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Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation
channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the
pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote
inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead
to the progression of RA, a chronic autoimmune disease characterized by chronic synovial
inflammation and extra-articular lesions. In this review, we provided a brief overview of the
molecular properties of ASIC1a, including the basic biological characteristics, tissue and
cell distribution, channel blocker, and factors influencing the expression and function, and
focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of
blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy,
pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion
of fibroblast-like cells in synovial tissue.

Keywords: acid-sensing ion channel 1a, rheumatoid arthritis, articular chondrocyte, synovial fibroblast,
therapeutic target
INTRODUCTION

As a chronic systemic autoimmune disease, the main pathological characteristics of rheumatoid
arthritis (RA) include synovial cell proliferation, multiple inflammatory cell infiltration, pannus
formation, and cartilage and bone tissue destruction, which thereby eventually lead to joint
deformity and loss of function (1). Epidemiological data show that RA affects approximately 1%
of the world’s population (2). Numerous studies have demonstrated that synovial inflammation and
extracellular acidification play an important role in the occurrence and development of the RA-
mediated destruction of articular cartilage and bone (3, 4). Currently, the most commonly used
treatment for RA is the control of synovitis rather than its root causes (5). However, the use of long-
term medication reportedly cannot cure arthritis and is usually accompanied by serious side effects
(6). Therefore, the key approach in preventing the progression of RA is to elucidate the pathogenesis
of synovial inflammation and destruction of articular cartilage and find new targets that would
control or be used to control the development of RA.
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Acid-sensitive ion channel 1a (ASIC1a) is a member of the
degenerin/epithelial sodium channel protein superfamily that is
transiently activated by extracellular H+, which plays a critical
role in a variety of physiological and pathological processes,
including RA (7). It has been shown that extracellular
acidification is a common phenomenon that plays an
important role in the physiological and pathological processes
related to inflammation, including early wound healing,
infectious diseases, bone remodeling, and tumorigenesis (8, 9).
During inflammation, the drop in pH is a result of infiltration
and activation of inflammatory cells in the tissue, which leads to
increased energy and oxygen demand, accelerated glucose
consumption via glycolysis and thus increased lactic acid
secretion (10, 11). In a study, decreased pH was detected in the
synovial fluid of RA patients (12–14) and adjuvant arthritis (AA)
rats (4), which is an animal model widely used to explore the
pathophysiological mechanism of RA. Our previous studies have
demonstrated that ASIC1a is involved in the injury of articular
chondrocytes that is caused by increased intracellular calcium
([Ca2+]i) induced by extracellular acidification; this can be
significantly attenuated by the use of amiloride and the
ASIC1a-specific blocker psalmotoxin 1 (PCTX-1) (15–17).
Recently, it has been indicated that ASIC1a is highly expressed
in RA synovial tissues and RA synovial fibroblasts (RASF); it also
induces synovial inflammation and invasion, which are
downregulated by ASIC1a-RNAi and PCTX-1 while they are
increased by the overexpression of ASIC1a (18, 19). Thus,
ASIC1a may be a potential therapeutic target for RA.

In the present review, we have provided a brief overview of
the molecular properties of ASIC1a and discussed the
therapeutic potential of ASIC1a and the possible mechanisms
of blocking ASIC1a in articular chondrocytes and synovial
fibroblasts to improve the disease symptoms of RA.
BASIC BIOLOGICAL CHARACTERISTICS
OF ASIC1a

