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Cryptococcus species are environmental fungal pathogens and the causative agents of

cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate

in the lung causing a primary infection. From this primary lung infection, fungal

cells can eventually disseminate to other organs, particularly the brain, causing lethal

meningoencephalitis. However, in most cases, the primary infection resolves with the

formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal

cells will start proliferating in the lung granuloma and eventually will disseminate to the

brain. Many investigators have sought to study the protective host immune response to

this pathogen in search of host parameters that keep the proliferation of cryptococcal

cells under control. The majority of the work assimilates research carried out using the

primary infection animal model, mainly because a reactivation model has been available

only very recently. This review will focus on anti-cryptococcal immunity in both the

primary and reactivation models. An understanding of the differences in host immunity

between the primary and reactivation models will help to define the key host parameters

that control the infections and are important for the research and development of new

therapeutic and vaccine strategies against cryptococcosis.

Keywords: cryptococcosis, infection models, primary infection, granuloma, latent infection, immunodeficiency,

host immune response

CRYPTOCOCCUS NEOFORMANS IS AN OPPORTUNISTIC
FUNGAL PATHOGEN

Cryptococcus spp. are basidiomycetes ubiquitously found within the environment as
basidiospores and budding yeast, most commonly in the soil, trees, and avian habitations
(1, 2). Of clinical relevance, two main species, Cryptococcus neoformans and Cryptococcus
gattii, are encapsulated fungal pathogens and the etiological agents of cryptococcosis, a
life-threatening invasive fungal disease that infects humans via the respiratory tract (3, 4).
Immunocompetent hosts can be infected but rarely succumb to infection. Conversely,
under conditions where the host cannot immunologically control the initial pulmonary
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infection, such as during antiretroviral therapy in
HIV/AIDS patients, chemotherapy in cancer patients, or
immunosuppressive therapy in organ transplant patients, the
yeast may uncontrollably proliferate and disseminate to the
central nervous system resulting in meningoencephalitis (5–7).

The Cryptococcus neoformans/gattii species complex has
a high degree of heterogeneity, and has been classified by
numerous molecular typing techniques (8, 9). These genotypic
classifications have greatly aided in the epidemiology and genetic
diversity that exists within these species, however the serotype
classification of these species will be most relevant to this review
since our focus is on the host immune response to the yeast.
There are five serotypes of Cryptococcus, with serotypes A, D,
and AD belonging to C. neoformans and serotypes B and C
belonging to C. gattii (9–11). These serotypes are based on
differences in the arrangement of the glucuronoxylomannan
(GXM) capsule surrounding the yeast, which is considered
a major cryptococcal virulence factor (12, 13). The various
serotypes result in prominent differences in both pathology and
immune modulation through variations in pattern-recognition
receptor ligation and immune modulation with host cells. In fact,
the GXM capsule was shown to be a major deciding factor in
determining pathogenicity of the various species of Cryptococcus
(14). For instance, the capsule of Cryptococcus liquefaciens (a
non-pathogenic species) does not exhibit the same microbial
defenses against amoebas as does the pathogenic species capsule.
As such, these serotype differences play distinct roles in
modeling host susceptibility and geographical distribution from
the clinical side.

Due to its worldwide distribution, it is widely accepted
that human subjects are exposed to this fungus during early
childhood (15, 16), and upon this primary infection, the host
harbors fungal cells in lung granulomas (17–30). Perhaps the
best evidence that supports this possibility is provided by
studies showing that fungal strains from patients affected by
cryptococcal meningoencephalitis are identical to those strains
isolated earlier from the same asymptomatic patients (31–33).
Other investigators have suggested that these findings were the
result of patients being constantly re-exposed to the very same
strain from the environment (34, 35). Although this assertion is
in the realm of possibility, it does not take into consideration the
enormous genetic variability of cryptococcal strains present in
the environment (36–38). Due to the evidence of strain diversity
mentioned above, it is our opinion that the chance of inhaling a
genetically identical strain years apart is less probable than the
reactivation of a prior infection. In light of this, the evidence
together strongly suggests that primary infection, granuloma
formation, and eventual reactivation of the dormant yeast cells
upon immunosuppression reflect the stages of this disease.

Fungal Propagules: Spores vs. Yeast Cells
as Infectious Particles
Pulmonary cryptococcosis begins upon inhalation of fungal
particles, which can be either spores or/and yeast cells. The
model organism, most commonly mice, receive these particles
via intranasal or intra-tracheal challenge to recapitulate human

infection (39). However, spores differ compared to yeast cells, and
these differences may account for a different immune recognition
and response to the infection (40).

Primarily, the spores of C. neoformans expose β-glucans,
whereas encapsulated yeast cells expose the GXM capsule. β-
glucans are strongly recognized by C-type lectin receptors (CLRs)
on both resident and innate immune cells. The encapsulated yeast
cells, however, weakly stimulate these same CLRs, as they ligate
to TLR2, TLR4, CD14, and CD16 (41–44), resulting in different
outcomes dependent on strain or host cell type.

Because of the pleiotropic effect of GXM and because
GXM is a potent immunomodulator, yeast cells can induce
a hyperinflammatory response that will eventually lead to the
death of the host (particularly mice), or/and a non-protective
type 2 immune response that will also be harmful to the
host. Conversely, uptake of spores does not lead to a strong
inflammation as spores can exist within macrophages for long
periods of time without damaging them (13, 42, 45). Also, spores
are less capable to stimulate adaptive immunity, which is well-
known to be stimulated by GXM in encapsulated fungal cells
through APCs, DCs, and macrophages (46–50). Thus, spores
can evade host immunity much more efficiently than yeast cells,
causing the development of a latent infection, and perhaps, they
may represent a better model for studying the reactivationmodel.
However, it is not known if spores are able to promote granuloma
formation in mice and represents a topic for future investigation.

ANIMAL MODELS FOR STUDYING
CRYPTOCOCCOSIS

There have been several approaches utilized to investigate
human cryptococcal infection in the laboratory.Whole-organism
approaches and fungal mutants (24, 46, 51–56), in vivo antibody
depletions and neutralizations (20, 56–61), and the assessment
of fungal burden, host survival, and immune cell recruitment
(present in nearly all C. neoformans studies) have been at the
forefront of these modeling approaches with each uncovering
notable findings as well as bringing limitations.

Invertebrate Models
Both invertebrate and vertebrate models exist in the literature
for in vivo modeling of C. neoformans infection. This topic has
been reviewed in the past (62), and this review will expand on the
ample research that has been conducted since then. Invertebrate
models include nematodes (Caenorhabditis elegans), amoebae
(Acanthamoeba castellanii and Dictyostelium discoideum), and
insects (Drosophila melanogaster and Galleria mellonella). The
relatively low cost of maintenance, lesser ethical restrictions, ease
of genetic manipulation, and short reproduction times makes
invertebrates valuable tools in biomedical research. Research
with invertebrate models has mainly addressed mapping signal
transduction pathways for virulence during infection and the
interactions of C. neoformans with innate phagocytic cells
since invertebrates possess only the innate arm of the immune
system (63). In light of invertebrate models, several studies have
highlighted these organisms as practical tools.
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First, Mylonakis et al. found that C. elegans can use non-
pathogenic species ofCryptococcus (C. laurentii andC. kuetzingii)
as food sources while C. neoformans resulted in death of the
worms (64). In addition, the C. neoformans gene LAC1 was
a virulence factor upregulated during infection of the worms,
which confirmed prior mammalian studies as well as added to
the growing belief that C. neoformans may have evolved into
a pathogen during interactions with environmental predators
such as C. elegans. From another group, C. elegans was used
as part of a multi-host screen of C. neoformans mutants to
assess previously unknown virulence factors (65). Several genes
regulating lipid metabolism, chitin regulation, and melanin
synthesis were discovered using this approach. These studies
among others support C. elegans as a viable model for assessing
C. neoformans infection in the lab.

