and LXs with better
physical-chemical properties, allowing greater stability and
superior selectivity for specific receptors. Moreover, new
analogs of AA-derived SPMs could also improve efficiency and
reduce the required dose of glucocorticoid, the latter often
leading to adverse effects and steroid-refractoriness, despite
being the best asthma treatment so far.
AUTHOR CONTRIBUTIONS

DI, MF, and DC contributed to the conception and design of the
study, wrote the manuscript, discussed the content, and
contributed to the manuscript revision. MM discussed the
Frontiers in Immunology | www.frontiersin.org 6
content and contributed to the manuscript revision. VC
contributed to the conception and design of the study, wrote
the manuscript, discussed the content, and contributed to the
manuscript revision. All authors reviewed and/or edited
the manuscript prior submission. All authors contributed to
the article and approved the submitted version.
FUNDING

This work was supported by PrInt Fiocruz-CAPES Program N°
01/2020.
ACKNOWLEDGMENTS

The authors thank PrInt Fiocruz-CAPES Program; Conselho
Nacional de Desenvolvimento Cientıfíco e Tecnológico (CNPq),
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