ASICs are a class of extracellular H+-activated cation channels,
also known as H+ non-voltage-gated cation channels, and belong
to the superfamily of epithelial sodium channels (ENaC)/
degradable proteins (DEG) (20). To date, seven ASIC subunits
(ASIC1a, ASIC1b1, ASIC1b2, ASIC2a, ASIC2b, ASIC3, and
ASIC4), which are encoded by four genes (ACCN1, ACCN2,
ACCN3, and ACCN4), have been identified (21). ASICs, as acid
receptors on the cell membrane, transmit the low-pH signal of
the extracellular microenvironment to the cell such that the
downstream signaling pathway is activated that would thereby
cause a series of physiological and pathological changes (22).
Compared to other ASIC subunits, ASIC1a not only has
permeability to Na+ but also mediates the influx of
extracellular Ca2+ (23). As a crucial secondary messenger, Ca2+

plays a pivotal role in the physiological and pathological
processes of cells, including in RA (24). Increasing evidence
indicates that ASIC1a contributes to acid-induced injury by
Frontiers in Immunology | www.frontiersin.org 2
increasing intracellular Ca2+ in rat articular chondrocytes
and RASF.

Structure of ASIC1a
ASIC1a is composed of more than 500 amino acids, including
two hydrophobic transmembrane domains (TM1 and TM2) and
one large cysteine-rich extracellular ring (25). Its N- and C-
terminals are both located in the cytoplasm (26). A crystal
structure analysis has revealed that ASICs exist as trimers and
that three subunits are necessary for the formation of functional
channels (27).

Tissue and Cell Distribution of ASIC1a
ASIC1a is mainly distributed in the central cerebral cortex,
hippocampus, cerebellum, pineal gland, amygdala, and spinal
cord (28). It has been reported that ASIC1a is also expressed in
isolated human monocytes and differentiated osteoclasts and is
the most abundant in human chondrocytes (29). In a previous
study, we found that ASIC1a, ASIC2a, and ASIC3 were expressed
in the articular chondrocytes of rats with AA, and that the
expression levels of ASIC1awere significantly higher than those
of other subunits (4). More recently, it has been reported that the
expression of ASIC1a is significantly increased in human RA
synovial tissues, primary human RASF, and the ankle synovium
of AA rats (18, 19). Table 1 summarizes the tissue and cell
distribution of ASIC1a.

Channel Blocker of ASIC1a
Amiloride is a potassium-sparing diuretic that regulates K+ and
Na+ balance in cells. The inhibition of the ENaCs of renal tubular
cells is a classic therapeutic effect of amiloride (59). There is a
general consensus that amiloride also blocks ASICs, which are
members of the ENaC/DEG superfamily (60). As a non-selective
ASIC blocker, amiloride is one of the main pharmacological tools
that is used to study the function of ASICs, including ASIC1a
(61). It has been shown that amiloride and its analogs
inhibit ASIC1a currents expressed in Chinese hamster ovary
cells and cortical neurons (62). Among the analogs, benzamil has
been reported to be the most potent ASIC1a inhibitor (62).

A-317567, a nonspecific small molecule inhibitor of ASICs, is
structurally unrelated to amiloride (60, 63). A previous study has
indicated that A-317567 has the potential of treating ischemic
stroke due to its potent inhibition of ASIC1a-like current (60),
suggesting that A-317567 has promising therapeutic potential for
the treatment of ASIC1a-related diseases.

PCTX1, a peptide purified from the venom of the southern
spider tarantula Psalmopoeus cambridgei, can specifically and
strongly inhibit the current of ASIC1a (64, 65). Moreover, studies
have suggested that PCTX1 can block ASIC1a in articular
chondrocytes and RASF in vitro (4, 18, 19, 66).

Non-steroidal anti-inflammatory drugs (NSAIDs) have
also been reported to inhibit ASIC1a or ASIC1a-likecurrents.
For example, an in vitro study showed that aspirin rapidly and
reversibly inhibited 83.7% of the peak ASIC current in rat
cortical neurons (67). Another study has demonstrated
that both ibuprofen and flurbiprofen can inhibit ASIC1a
January 2021 | Volume 11 | Article 580936
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current (68), thereby indicating that the mechanism of
NSAIDs in improving RA symptoms may be related to
ASIC1a blockade.