Second, soil amoeba are reservoirs of C. neoformans, and
resemble the way macrophages phagocytose microorganisms
making them an important tool in C. neoformans research (17,
66, 67). A 2018 paper showed that D. discoideum phagocytosed
C. neoformans but was unable to kill the yeast, a phenomenon
similar to macrophages. However, Watkins et al. were able to
ascertain that C. neoformans can either be expelled from the
amoeba, or when the amoeba is pharmacologically blocked, C.
neoformans can escape in a non-lytic manner (68), a recent
phenomenon termed vomocytosis (69, 70). Ultimately, the
amoeba model represents a novel approach for future studies on
the cellular level, which has implications to how macrophages
interact with C. neoformans in the host.

Finally, insects represent a valuable experimental tool for
studying how innate phagocytes interact with the yeast cells as
well as the effect of antimicrobial peptides on yeast viability
(63, 71). G. mellonella can live at human body temperature and
be infected with controlled doses of the yeast with minimal
invasion. This is in contrast to the models above since C.
elegans are inoculated onto an agar plate with colonies of C.
neoformans and there is no way to regulate the infection dose
and timing. This organism has been used primarily to assess
virulence of C. neoformans (46, 65) and antifungal susceptibility
(72). Altogether, G. mellonella represent one of the most versatile
invertebrate tools for C. neoformans infection studies.

Vertebrate Models
Despite the progress that has been made utilizing invertebrate
organisms, there are several limitations to their use as a model
for cryptococcosis. One major limitation is the lack of an
adaptive immune system, which has been repeatedly shown to be
instrumental in host protection against C. neoformans. Secondly,
the route of infection for invertebrates does not recapitulate
the inhalation infection model in humans. Finally, a major
immunological limitation of invertebrate organisms is that they
lack differentiated phagocytes, such as macrophages and DCs
and only have a generalized phagocyte cell type (73). However,
these limitations can be overcome using vertebrate organisms
as model hosts that offer a vast selection of tools. Primarily,
the presence of an adaptive immune system and differentiated
cell types, easy regulation of infection doses, and availability to
infect via inhalation all offset the aforementioned invertebrate

disadvantages. Additionally, the larger body sizes of these animals
allow for more experimental manipulation to be carried out,
such as endotracheal intubations, radiography and imaging,
bronchoalveolar lavage, and cerebrospinal fluid collection (63),
and the presence of organ systems allows for an infection
model that closely resembles how humans become infected and
succumb to CNS dissemination. As with all model hosts, each
brings advantages as well as limitations, all of which will be briefly
discussed below.

Several vertebrate organisms have been used in the modeling
of C. neoformans infection, and some of these include zebrafish
(Danio rerio), non-human primates, rabbits (Oryctolagus
cuniculus), rats (Rattus rattus), and most commonly mice (Mus
musculus). The zebrafish is a relatively newer host model for
C. neoformans infection, although it has been established in
other host-pathogen interactions and offers an exciting middle
ground between the simplicity of invertebrate models and the
organ system complexity found in mammals (74). Obvious
advantages of this host include the optical transparency for
live imaging where the yeast have been observed replicating in
macrophages, genetic amenability for host mutational studies,
and assessment of virulence for different strains of C. neoformans
(75–77). However, certain elements must be considered when
using this model. First, the authors reported that neutrophils
did not accumulate at the site of infection or around infected
macrophages in the zebrafish model (77). Although the role
of neutrophils in mammalian infections is still uncertain,
the early accumulation of neutrophils is a well-established
immune signature for C. neoformans infections in mice and
humans. Secondly, only three studies using zebrafish to model
C. neoformans infection (and none using C. gattii) having been
published to date, so more data are necessary for a thorough
understanding of zebrafish-Cryptococcus interactions.

Non-human primates are an uncommon host for studying
cryptococcosis. This is most likely due to the greater cost
and housing requirements compared to other animal models
(78, 79). Most studies in non-human primates were conducted
decades ago, but a recent 2019 study performed a transcriptome
analysis of cynomolgus monkeys (Macaca fascicularis) and mice
using RNA-Seq during acute C. neoformans infections (80). The
authors found that only about 20 percent of the differentially
expressed genes were shared between these two hosts during
infection, and they suggested monkeys could be a better model
thanmice at recapitulating the human response toC. neoformans.
Although additional host data adds to the growing body of
cryptococcal literature, this small sample size of monkeys (6 total
monkeys; 3 control and 3 experimental) in one study does not
justify the expense and challenge of using monkeys as hosts
to C. neoformans.

Historically, rabbits have not been a commonly used host
for studying cryptococcosis mainly because of the high cost
to purchase and maintain, however the rabbit model closely
mimics the human infection. Rabbits are naturally resistant to
C. neoformans and they succumb to the fungus only when
immunosuppressed (e.g., with corticosteroids) (81). The rabbit
model is suitable for the introduction of fungal cells directly into
and out of the subarachnoid space, allowing studies that address
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the fitness and the adaptation of fungal cells to the cerebrospinal
fluid. This is a particular strength of this model because the most
common clinical manifestation of cryptococcosis is meningitis.
Understanding how fungal cellular pathways respond to this
unique environment may provide important insights into the
development of new therapeutic strategies targeting those specific
pathways. Rabbits are also used to test the efficacy of new
antifungals at the site of infection during cryptococcal meningitis
(82–85). Thus, rabbits are a tractable alternative for studying
cryptococcal meningitis.

Rats have been reported to develop chronic pulmonary
cryptococcosis in the wild (86). Rat models of cryptococcal
virulence and infection were more prevalent in the late 1980’s,
1990’s, and early 2000’s (87–94), but have diminished over the
years. In vivo and ex vivo studies using rats have mainly focused
on C. neoformans interactions with alveolar macrophages (95–
97). Similar to the rabbit model, rats also have the ability to form
lung granulomas that efficiently contain C. neoformans within
the granuloma until the animal becomes immunocompromised,
which recapitulates the human pathophysiology [(87, 88, 92, 94)].
Rats are also a valuable model for C. gattii infections since they
are naturally susceptible hosts and C. gattii infections are more
common in immunocompetent humans (98–100). Although rats
represent a well-defined host to cryptococcal infections, the
limitations for this model are the cost and the lack of genetic
knockout animals for studying the role of host parameters
against cryptococcosis.

Notably, the mouse represents by far the most well-
documented animal model to study host-pathogen interactions
with C. neoformans. The mouse offers great flexibility for
experimental studies with a large diversity in genetic knockout
tools commercially available. In addition, the mouse has been
well-characterized in biomedical research and ease of handling
with numerous routes of infection. Nevertheless, discordance
remains when distinguishing between the primary infection
model and reactivation model mostly due to lack of tools used
to study the reactivation model of infection in mice.

Differently from humans, rabbits, and rats (92, 94, 101–
105), mice do not produce a granulomatous response
against highly virulent C. neoformans strains, and they
eventually succumb to the infection. Investigators have
utilized less virulent strains, such as C. neoformans strain
52D, in which mice develop a persistent infection with a
granulomatous response after intranasal infection (106–
110). This model has allowed researchers to study chronic
cryptococcosis and brain dissemination in mice, although
there are several drawbacks to using less virulent strains that
include induction of immunity not normally associated with
highly virulent strains. Thus, due to a model that does not
fully recapitulate human granuloma containment of the yeast,
nearly all work has focused on the primary infection model
of cryptococcosis.