A common mechanism of many local anesthetics is to block
the voltage-gated Na+ channel (69). It has been shown that
lidocaine and tetracaine can reversibly inhibit ASIC1a current
(60, 70); these drugs maybe potential candidates for the
treatment of ASIC1a-related diseases.

Small interfering RNA (siRNA) is a powerful tool for
functional genomics and gene therapy owing to its advantages
of high efficiency, specificity, and easy operation (7). In a
previous study, we designed and synthesized ASIC1a-specific
siRNA and transiently transfected it into rat articular
chondrocytes (72). ASIC1a-siRNA could be successfully
transfected into rat articular chondrocytes; after transfection,
the chondrocytes reduced the expression of ASIC1a mRNA and
protein, suggesting that siRNA interference technology could
successfully construct the ASIC1a gene silencing cell model.

Factors Influencing the Expression
and Function of ASIC1a
As a membrane proton receptor, the number of ASIC1a
present on the cell surface determines its physiological and
pathological functions, and this number partially depends on
protein synthesis, degradation, and membrane trafficking
processes. Recently, several studies have shown that various
factors affect these processes. Wang et al. summarized the
factors regulating ASIC1a expression and activity in various
conditions, including chemical regulation, metal ions,
polypeptide toxins and small-molecule inhibitors, protein
interactions, drugs, receptors (73). More recently, we further
elucidated the major factors and underlying molecular
mechanisms affecting ASIC1a protein expression and
Frontiers in Immunology | www.frontiersin.org 3
membrane trafficking (74). Specifically, acidosis, hypoxia,
inflammatory cytokines, neurotrophins, hormones drugs,
microRNAs, effector proteins, and chemicals have been
reported to govern ASIC1a protein synthesis, degradation,
and dynamic trafficking (74).
POTENTIAL THERAPEUTIC TARGETS
OF ASIC1a IN RHEUMATOID ARTHRITIS

Overexpression of ASIC1a in
Rheumatoid Arthritis
Extracellular acidification, which promotes the defense of
inflammatory cells against pathogens by regulating migration
and phagocytosis, is a condition commonly associated with a
variety of physiological and pathological situations (75). It has
been shown that extracellular acidification is involved in the
pathogenesis and development of RA (76). The pH of synovial
fluid in RA patients may fall below 6.0 during active RA (12, 13,
77). Moreover, the acidification of synovial fluid has been
associated with radiological joint destruction in patients with
RA (14). Based on the above-mentioned studies and the fact that
chondrocytes, the only cell type present in articular cartilage, are
important in the pathogenesis of arthritis and are profoundly
affected by local pH (78), acid-stimulated articular chondrocytes
were selected as a cell model to examine the pathogenesis of RA
in vitro (4, 66, 72, 79, 80). In previous studies, we have
demonstrated that ASIC1a is expressed in rat articular
chondrocytes and is increased in acid-induced chondrocytes in
vitro (16, 81). There is growing evidence that activated RASF, a
critical component of the synovial tissue to investigate the
mechanism of synovial inflammation, plays a crucial role in
TABLE 1 | Tissue and cell distribution of ASIC1a.

Species Tissues Cells References

rat, mouse, human spinal cord spinal dorsal horn neurons (30)
rat, mouse, guinea pig, human DRG, TG, NG (31–33)
rat astrocytes (34)
rat microglia (35)
human gliomas (36)
rat, mouse taste receptor cells (37)
mouse cortical neurons and NS20Y cells (38, 39)
human intervertebral disk nucleus pulposus cells (40)
mouse prefrontal cortex, hippocampus (41)
rat, rabbit retina cone photoreceptors, horizontal cells, some amacrine and bipolar cells (42–44)
human lung epithelial cell (45)
rat vascular smooth muscle cells (46)
mouse immune cells (47)
human, rat bone osteoclasts, articular cartilage (4, 29, 48)
rat, human synovial tissues synovial fibroblasts (49)
mouse bone marrow derived macrophages, RAW 264.7 macrophage Cells (50, 51)
mouse, human intestinal epithelial cells, intestinal Caco-2 cells (52, 53)
rat urinary bladder (54)
mouse bone marrow-derived dendritic cells (55)
human monocytes (29)
human, mouse liver hepatic stellate cells (56)
hamster Chinese hamster ovary cells (38, 57)
rat pulmonary arterial smooth muscle cell (58)
January 2021 | Volume 11 | A
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the pathogenesis of joint destruction and RA (82). Moreover,
membrane ASIC1a has been reported to be highly expressed in
the RASF of three donors compared to the normal synovial fluid
(NSF) of a donor (18).

Rat AA is an experimental animal model of polyarthritis and
is induced by using complete Freund’s adjuvant, which is widely
used as a tool to explore the pathophysiology of RA (83). In a
study, a reduction in pH was detected in the synovial fluid of AA
rats, and ASIC1a was upregulated in AA rat articular
chondrocytes in vivo (4). Further studies have indicated that
the expression level of ASIC1a is increased in the synovial tissues
of AA rats than in normal rats, suggesting that ASIC1a may be
involved in the pathological process of RA (18, 19).

Consistent with the results of studies wherein animal
experiments were conducted, markedly increased expression
level of ASIC1a in human RA synovial tissues with reference
to those in normal synovial tissue was observed (18, 19).

Blocking ASIC1a to Relieve Rheumatoid
Arthritis Symptoms
Articular cartilage is a connective tissue located at the ends of
long bones, which consists of chondrocytes and extracellular
matrix (ECM) (84). Chondrocytes account for 3% of the volume
of cartilage tissue and play an important role in the formation,
maintenance of normal metabolism, and repair of articular
cartilage (85). The ECM is mainly composed of tissue fluid,
type II collagen (COII), and proteoglycan (PG) (85). The
interaction between chondrocytes and the extracellular matrix
maintains the normal physiological characteristics of articular
cartilage (85). The degeneration of articular cartilage and the
destruction of COII and PG are the most evident symptoms
among arthritis-related diseases (86). Furthermore, it has been
Frontiers in Immunology | www.frontiersin.org 4
reported that AA rats treated with the ASIC1a inhibitor
amiloride improved prognoses in terms of pathological
articular changes (including hyperplasia of the synovium,
thickening of the lining layer, formation of pannus, infiltration
of a variety of inflammatory cells), and upregulation of articular
cartilage matrix COII and PG (87). Moreover, the HE staining
and toluidine blue staining results of pertinent cells of AA rats
that received ASIC1a-specific inhibitor PCTX-1 joint injection
showed that synovial invasion and cartilage destruction were
ameliorated, the swelling of joint was relieved, and arthritic
severity was significantly alleviated compared to those in
untreated AA rats (18, 19); this indicates that ASIC1a may be
a master regulator of synovial invasion and joint inflammation.

Possible Mechanism of Blocking
ASIC1a to Improve Rheumatoid
Arthritis Symptoms
ASIC1a is expressed in human and rat articular cartilage and
synovium; it is also upregulated during acid induction and
inflammatory state, which are the two main initiating factors
in the occurrence and development of RA (4, 18, 19). In this
section, we explore the mechanism by which ASIC1a improves
RA symptoms and leads to the alleviation of the destruction of
articular cartilage (Figure 1) and synovial inflammation and
invasion (Figure 2).