However, our lab has developed a mouse model of
cryptococcosis that recapitulates the human response to C.
neoformans. In fact, we found that mice infected with an avirulent
strain lacking the sphingolipid glucosylceramide (1gcs1) leads
to total containment of fungal cells in lung granulomas and

no dissemination to the brain (111). However, when Tgε26
mice who are inherently immunocompromised (Tgε26 mice
lack T and NK cells) are instranasally infected with this
mutant, the mice do not form lung granulomas, the 1gcs1
mutant uncontrollably proliferates in the lung, disseminates
to the brain, and results in complete death of these mice
(20). Thus, this mutant mimics the physiopathology of the
infection in humans with which cryptococcosis is mostly
associated (112).

Although many animal models are available, the majority
of immunological studies have been performed in mice, so the
following sections of this review will focus on discussing key
immunological findings in mice for both the primary infection
model and reactivation model of cryptococcosis.

MODELING CRYPTOCOCCAL INFECTIONS
AND WHAT HAS BEEN LEARNED

In the primary infection model to cryptococcosis, the host is
exposed to the fungus for the first time upon inhalation of
spores and/or desiccated yeast cells. It has been postulated
that the primary infection happens very early on in life since
there are data showing children having antibodies to the yeast
in their blood [(16, 113)]. Protection against cryptococcosis is
dependent on early host recognition, recruitment of proper cell
types, and immunological control of yeast proliferation (114–
116). The immune response to C. neoformans therefore can
be temporally divided into three stages: (1) recognition of the
inhaled particles by resident airway cells, (2) early recruitment
of innate immunity, and (3) late recruitment of adaptive cell-
mediated immunity (Figure 1). These stages collaboratively work
in an orchestrated manner to control the pulmonary infection
and deter extrapulmonary dissemination and are discussed in the
following sections.

As previously mentioned, upon initial inhalation of C.
neoformans, immunocompetent hosts generally control the
infection, but the fungus is not always fully cleared from
the lungs. In humans, C. neoformans can remain in a latent
state of infection contained within lung granulomas, which are
localized structures composed of several cell types that work
in an coordinated manner to contain the pathogen (Figure 2B)
(117). Using two strains of rats, it was shown that a type 1
immune response was needed to control pathogen replication
and granuloma containment of C. neoformans, and that a
type 2 immunity resulted in loss of fungal containment with
the consequent exacerbation of the disease (88, 92). Although
the host does not experience any pathology during latency,
granuloma containment introduces a paradoxical situation: on
the one hand these structures help to contain the infection, but
on the other hand they also harbor the pathogen and provide a
source of fungal replication once immunodeficiency occurs, such
as upon HIV/AIDS-mediated lymphopenia (118, 119) or solid
organ transplant recipients (4, 117). The immunological events
associated with the reactivationmodel will be discussed following
the primary model as well as current progress in a novel mouse
model of cryptococcal granuloma containment.
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FIGURE 1 | Protective immune response in the lung upon inhalation of C. neoformans. The sequence of events is denoted in the diagram. The yeast and

basidiospores are inhaled (1a) and travel down the airways passing through the trachea to the bronchioles (1b) and further down to the alveolar spaces. Upper

respiratory epithelia sense the spores (2a) and lower respiratory epithelium sense spores and encapsulated propagules (2b), which release IL-8 for early neutrophil

recruitment. Macrophages (3a) and DCs (3b) phagocytose Cn in both the airways and lung tissue leading to M1 macrophage polarization (4a) and cytokine release

(GM-CSF and MCP-1) for inflammatory cell recruitment (4b). DCs mature and migrate to the lung draining lymph node (4c) for induction of adaptive immunity. At this

time, neutrophil (5a) and inflammatory cells (5b) infiltrate into the lung tissue for increased host defense against Cn. Neutrophils kill Cn via degranulation (6a) and a

myriad of other defenses from other cells (6b) such as monocyte differentiation into recruited DCs that further amplify T cell induction (6c). Type 1/17 polarized T cells

migrate back to the lung for adaptive immune control of infection leading to control/containment of the infection.

Primary Infection Model: Inhalation of the
Fungal Particles
Airway Resident Cell Recognition of C. neoformans
In the absence of infection, an organism still has immune
surveillance for early detection and response to foreign particles.
This is especially exhibited at mucosal sites such as the intestines,
skin, and the airways. Airway resident immune cells include
the epithelial cells that line the airways, tissue-resident alveolar
macrophages and dendritic cells, and non-canonical innate
lymphocytes such as γδ T cells and innate lymphoid cells.

Epithelial cells
The inhalation of the fungal propagules, the first host cells
to encounter these particles would naturally be the airway
epithelium and resident airway immune cells. Airway epithelial
cells serve as a barrier and immunological interface between

the external and internal bodily environments (120–123). In
depth studies on cryptococcal-epithelial interactions are lacking
in relation to other cell types, but both the upper respiratory
bronchial epithelia and lower alveolar epithelia have been shown
to recognize, respond to, and internalize C. neoformans (124–
127). Utilizing in vitro approaches, the human type II alveolar
epithelial cell line, A549, several groups came to find that both
GXM (128) and phospholipase B (124) were epithelial adherence
factors. In fact, the adherence to lung epithelial cells (using
A549 cell line) can be blocked by either using an antibody
against the cryptococcal capsule (anti-GXM antibody, 18B7), or
by using a 1plb1 mutant (lacking fungal phospholipase b). The
cryptococcal capsule is clearly important for the adherence to
A549 but its role is less clear because acapsular mutant (1cap67)
is still able to attach to A549 and this attachment was only
inhibited in the presence of specific fungalmannoprotein (s) (e.g.,
MP84) (126). Upon adherence, internalization of C. neoformans
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FIGURE 2 | Granuloma containment in mice infected with C. neoformans△gcs1. (A) Mice are notorious for lacking the ability to form lung granulomas to contain C.

neoformans infection. Infection with a virulent strain results in death and infection with an avirulent strain leads to clearance of the yeast from the lungs. Infection with

C. neoformans△gcs1 results in granuloma containment of the yeast in the mouse lungs. (B) These granulomas exhibit a slightly necrotic center with macrophages,

foamy cells, and giant multinucleated cells with internalized C. neoformans. These cells are surrounded by a closure of epithelioid cells and fibroblasts, followed by an

outer ring of lymphocytes.

by the airway epithelial will follow, and although the fungal
and host factors regulating cryptococcal-epithelial interaction is
still under investigation, one thing is clear: internalization of
cryptococcal cells may cause death of the epithelial cells resulting
in lung lesions and hyperinflammation (122).

Upon adherence, lung epithelial cells actively participate in
the immunological response via secretion of specific cytokines.
For instance, in vitro studies showed that when GXM binds
to CD14 on A549 cells, they secrete IL-8 (41). IL-8 is a
potent neutrophil recruitment chemokine, suggesting that lung
epithelium may drive early recruitment of these early host
effector cells. This paper was shortly followed by another study
that used the BEAS-2B cell line that more closely mimics
the upper bronchial epithelium, an area that would obviously
be exposed to inhaled propagules first (127). This group also
found that IL-8 was secreted in an NF-κB dependent manner
in response to C. neoformans infection, but BEAS-2B cells
only responded to an acapsular mutant and not the capsulated
parent strain. It is possible that the different responses observed
was due to the different cell types used (A549 vs. BEAS-2B),
but another possibility is that upper bronchial epithelial cells

respond more effectively to acapsular (or a thinner capsule)
cryptococcal cells compared to epithelial cells found in the lower
alveolar epithelium. It has been shown that cryptococcal particles
have a very small or no capsule upon inhalation, and rapidly
induce capsular growth as they proceed down the airway (42,
129–131). One final possibility stems from the limitations and
drawbacks some researchers find in using the A549 cell line.
Phenotypic studies of A549 cells showed they possess lower
phospholipid content, fewer cytoplasmic lamellar bodies, and
a higher autophogy rate compared to primary human type II
alveolar cells (132, 133). Nonetheless, this evidence together with
the cytokine data clearly suggests that the upper respiratory tract
may sense less capsulated particles and respond by producing
cytokines which recruit neutrophils early on, while differential
responses may occur after capsule synthesis has been stimulated
further down the airway.