ASIC1a Is Involved in the Regulation of Apoptosis
in Articular Cartilage in RA
Apoptosis, which is an autonomic ordered programmed cell
death, plays a significant role in normal homeostasis, physiologic
cell removal, and inflammatory joint diseases occurring in RA
(88). Current evidence indicates that the early and late stages of
FIGURE 1 | Signaling pathways involved in IL-6-, IL-1b-, and TNF-a-induced ASIC1a expression and the possible molecular mechanisms of ASC1a-mediated
apoptosis, autophagy, pyroptosis, and necroptosis induced by extracellular acidification in articular chondrocytes. IL-6, IL-1b, and TNF-a activate STAT3 or/and NF-
kB signaling pathways by binding to their respective receptors and lead to the upregulation of ASIC1a expression. Extracellular acidification activates ASIC1a and
increases intracellular Ca2+ influx, which ultimately lead to the apoptosis, autophagy, pyroptosis, and necroptosis of articular chondrocytes.
January 2021 | Volume 11 | Article 580936
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apoptosis of primary human chondrocytes contribute to the joint
damage observed in the pathogenesis of RA (89). In a previous
study, we showed that more than half of the chondrocytes
underwent apoptosis after extracellular acidification (15).
Treatment with amiloride in acid-induced chondrocytes
resulted in a dose-dependent decline in apoptosis (15).
More specifically, amiloride partly restored mitochondrial
membrane potential by regulating the mRNA expression of
apoptosis-related Bcl-2 family genes and caspase 3/9 activity in
chondrocytes induced by extracellular acid (15). Another study
also demonstrated that blocking ASIC1a by amiloride could
protect articular chondrocytes from acid-induced apoptosis
through the downregulation of Ca2+-dependent signaling
pathways such as calpain and calcineurin and the inhibition of
caspase-3 activity (17); these findings indicated that ASIC1a
mediated the apoptosis of acid-induced articular chondrocyte
by causing [Ca2+]i overload.

Proinflammatory cytokines such as interleukin-1b (IL-1b)
and tumor necrosis factor-a (TNF-a) lead to the progressive
destruction of articular structures in RA by stimulating synovial
hyperplasia and bone destruction (90). A recent study reports
that extracellular acidosis activates ASIC1a and reduces cell
viability by triggering the apoptosis of rat articular
Frontiers in Immunology | www.frontiersin.org 5
chondrocytes and that pretreatment with TNF-a and IL-1b
can enhance this process (4). Furthermore, IL-1b and TNF-a
upregulated the expression of ASIC1a in primary rat articular
chondrocytes in a time- and dose-dependent manner. Moreover,
pretreatment with IL-1b and TNF-a significantly reduced cell
viability and increased LDH release, [Ca2+]i elevation, and
apoptosis by promoting the depolar izat ion of the
mitochondrial membrane and by upregulating the expression
levels of cleaved PARP, cleaved caspase-3, and cleaved caspase-9
in acid-induced articular chondrocytes; the blockade of ASIC1a
with PcTX1 or ASIC1a-shRNA dramatically decreased the
expression of pro-apoptotic proteins (4). These results
indicated that the pro-apoptotic effects of IL-1b and TNF-a in
acid-stimulated articular chondrocytes are at least partially due
to their involvement in regulating the expression and function
of ASIC1a.

ASIC1a Is Involved in the Regulation of Autophagy
in Articular Cartilage in RA
As an intracellular degradation system, autophagy mainly
promotes the degradation of long-lived proteins and provides
nutrition for the survival of cells during starvation (91).
Increasing evidence shows that autophagy may lead to the
FIGURE 2 | Molecular mechanism of ASIC1a-mediated synovial inflammation and invasion in RASF. Extracellular acidification activates ASIC1a and increases
intracellular Ca2+ influx to mediate the nuclear translocation of NFATc3,which binds to the RANTES promoter to directly regulate RANTES transcription and enhance
its expression in RASF; this is involved in the induction of synovial inflammation. On the other hand, ASIC1a may partially mediate the acid-induced migration and
invasion of RASF through [Ca2+]i-Rac1 signaling, thereby contributing to the synovial invasive destruction of cartilage.
January 2021 | Volume 11 | Article 580936
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degradation of damaged or organelles in excess, including
mitochondria and endoplasmic reticulum (92). Recently,
autophagy has been found to not only play a role in cell
protection but also in the promotion of cell death in many
types of cells. The overactivation of autophagy can lead to type II
programmed cell death (93). In a study, it has been demonstrated
that the level of autophagy in the synovial tissue of patients with
active RA is increased and is related to the severity of the disease,
thereby indicating that autophagy may play a crucial role in the
regulation of RA (94). Intracellular Ca2+ is a regulator of
autophagy (95). In a previous study, we showed that acidified
activated ASIC1a promoted the autophagy of articular
chondrocytes by mediating extracellular Ca2+ influx (96).
Extracellular acidification could increase the levels of ASIC1a
and autophagy-related markers (including LC3B-II and Beclin1)
in articular chondrocytes, which was inhibited by the ASIC1a-
specific blocker PcTx1 and the calcium-chelating agent BAPTA-
AM (96). Moreover, the AMPK/FOXO3a signaling pathway has
been considered to be involved in ASIC1a mediated autophagy.
Extracellular acidification could activate AMPK and increase the
levels of total FOXO3a and intranuclear FOXO3a, which could
be reversed by the blockage of ASIC1a with PcTx1 or the
blockage of Ca2+ with BAPTA-AM (96). The gene silencing of
AMPK and FOXO3a can reduce the expression of LC3B-II and
other autophagy-related markers in acid-induced articular
chondrocytes (96).

Ca2+/CaMKKb/AMPK/mTOR pathway has been reported to
be involved in the progression of autophagy (97). Thus, the
CaMKKb/AMPK/mTOR signaling pathway was also evaluated
to examine the mechanisms of ASIC1a in autophagy. It has been
shown that the downregulated protein levels of p-mTOR/mTOR
and the upregulated protein levels of CaMKKb/b-actin and p-
AMPK/AMPK in acid-induced activated articular chondrocytes
were reversed by the inhibition of ASIC1a or BAPTA-AM; this
suggests that the CaMKKb/AMPK/mTOR signaling pathway
may be related to the role of ASIC1a in autophagy (72).

Altogether, these results suggest that Ca2+ is an important
factor in the acid-induced autophagy of articular chondrocytes
and that ASIC1amayact as an upstream regulator of autophagy
by inhibiting the influx of intracellular Ca2+.

ASIC1a Is Involved in the Regulation of Pyroptosis
in Articular Cartilage in RA
Pyroptosis, which is a proinflammatory programmed cell death,
is characterized by caspase-1 activation and the secretion of the
proinflammatory cytokines IL-1b and IL-18 (98). Pyroptosis is
inherently inflammatory and involves the activation of a caspase-
activating complex known as the inflammasome (99). The
inflammasome is mainly composed of three parts: receptor
proteins, apoptosis-associated speck-like protein (ASC), and
effect molecule pro-caspase-1 (100). According to different
receptor proteins, inflammasomes can be divided into NLRP1
(101), NLRP3 (102), NLRC4 (103), and AIM2 inflammasome
(104). Recent studies have found that pyroptosis is related to the
occurrence and development of some autoimmune diseases, such
as RA (105, 106). In cells exposed to Ca2+, bacterial toxin, and
Frontiers in Immunology | www.frontiersin.org 6
H+, the classical signaling pathway of the pyroptosis mediated by
caspase-1 is activated (107, 108). Thus, in our previous study, we
aimed to observe the pyroptosis of articular chondrocytes during
the occurrence of RA in vivo and in vitro and to explore the role
of ASIC1a in the pyroptosis of articular chondrocytes and its
possible mechanism (87). The results of the in vivo experiments
showed that ASC, NLRP3, caspase-1, IL-1b, and IL-18 were
upregulated in the joints of AA rats compared to those in normal
rats, whereas the expression of Col2a in cartilage was decreased.
These changes were reversed by the ASIC1a inhibitor amiloride
(87). Consistently, the results of in vitro experiments showed
that the expression levels of ASC, NLRP3, caspase-1, IL-1b, and
IL-18 were increased by extracellular acidosis and were reversed
by PCTX-1 or BAPTA-AM (87). These results indicate that
ASIC1a mediates pyroptosis in chondrocytes from AA rats, a
mechanism which may be associated with the ability of ASIC1a
to promote [Ca2+]i and upregulate the expression of the
NLRP3 inflammasome.