Capsule synthesis consists in the production of a well-
organized physical barrier containing glucuronic acid, xylose,
and mannose (GXM) molecules connected through various
glycosidic bonds. GXM strongly inhibits the protective host
response to cryptococcal infection via initiation of a type 2
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immunity (13, 42). Several groups have described the release
of IL-33 in response to epithelial-cryptococcal interactions and
the downstream effects of IL-33 through its receptor T1/ST2
(134, 135). IL-33 drives a type 2 immunity via the activation of
type 2 innate lymphoid cells and promoting a Th2T cell response
in the lungs. These effects lead to an overabundance of IL-5
and IL-13 in the lung resulting in alternative M2 macrophage
polarization and decreased epithelial barrier integrity promoting
fungal cell persistence and penetration into the lung tissue and
lung blood vessels. These negative facets may eventually lead to
the dissemination of fungal cells from the lung to other organs
through the bloodstream including the CNS. Interestingly, the
source of IL-33 in the lungs was found to be from type II alveolar
cells (135), the same source of IL-8 mentioned above. Specifically,
IL-33 downregulates surface receptor expression for leukocyte
extravasion, such as E-cadherin and ICAM-1, which decreases
the recruited immune cell response. The protective (IL-8) and
non-protective (IL-33) results together demonstrate the varied
response to inhaled cryptococcal particles suggesting a strong
dependence on strain, capsule size, and experimental conditions
for host outcome.

Alveolar macrophages
In addition to the airway epithelial cells, CD11c+ airway resident
immune cells such as alveolar macrophages (AM) and DCs have
been reported to be the dominant cell populations in uninfected
lungs (47, 136–139) and have been arguably the most widely
studied cell population in the cryptococcal literature (Figure 1).
These cells are found ubiquitously in the lower respiratory
and alveolar spaces of the airway lumen and the underlying
lamina propria below the epithelium. These pulmonary sentinels
phagocytose debris, dead cell material, and inhaled particles
found in the airways for removal as well as add to the early
cytokine response in the lungs during the early phases of
infection such as with C. neoformans.

AM have been suggested to play paradoxical roles during
infection with C. neoformans (140, 141), so that the necessity of
these cells to efficiently control C. neoformans lung infection has
been strongly debated (142). On one hand, depletion of these cells
(using anti-CD11c) prior to infection exhibited both increased
lung fungal burden and the mortality rate in mouse models (50).
On the other hand, C. neoformans is clearly capable of living
within AMs (and other macrophages populations) unharmed
shown by numerous studies (69, 143–146). It is important to
note, however, that AMs are tissue resident macrophages in
the lungs, but during an infection, a collection of macrophages
consisting of AMs, interstitial macrophages, and monocyte-
derived macrophages will populate the lungs. This collection,
referred to in this review as pulmonary macrophages, needs to
be set apart from studies looking at AMs alone.

Pulmonary macrophages have been shown to shift from an
unpolarized state in uninfected animals to either classically
activatedM1 or alternatively activatedM2 phenotypes depending
on the lung cytokine microenvironment during infection (147–
151). These polarization states dictate the effector functions
of these cells. M1 macrophages are activated by IFN-γ and
have been widely regarded as anti-cryptococcal in nature, while

M2 macrophages become activated by IL-4 and are regarded
as non-protective during infection with C. neoformans. M1
macrophages are regulated by STAT1 and are an early source of
inflammatory cytokines and chemokines, such as IFN-γ, TNFα,
IL-1, and IL-8, that drive the protective type 1 immune response
against cryptococcosis (53, 137, 152–154). More specifically, M1
macrophages exhibit increased phagocytosis (147, 153), killing
of C. neoformans via ROS/NOS production (53, 153), and aid
the maturation of dendritic cells (DC) to activate adaptive
cell-mediated immunity. Interestingly, these macrophages have
also been reported as having innate memory in immunization
studies (53). Through IFN-γ-primed macrophages from the
IFN-γ-producing strain used in the Wormley lab, the authors
observed an increased STAT1 binding to the promoter region
and increased expression of antifungal gene expression. Thus,
M1 polarized macrophages possess the ability to control C.
neoformans, coordinate a protective response in the host, and
may possess memory to future infections.

In contrast to anti-cryptococcal M1 macrophages, M2
polarized macrophages are regulated by STAT3, produce IL-5
and IL-13, and drive a type 2 immune response in the host,
which is unable to contain the infection (147, 155). Because
C. neoformans can survive and replicate within macrophages
(13, 156, 157), M2 macrophages that have little to no fungicidal
activity can harbor large numbers of yeast cells leading to
dysfunctional macrophages (69, 145). Through either lytic or
non-lytic (termed vomocytosis) exocytosis, cryptococcal cells
may exit the macrophages either in the lungs or elsewhere if
the macrophages have also left the lungs (70, 146, 158). This
ability of C. neoformans to “hide” within macrophages protects
the yeast against the harsh extracellular environment containing
antimicrobial peptides and complement as well as killing by
neutrophils, NK cells, and T cells (75). Additionally, the harsh
environment of the phagosome may lead to the formation
of titanized cryptococcal cells with consequential macrophage
disruption and reduction in phagocytosis by other macrophages
or/and extracellular killing of these titan cells (12, 159–162).
Eventually, this leads to the persistence of the infection instead
of containment or clearance.

These differential findings with AM in mice have also been
observed with rat and humanmacrophages (94, 95, 97, 163–167).
Early studies showed that C. neoformans was rapidly ingested by
human AM, although no killing was observed, and the yeast were
able to proliferate over the course of 6 h or 2 days (164, 166).
The 1994 study also showed that human AM played a key role
in antigen presentation to T cells. In rats, three studies from
the same group in 1989 identified that rat AM phagocytose
and effectively kill C. neoformans in the presence and absence
of serum using in vitro assays (95–97). Taken together, the
role of AM seems to be a variable response with respect to
C. neoformans, especially when comparing in vitro and in vivo
assays and between different model organisms.

Despite a large body of work studying alveolar macrophages
in cryptococcosis models, several questions remain for future
research in what determinesM1 vs. M2macrophage polarization.
Indeed, serotype differences in the GXM capsule and certain
cytokine profiles in the lung have been suggested to play a role
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in driving macrophage polarization (43, 44, 168, 169). Research
on how other fungal factors and the lung microbiome influence
the fate of AMs (and more generally pulmonary macrophages)
during primary infection and reactivation is still greatly needed.

Resident dendritic cells
Lung resident DCs express CD11c and MHC-II markers and
have been highly implicated in early defense against invading
pathogens and have gained an increased appreciation in
antifungal immunology over the last decade. DCs are innate
phagocytes with a central role to bridge the innate and adaptive
arms of the immune systems upon initial infection with a
pathogen, including C. neoformans (47, 170). Phagocytosis of the
yeast requires complement or antibody-mediated opsonization
of the GXM capsule (116, 171), and the DCs kill C. neoformans
through lysosomal degradation (47). Concurrently, DCs will
upregulate co-stimulatory molecules such as CD80 and CD86
for antigen presentation to T cells. DCs are a diverse cell
type with several subsets each possessing specialized functions
and regarded as essential components of antifungal immunity
including against C. neoformans. Three main subsets can be
found within the lungs: CD103+ classic DCs (cDC1), CD11b+
cDC (cDC2), and plasmacytoid DCs (pDC) (47, 116, 172).

cDC1 cells are under the regulation of the Batf3 transcription
factor (173) and are predominantly found within the airways and
alveoli of the lungs (Figure 1). These cells sit at the epithelial
interface and directly interact with the external microbial cells
present in the airway lumen. These cells have been described to
help drive a type 1 immune response via the release of IL-12
and stimulation of NK cells and ILC1s, recognize intracellular
pathogens, and cross-present antigens to CD8+ T cells (173).
cDC1 become activated in response to pathogen uptake and
degradation and cytokine exposure (such as TNFα and GM-
CSF), upregulate costimulatory molecules (CD40, CD80/86,
MHC-II) and migratory receptors (CCR7). They can travel to the
lung-draining lymph node via a CCL21 gradient to potentiate
protective T cell-mediated immunity to cryptococcal infection
(61, 174, 175).

cDC2 cells are under the regulation of the IRF4 transcription
factor (176) and are also found within the lower respiratory
tract and alveoli but deeper in the lamina propria tissue below
the basement membrane of the epithelial cells (177). These cells
have been shown to play a role for induction of both Th2 and
Th17 CD4+ T cell-mediated immune responses depending on
infectious antigen type and cytokine environment (174, 176)
in a similar manner to cDC1 cells described above. While the
Th2 induction mechanism by these cells is still unknown, the
Th17 response is mediated through release of IL-23, IL-6, and
TGF-β (all the cytokines needed for type 17 immune activation
and sustainability). Additionally, cDC2 aid in inflammatory cell
recruitment via secretion of IL-12, MCP-1/CCL2, MIP-1α/CCL3,
MIP-1β/CCL4, and RANTES/CCL5 (172, 178, 179), and this
subset has also been described to be essential for iBALT (inducible
bronchus associated lymphoid tissue) maintenance with the
release of CXCL12, CXCL13, and CXCL15 being the primary
factors (178, 180). Overall, this subset exhibits highly diverse

functions in the lung that help drive anti-cryptococcal immunity
and containment.

Finally, pDCs have been studied far less in comparison to their
classic DC counterparts and represent only a small percentage
of the DCs in the lung. The main area of research for this
cell type is in viral infections since they are the strongest
producers of type I interferons (177, 181) but are also implicated
in response against bacterial infections. However, pDC-related
work in fungal immunity is relatively low with only one study
for pDCs response to C. neoformans has been published to date.
This study by Hole et al. (182) showed that pDCs exhibit direct
killing ability toward C. neoformans via ROS production and this
killing was dependent on the dectin-3 receptor. However, dectin-
3 KO mice were not hypersusceptible to C. neoformans infection
compared to WT mice, suggesting that although pDCs can kill
the yeast, their killing ability though dectin-3 receptor is not
essential for survival.

γ δ T cells
γδ T cells and innate lymphoid cells (ILCs) have been often
overlooked in anti-cryptococcal defense, although both cell types
have been described to be critical players in mucosal immunity to
other pathogens and diseases. γδ T cells express a non-canonical
TCR bearing γ and δ subunits and can be found as both blood
circulating and tissue-resident subsets. These cells are strongly
defined by their ability to secrete IL-17 upon infection (183–185).

For the work associated with C. neoformans infection, there
are two papers that report differing conclusions. In the first
paper from 2004, Uezu et al. infected WT and TCRδ−/− KO
mice (C57 background) with C. neoformans and assessed fungal
burden and cytokine production between the two groups (186).
The TCRδ−/− knockout mice cleared the infection quicker than
WT mice and showed higher IFN-γ production by cells in the
draining lymph nodes. These results suggest that γδT cells hinder
host protection to C. neoformans infection in this mouse model.

The second paper published 8 years later looked at the role
of γδ T cells in mice (Balb/c) depleted of neutrophils (60). The
authors found that γδ T cells were a significant source of IL-
17A in the lungs during neutropenia. It was concluded that γδ T
cells were a viable source of IL-17A in the absence of neutrophils
and may be a significant source of leukocyte recruitment early on
during infection with C. neoformans.

The differences between the role of γδ T cells in these studies
may be attributed to the different cryptococcal strains, mouse
genetic backgrounds, or experimental approaches. Although
both groups used serotype A strains of C. neoformans, Uezu
et al. used a clinical isolate in C57 mice while Wozniak et al.
used an IFN-γ producing mutant derived from the H99 strain
in Balb/c mice. C57 mice are genetically more susceptible to
C. neoformans infection since they rapidly induce eosinophilia,
whereas BALB/c mice are more resistant to C. neoformans (39).
In addition, the H99-γ mutant induces strong immunity in mice,
even protecting them against subsequent lethal challenges. Thus,
the use of this protective strain may have skewed the host into
a more beneficial outcome compared to a more virulent strain.
Despite this caveat, the findings contribute key knowledge as
IL-17 is a widely accepted anti-fungal immune response and γδ
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T cells respond early to pulmonary infection suggesting these
cells could play an instrumental role early on during infection
with C. neoformans.

Since reactivation of C. neoformans is a common
occurrence associated with HIV/AIDS patients, it is worth
noting that HIV progression downregulates the number of
circulatory γδ T cells (187). Moreover, the antiretroviral
therapy (ART) does not reconstitute these γδ T cells. Thus,
stimulation or/and introduction of γδ T cells could be
an effective immunotherapeutic approach to combat HIV
and cryptococcosis.

Innate lymphoid cells
ILCs are one of the most recently emergent cell populations
in immunology research. This widely heterogeneous group of
cells reside at barrier regions, such as the skin and mucosal
surfaces of the lung and intestines, and perform a wide variety
of tasks including tissue remodeling, lymphoid tissue biogenesis,
and early immunological responses to infection (183, 188–190).
There are three major groupings of ILCs that are found in the
lung parenchyma. Their nomenclature represents the type of
immunity they provide and will be briefly mentioned for clarity.
Type 1 ILCs that include natural killer (NK) cells and ILC1, which
are defined by their expression of Tbet and secretion of IFN-γ in
response to IL-12. Type 2 ILCs that are defined by expression of
GATA3 and secrete IL-4, IL-5, IL-9, IL-13, and amphiregulin in
response to IL-25 and IL-33. Type 3 ILCs that include lymphoid
tissue inducer (LTi) cells and both NCR+ (CD335; NKp46) and
NCR- subsets of ILC3, which are defined by expression of RORγt
and secretion of IL-22 and IL-17 (as well as small amounts of IFN-
γ) in response to IL-1β, IL-23, and IL-6 (188, 189, 191). Together,
ILCs represent a group of cells that respond very quickly upon
infection with great variety, which is dependent on the subset that
becomes stimulated.

Innate lymphoid cell studies with regards to C. neoformans
have been largely lacking until two recent studies have
highlighted an important role for ILCs in the host response to C.
neoformans. Prior to 2018, it was known that type 1 ILC NK cells
were able to recognize, become activated in the presence of, and
directly kill C. neoformans due to the activating receptor NKp30
in both mice (192, 193) and humans (194) but the fungal ligand
responsible for this cytotoxicity was unknown. Additionally,
NK cells were found to be defective in HIV-patients. Over two
decades later, Li et al. came to find that the ligand to NKp30 was
β-1,3-glucan using a variety of approaches with C. neoformans
and Candida albicans (195). They found that type 1 ILC NK cells
bind directly to β-1,3-glucan, increasing expression of perforin
upon binding, and that the exogenous addition of β-1,3-glucan
restored the anti-cryptococcal killing ability of NK cells in HIV-
infected patients. This study provided exceptional information
for an understudied ILC cell type that added to the mouse and
human models of immunological protection.