ASIC1a Is Involved in the Regulation of Necroptosis
in Articular Cartilage in RA
Necroptosis, a necrotic cell death pathway regulated by receptor
interacting protein (RIP) 1 and 3, plays a critical role in the
pathogenesis of several human inflammatory diseases (109). A
recent study has shown that leptin can protect chondrocytes
from necrosis, thereby indicating that necrosis may be related
to the death of chondrocytes (110). The serine/threonine kinase
activity of RIP1 is essential for necroptosis (111). Moreover, it
has been reported that acid stimulation recruits RIP1 to the C-
terminus of the ASIC1a in the cytoplasm; this causes the
phosphorylation of RIP1 and subsequent neuronal death
(112). Moreover, the deletion of ASIC1a gene significantly
prevented the phosphorylation of RIP1 and brain injury,
thereby indicating that the activation of RIP1 mediated by
ASIC1a played an important role in ischemic neuronal injury
(112). In a study, ASIC1a and RIP1 immunostaining signals
were found to be highly co-expressed in articular cartilage
tissues of AA rats than in control rats by using double-
labeling immunofluorescence (79). Necrostatin-1 is a potent
inhibitor of RIP1 kinase activity (113). In a previous study, we
demonstrated that necrostatin-1 could reduce articular
cartilage damage and necroinflammation in AA rats (79).
Additionally, the ASIC1a-specific blockers PcTX-1 or ASIC1a
short hairpin RNA inhibited the increase in the acid-induced
necrosis markers RIP1 and RIP3, respectively, suggesting that
acid-induced chondrocyte necrosis was mediated by ASIC1a
(79). These findings indicate that blocking the ASIC1a-
mediated necrosis of chondrocytes may provide a potential
therapeutic strategy for the treatment of RA.

ASIC1a Promotes Synovial Inflammation
and Invasion of Fibroblast-Like Cells in RA
Several studies have shown that fibroblast-like cells (FLSs)
contribute significantly to the initiation and perpetuation of
RA (114). Specifically, it has been reported that stable activated
FLSs of RA can escape the growth limit by contact inhibition
January 2021 | Volume 11 | Article 580936
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and gain the ability to migrate and invade, thereby leading to
RA progression and cartilage destruction (115). Therefore,
inhibiting the migration and invasion of RA-FLSs maybe a
therapeutic strategy for the destructive progression of RA (116).
Previous studies have suggested that ASIC1amaybe related to
the proliferation and migration of tumors (117, 118). We
explored the role of ASIC1a in the migration and invasion of
RA-FLSs and whether blocking ASIC1a could reduce the
migration and invasion of RA-FLSs and control the
progression of RA (19). The results of HE and toluidine blue
staining showed that synovial invasion was inhibited by the
ASIC1a-specific inhibitor PcTX-1 in AA rats (19), thereby
indicating that the inhibition of ASIC1a protected articular
cartilage from synovial invasion and destruction in RA.
Furthermore, the possible mechanism of ASIC1a involvement
in synovial invasion was explored. As the key members of the
MMP family, MMP-2, and MMP-9 have the ability to cleave
gelatin, collagen type I, IV, and V, elastin, and vitronectin,
which provide the conditions for cell migration and invasion
(119, 120). Focal adhesion kinase (FAK), a non-receptor
protein tyrosine kinase, plays a key role in integrin-mediated
signaling pathways that are relevant to cell adhesion, migration,
and invasion (121). ASIC1a-RNAi and PCTX-1 have been
reported to decrease the extracellular acidification-induced
invasion and migration of RA-FLSs and the expression of
MMP2, MMP9, and p-FAK, which are upregulated by
ASIC1a (19), suggesting that these proteins may be
downstream signaling molecules of ASIC1a that are involved
in synovial migration and invasion. Additionally, Ras-related
C3 botulinum toxin substrate 1 (Rac1), a member of the Rho
family of Ras-like small GTPases, interacts with a series of
effectors and thus mediates various biological functions
(122). Ca2+/Rac1 signaling has been reported to regulate the
migration and invasion of RA-FLSs (123, 124). In a study, we
demonstrated that the migration, invasion, and expression of
MMP2, MMP9, and p-FAKin RA-FLSs were decreased by the
intracellular calcium chelating agent BAPTA-AM or Rac1
specific blocker NSC23766 (19).Thus, we conclude that
ASIC1a maybe a master regulator of synovial invasion via the
Ca2+/Rac1 pathway and that inhibition of synovium invasion
maybe one of the mechanisms forASIC1a in the treatment
of RA.