Very recently, Kindermann et al. looked into the early
response defining the protective type 1 immune protection
against C. neoformans (196). Using RORα knockout mice
(deficient in ILC2s), the group saw a downregulation of
type 2 cytokines, IL-4, IL-5, and IL-13, decreased number of

eosinophils, and significantly lower fungal burden compared
to the WT C57 mouse control. This was accompanied by
an increase in classical M1 macrophage activation, ultimately
showing the host responded with a protective immune response.
Lung histopathological analysis confirmed that there was reduced
lung tissue damage associated with the increased type 1
immunity. These results further confirm the hypothesis that
an ILC2 response may lead to a detrimental host outcome
during cryptococcal infection (135). This study confirmed
prior findings suggesting IL-33 preferentially increased ILC2
proliferation in the lung and downstream IL-13 release. Overall,
these results suggest that ILC2s preferentially activate in
response to highly virulent strains of C. neoformans during
early infection timepoints to stimulate a non-protective, type 2
immune response.

Recruited Innate Immunity to C. neoformans
Inflammatory cell recruitment is essential for early control of C.
neoformans infection (114, 197, 198). Neutrophils and dendritic
cells have both been extensively studied and shown to play
positive roles in the early host defense, while monocytes and
eosinophils have been reported to play controversial or negative
roles during infection with C. neoformans.

Neutrophils
Neutrophils are granulocytes originating in the bonemarrow that
are among the first inflammatory cells to respond to infection
in great numbers and take part in a type 17 immune response
(199–202). These cells exhibit a short lifespan and offer a
myriad of defense mechanisms. Neutrophils have been widely
implicated in anti-fungal defenses, especially against Candida
albicans and Aspergillus fumigatus (136, 199, 203, 204), but since
neutropenia is not a risk factor to developing cryptococcosis, the
role of neutrophils has been sparsely explored in response to C.
neoformans. However, the question remains if neutrophils are an
important protective cell type even if the loss of them does not
render host susceptibility.

Neutrophils have been suggested to play an important role
for protection in humans once the infection has occurred.
This defense stems from observations from several reports
showing (i) dampened killing ability of macrophages and
neutrophils during late stages of lymphopenia such as with
AIDS progression (205, 206); (ii) impaired activation and effector
functions of human neutrophils in response to TNF-α, IL-1β,
and nitric oxide deficiency was observed in healthy patients who
succumbed to pulmonary cryptococcosis (207); (iii) although
neutropenia is not a risk factor for cryptococcosis, neutropenia is
commonly observed in patients with HIV/AIDS (206, 208, 209).
Taken together, these early studies strongly implicate human
neutrophils as playing a role in anti-cryptococcal defense.

These data do not fully hold true in mice since murine
neutrophils are known to be weaker than human neutrophils
since they lack fully activated defensins (210). Neutrophils have
been shown to exert a protective role during pulmonary infection
caused by several microorganisms (211–213), but the role of
neutrophils during C. neoformans infection remains unsettled
in mice.
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Neutrophils internalize C. neoformans, respond with the
release of effector cytokines most notably IL-17A, kill the yeast
cells via oxidative bursts and toxic cytoplasmic degranulation
(214). Only a very limited amount of published work has
addressed the role of neutrophils in animal models and
depending on the animal model, strain of C. neoformans, and/or
route of infection, the results seem to differ (50, 60, 215, 216). For
example, mouse strains more resistant to C. neoformans (SJL/J)
seem to benefit from the presence of neutrophils (216) but more
susceptible strains (BALB/c) exhibited enhanced resistance upon
neutrophil depletion (215). These studies were both conducted
using the weaker C. neoformans strain D52. In addition, the
BALB/c mice were depleted of neutrophils prior to infection but
not continued throughout the course of infection. The number
of neutrophils matched the control mice by day 7 post infection,
so the role of neutrophils in the overall host outcome is not able
to be formulated. Thus, it is obvious from these studies that the
apparent different results in the literature are likely due to the use
of different mouse models and most importantly the time frame
of the induced neutropenia.

Aside from depletion studies, C. neoformans has also been
reported in modulating the extracellular killing ability of
neutrophils (217, 218). The work in these two studies implicates
sphingomyelin synthase as a key enzyme in regulating the killing
activity of neutrophils through the regulation of sphingomyelin
production. Interestingly, the 2011 study found that neither
the presence nor the size of the capsule did not influence the
extracellular killing activity of these neutrophils although the
GXM capsule is associated with immune modulation in many
other cell types such as macrophages, monocytes, DCs, and
T cells (217). The authors did find that melanized yeast cells
completely abrogated the extracellular killing ability of these cells,
and that live but not heat killed cells were necessary for this
loss of extracellular killing activity. A key limitation in this study
comes from using differentiated peripheral blood cell line, HL-
60 cells, for the extracellular killing activity assays. These cells are
human derived and possess increased killing ability over murine
neutrophils but still derived from a propagated cell line.

Recruited dendritic cells
Recruited inflammatory DCs are monocyte-derived and termed
monocyte-derived DCs (moDCs) (110, 116, 219). Overall,
moDCs differ from resident DCs in phagocytosis and killing,
cytokine release, and migration from the periphery to the
nearest draining lymph nodes for activation of adaptive cell-
mediated immunity (47, 198, 220–225). Upon arrival in the lung,
moDCs downregulate the monocytic marker Ly6C and possess
overlapping function with cDCs. The general consensus in the
DC literature is less of a phenotypic classification compared to
a functional classification, thus recruited DCs are believed to be
an addition to the resident cDC defense arsenal rather than a
functionally distinct defense (226), although moDCs have been
described to be similar to cDC1 cells with a dependence on the
transcription factors Irf8 and Batf3 for development, respond to
IFN-γ, and express IL-2 and IL-12 (219).

In terms of anti-cryptococcal immunity, DCs have a wide
repertoire of pattern recognition receptors (PRRs) that aid in

recognition of fungal danger signals like capsular and cell wall
components (via TLR2, TLR4, Dectin-1, and DC-SIGN), and
fungal DNA upon yeast lysis (via TLR9). DCs respond with IL-2
and IL-23 production in the lung during inflammatory responses
(47, 198, 219, 225, 227), thus aiding in the type 1 and 17 immune
responses in the lung, respectively.

In the recent literature, theWormley lab presented compelling
evidence for the role of in vivomemory of DCs to C. neoformans
(222). Although innate immunity has been widely believed to
be devoid of immunological memory, the authors showed that
DCs isolated from mice immunized with an IFN-γ producing
H99 mutant strain (228) responded with a greatly increased
type 1-based immune signature compared to naïve control
mice 70 days after initial challenge. These DCs, when cultured
ex vivo, responded with a significantly enhanced cytokine
recall response of IFN-γ, IL-4, and IL-2 in response to C.
neoformans components but not to C. albicans, Staphylococcus
aureus, or LPS. These results not only uncover aspects of C.
neoformans vaccination biology, but also greatly add to the
growing body of literature that DCs are essential components
to host defense against C. neoformans with a vast repertoire of
anti-fungal capabilities.

Monocytes
Monocytes are mononuclear phagocytes that originate in the
bone marrow and circulate through the blood with a variety
of PRRs to enable detection of pathogens. Monocytes exist as
both CCR2+ Ly6Chi in mice (CD14+ CD16- in humans) and
CCR2lo Ly6Clo in mice (CD14lo and CD16- in humans). Ly6Chi

are inflammatory monocytes that extravasate into infected
tissues, while Ly6Clo are tissue patrolling monocytes that deal
with tissue repair and homeostasis (229, 230). Monocytes
respond very quickly in response to infection that succeeds
neutrophils and are essentially precursors to macrophages and
DCs (moDCs). Circulating monocytes have been characterized
and functionally described as either mature or immature, which
is highly dependent on the cytokine profile of the tissue they are
infiltrating (231–236). In the presence of inflammation, mature
monocytes express high levels of MHC-II and costimulatory
markers such as CD80, CD86, and CD40, whereas immature
monocytes express lower levels of these markers (169). However,
the role of monocytes in response to C. neoformans infection has
been debated, since the presence of monocytes can be detrimental
or beneficial to the host depending on the infectionmodel (50, 58,
237–239).

Both mature and immature monocytes can respond early
on to C. neoformans infection. Both cells can phagocytose the
fungus, however immature monocytes have decreased killing
ability and harbor them back into the bloodstream across the
blood brain barrier via the Trojan Horse model (240). For
example, Charlier et al. intravenously infected mice with bone
marrow-derived monocytes (BMDM) loaded with C. neoformans
to demonstrate the existence of the Trojan horse model of
crossing the blood brain barrier (BBB) (58). The authors found
that BBB crossing was observed as early as 6 h post infection
and a significant increase in the fungal burden in the spleen and
kidney was observed with the yeast loaded BMDMs compared
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to unloaded BMDMs. These results suggest a role for monocyte
trafficking of C. neoformans to the CNS via the Trojan horse
model of infection. In addition to this, Heung and Hohl showed
that CCR2+ Ly6Chi inflammatory monocytes respond early on
in the lung to C. neoformans strain H99 and aid in fungal
trafficking of the yeast from the lungs to the lung draining lymph
node (237). Upon depletion of these cells using CCR2-DTRmice,
a significant decrease in lung fungal burden and improved host
survival were observed. This was in addition to lower numbers
of ILC2s, Th2 lymphocytes, and M2 macrophages observed in
the lungs of CCR2-DTR mice. These data suggest that CCR2+
monocytes may skew the lung immunity toward a non-protective
type 2 immune response to the highly virulent H99 strain.

Conversely, three groups have reported a role for CCR2+ cells
during C. neoformans infection. First, Traynor et al. infected
both CCR2 KO and WT mice with C. neoformans strain 52D
(less virulent serotype D) and reported that CCR2 KO mice
had prolonged lung fungal burden (239). In addition, CCR2 KO
mice had increased eosinophilia, increased leukocyte production
of IL-4 and IL-5, and lack of a delayed-type hypersensitivity
response, which all signify a type 2 immune response. Second,
Osterholzer et al. showed that CCR2-deficient mice infected
with C. neoformans strain 52D exhibited prolonged infection
and a type 2 immune response compared to WT mice (238).
These effects were attributed to impaired DC recruitment and
protective T cell polarization. Third, Masso-Silva et al. compared
the immune response between an infection with the WT H99
strain and a hypovirulent mutant, C. neoformans 1fbp1 (223).
From flow cytometry and lung burden analyses, the authors
concluded that CCR2+ monocytes differentiate into moDCs in
response to the1fbp1mutant, and that CCR2 depletedmice were
not protected due to an impaired T cell response in the lungs.
Together, these studies suggest that CCR2-mediated recruitment
of monocytes aid in fungal clearance of the less virulent C.
neoformans 52D or the hypovirulent strain C. neoformans 1fbp1.

The collective conclusion from the above results in the mouse
model point to monocytes being detrimental in response to the
highly virulent serotype A C. neoformans H99, but protective
in response to the weaker 52D strain. The GXM capsule of
C. neoformans has been described as immunosuppressive (43)
and has the ability to modulate macrophage polarization toward
an M2 state (42, 44, 128, 241, 242). In addition to this, the
five serotypes of Cryptococcus GXM capsule are differentially
recognized by host innate immune cells, which suggests a possible
variation in response to different serotypes. It is possible that an
unknown GXM PAMP from serotype D strains drives monocytes
into a protective maturation state, while serotype A strains either
directly deter monocytes into an immature state or lack the
necessary ligand needed to drive monocyte maturation.

Eosinophils
Eosinophils are another type of granulocyte (in addition
to neutrophils) that may be recruited to the lungs during
cryptococcal infection. Eosinophils are generally associated with
allergic inflammation and are common effector cells against
parasitic infections (243, 244), but these cells have been described
as harmful in the host response to C. neoformans infection (135,

196, 239, 245, 246). Indeed, these studies (as well as others) have
used eosinophil accumulation in the lungs as a marker of non-
protective host immunity since these cells respond to increased
levels of type 2 cytokines such as IL-5 and eotaxin.

In a recent study, Wiesner et al. utilized several approaches
in surmising the lung lymphocyte-mediated recruitment of
different granulocyte populations to the lung upon infection with
the virulent C. neoformans strain KN99α in the C57BL/6 mice
model (214). The authors used transgenic mouse models (STAT6
KO to ablate a Th2 response) and antibody depletions (anti-CD4
or anti-IL-5 to ameliorate these cells or cytokines, respectively)
to determine the order of lymphocyte-mediated recruitment of
granulocytes to the lungs went in order from Th2, Th17, Tc17,
γδ T cells, and ILC2. In other words, Th2 CD4+ T cells fromWT
animals will preferentially recruit eosinophils via IL-5 in response
to the virulent KN99α strain. When these cells were depleted,
type 17 immune cells in order from Th17, Tc17, and γδ T cells
recruited neutrophils to the lungs via IL-17A production. Not
only did this study shed light upon a differential regulation of
granulocyte recruitment in response to C. neoformans infection,
but it also demonstrated a previously unstudied “pecking order”
for lung cell recruitment in these mice that are notoriously
susceptible to cryptococcosis. An interesting follow up to this
study would involve using the less virulent serotype D strain
in C57 mice as well as using both serotypes A and D in a
more resistant mouse model such as CBA/J mice. This is an
important concept because eosinophilia has been reported in
human cryptococcosis cases (247) and the underlying cause of
susceptibility of C57 mice to C. neoformans compared to other
inbred strains such as CBA/J (39, 248, 249), which needs to be at
the forefront of interpreting data across different strains of mice.

Eosinophils in rats exhibit different immunophenotypes than
what is observed in mice (87, 250). In rats, eosinophils are part
of the inflammatory response to C. neoformans. Garro et al. took
an in vitro approach to studying the outcome of rat peritoneal
eosinophils with opsonized C. neoformans (250). The authors
found that eosinophils phagocytosed the yeast cells, upregulated
MHC-I, MHC-II, and costimulatory molecules, and exhibited
increased production of IL-12, TNFα, and IFN-γ. Additionally,
these yeast-loaded eosinophils were able to induce CD4 and
CD8T cell proliferation and type 1 cytokine responses when
cocultured together. Together these data suggest that eosinophils
from rats possess anti-cryptococcal capabilities, act as antigen
presenting cells, and promote a protective type 1 response.

Late Stage Adaptive Cell-Mediated Immunity to C.

neoformans
Adaptive immune priming and recruitment to the lung is
essential in host defense against C. neoformans. While B cells and
antibody humoral responses show some beneficial aspects, T cell
mediated immunity via CD4 and CD8T cells provides optimal
control and killing of the yeast cells. These cells express the
canonical TCR with α and β subunits and require presentation
of antigens on MHC molecules by APCs to become activated
and recruited.
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T Lymphocytes
T cells can be divided into CD4+ and CD8+ subsets, each
possessing protective capabilities in the absence of the other
during infection with C. neoformans (251–255). T cell-mediated
immunity represents the most widely accepted potent host
defense against C. neoformans infections, as well as the deepest
downfall when a host is lymphopenic such as in HIV/AIDS
patients. Indeed, T cells have been clinically implicated as major
factor in the development of cryptococcal meningitis (115,
246, 256). These cells can aid in protection by either being
directly cytotoxic or by secreting cytokines that aid in increased
phagocyte uptake and anti-cryptococcal killing (252, 254, 257–
260). Unlike the fluid polarization states of macrophages, once
T cells polarize, they have more of a defined immune signature.
Although differentiated T cell plasticity exists, type 1, 2, or
17 T cells (either CD4+ or CD8+) truly represent the subsets
that pertain to anti-cryptococcal immunity and protection.
These sub-sets are the most reported in the cryptococcal
literature (expanded upon further down in this section), but a
comprehensive review of this late-stage plasticity can be found
in the following reviews (261–263).