Synovial inflammation is the main pathogenic factor of RA
and plays an important role in the occurrence and development
of RA-mediated articular cartilage and destruction of the bone
(125, 126). RASF, as a key cell component of synovial tissues,
plays an important role in synovial inflammation and joint
structure destruction (76). The acidification of synovial fluid
may be a key factor in synovial inflammation during the
pathogenesis of RA (127). In a study, we demonstrated that
extracellular acidification induced cartilage destruction by
activating ASIC1a (87). For synovial tissues, it has been shown
that the expression of ASIC1a in human RA synovial tissue,
primary human RASF, and ankle synovium of AA rats was
significantly increased (18). Consistently, in vitro experiments
showed that extracellular acidification upregulated the
Frontiers in Immunology | www.frontiersin.org 7
expression of ASIC1a in RASF. Moreover, the expression of
the inflammatory cytokines “regulated on activation, normal T
cell expressed and secreted” (RANTES), sTNF RI, MIP-1a, IL-8,
sTNFRII, and ICAM-1 were increased in RASF by extracellular
acidification, which was significantly attenuated by ASIC1a-
RNAi and PCTX-1. This indicated that ASIC1a induced
synovial inflammation. Nuclear factor of activated T cells
(NFATs), as a group of calcium-dependent transcription
factors, regulate the transcription of inflammation-related
genes, which drive the inflammatory process (128). Emerging
evidence has indicated that ASIC1a induces the nuclear
translocation of NFAT3 by mediating Ca2+ into pulmonary
artery smooth muscle cells (129). Our research showed that
extracellular acidification activated ASIC1a for the mediation of
[Ca2+]i and the nuclear translocation of NFATc3. RANTES, also
known as chemokine C-C motif ligand 5 (CCL5), is an important
inflammatory cytokine that promotes the progression of RA.
Recent studies have shown that the levels of RANTES in the
plasma, synovial fluid and synovial tissue of RA patients are
increased (130). NFATc3 binds to the RANTES promoter,
directly regulates the transcription of RANTES, and enhances
its expression; thus, RANTES is involved in the induction of
synovial inflammation. These findings suggest that ASIC1a may
be a potential therapeutic target for preventing synovial
inflammation and controlling the progression of RA.

Acid-base balance is an important condition for maintaining
normal physiological activities. Many diseases, such as ischemia,
inflammation, hypoxia, and cancer, cause pH changes. ASICs, a
member of the extracellular H+-activated cation channel family,
affects the pathological and physiological changes of tissues.
Numerous evidences have shown that ASIC1a promotes
inflammation, synovial hyperplasia, articular cartilage, and
bone destruction, which together lead to the progression of
RA; these pathologic events maybe significantly attenuated by
blocking ASIC1a, thereby indicating that ASIC1a may represent
a novel target for the treatment of RA. The mechanism of
ASIC1a blockade to improve symptoms of RA may be related
to reduced apoptosis, autophagy, pyroptosis, and necroptosis of
articular chondrocytes and inflammation and invasion of
synovium. Further studies are required, especially in humans,
to comprehensively explore the therapeutic potential of ASIC1a
in RA.
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