The CD4+ T lymphocyte subsets Th1 and Th17 have
been shown to be protective in response to infection with C.
neoformans, with Th1 be more widely studied in the literature.
Th1 T cells mature from naïve T cells in the presence of
IFN-γ and are known to potently secrete IFN-γ and IL-2 as
the major effector cytokines in response to IL-12 and IL-1β
from lung macrophages to maintain the type 1 inflammatory
response (258, 260, 264, 265). IFN-γ from Th1T cells potently
induces DC maturation for increased antigen presentation,
classically activated M1 macrophages with increased reactive
oxygen and nitrogen species production, and IgG2a/IgG3 B cell
class switch recombination.

Th17 T cells are also necessary for anti-fungal defense and
are defined by secretion of IL-17, which has a vast repertoire of
inflammatory and tissue-specific responses. These cells mature
from naïve T cells in the presence of TGF-β, IL-1, IL-23, and
IL-6. IL-17 secretion from Th17 cells increases hematopoiesis
and myelopoiesis, induce chemoattractants such as IL-8 and
MCP-1 for neutrophil and monocyte recruitment, stimulate
IgG2a/IgG3 B cell class switch recombination, and lead to
downstream increases in prostaglandin E2, IL-6, nitric oxide,
and IFN-γ production (120, 204, 224, 258, 266, 267). Th17 T
cells also produce IL-22 in mucosal barrier tissues such as the
gut and lung (268–270). Although Th22T cells are a distinct
subset, IL-22 producing Th17 cells are commonly observed
in the mucosal barrier tissues. IL-22 increases the mucosal
barrier integrity of these tissues, which in the case of pulmonary
cryptococcosis has been suggested to prevent dissemination
although this phenomenon has not been directly tested in vivo
for C. neoformans.

Th2 T cells have been shown to be harmful during active
cryptococcal infection. These cells mature from naïve T cells in
the presence of IL-4 from alternatively activated macrophages
and IL-33 lung epithelial and ILC2 cells (135, 243). These cells
are seen in response to hosts that cannot control the early
stages of infection when macrophages and DCs are polarized

toward a type 2 state. These cells are associated with anti-parasitic
defense via the secretion of IL-4, IL-5, and IL-13 and promote
the recruitment of eosinophils. Altogether these cells lead to an
anti-inflammatory response, M2 macrophage polarization, and
persistence of fungal growth.

CD8+ T cells have also been described in antifungal defense
but less so during infection with C. neoformans (251, 253, 267,
271–273). Analogously to the Th subsets of CD4+ T cells, the Tc
subsets of CD8+ T cells have been described elsewhere (243, 251,
267) and follow the same immunological roles with Tc1, Tc17,
and Tc2 mirroring Th1, Th17, and Th2, respectively. These Tc
cell subsets have been reported have better direct killing ability
of infected cells than the Th counterparts, however. Overall, the
long-standing belief that CD4+ T cells are the sole driver of
anti-cryptococcal immunity can be disregarded in our opinion
since both CD8+ and CD4+ T cells possess potent anti-fungal
capabilities during C. neoformans infection.

Summary of Immune Response Kinetics
During Primary Infection
It is obvious that there is a well-orchestrated host response in the
recognition, cytokine secretion, and temporal cell recruitment
to immunological control of C. neoformans. When the fungal
particles are inhaled into the lungs, epithelial and tissue resident
cells recognize and take up the fungal particles (Figure 1). In
response to this uptake, early cytokines such as IL-8 and IL-1
from the epithelial cells, TNFα and IFN-γ from macrophages,
and IL-2, IL-12, and IL-23 from DCs induce an inflammatory
state that promotes M1 macrophage polarization and chemokine
secretion, such as GM-CSF and MCP-1. The collaborative effect
of these early signals induces myelopoiesis and recruitment
of neutrophils, monocytes, and DCs to the lung. In the
presence of macrophage-derived IFN-γ and TNFα, DCs mature,
phagocytose fungal particles, upregulate costimulatory molecules
and migration markers, and migrate to the mLN for antigen
presentation to naïve T cells. During this time, γδ T cells and
ILCs may also play a role in the coordination the immune
response, although their exact role is still unclear. As the innate
immunity controls fungal proliferation, the adaptive immune
system is recruited to the lung where type 1/17 T cells become
potent sources of IFN-γ, IL-2, and IL-17 that activate the killing
and/or containment of the yeast cells. Epithelial barrier integrity
and antimicrobial peptide production are stimulated by IL-22 to
deter extrapulmonary dissemination, phagocytic killing abilities
are increased, and anti-fungal neutrophils are recruited and
activated, leading to total elimination of fungal cells or/and
containment of the yeast in a granuloma. Altogether, these
cells work together synergistically for optimal host control of
the infection.

Reactivation Model of a Latent Fungal
Infection: Breakdown of Granuloma
Containment
There are several noteworthy differences from the primary
infection immune response previously described in mice and the
response to reactivated C. neoformans. First, in the reactivation
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model, the fungal cells are already present in the lung
tissue. Second, the host has already experienced a pulmonary
cryptococcal infection, contained it, and has developed adaptive
immunity against the yeast. Third, the host was able to control
the initial infection during an immunocompetent state. Yet,
if the host is experiencing reactivation of latent yeast cells,
then some immunosuppressive event has led to this reactivation
nullifying one or more host cell types that normally control the
fungal replication.

With this said, the reactivation model is still one of the
most understudied topics in regard to cryptococcosis mostly
due to the lack of tools in model organisms. The mouse is
by far the most popular animal model organism to study
the primary infection model of cryptococcosis, yet the mouse
not being able to form lung granulomas for containment of
the fungus that recapitulate human granulomas results in the
reactivation model being understudied (274). Mice have been
previously mentioned to form a granulomatous response to
moderately virulent C. neoformans strain 52D that forms a
persistent infection. Although certain transgenic models have
been shown to form granulomas, an immunocompetent mouse
does not.

However, studies in our lab found that when mice are
infected with a C. neoformans mutant strain in which the
glucosylceramide synthase gene has been deleted (1gcs1),
they formed lung granulomas that closely resembled human
lung granulomas (111). These granulomas are depicted by a
necrotic center, a characteristic ring of foamy macrophages
and multi-nucleated giant cells loaded with fungi or fungal
debris (Figure 2). The macrophage ring is surrounded by
an infiltration of lymphocytes, fibroblasts, and fibrotic tissue
with collagen deposition. The resemblance of this mouse
granuloma with the human lung granuloma (275–277) is
simply striking.

In follow up studies with this mutant, the formation of
these lung granulomas to contain C. neoformans 1gcs1 was
found to be dependent on the host enzyme sphingosine
kinase 1 (SK1) in the lungs (24, 274). Elevated levels of
S1P, MCP-1, and TNFα in the bronchoalveolar lavage fluid
were found to be significantly associated with granuloma
containment. Interestingly, during the infection with 1gcs1,
lung macrophages are a significant source of S1P, MCP-1,
and TNFα and a highly regarded cell type in granuloma
homeostasis. S1P is a widely studied immunological signaling
molecule that directs leukocyte migration and function (278,
279), MCP-1/CCL2 is a pro-inflammatory cytokine that aids
in recruitment of CCR2+ monocytes, memory T cells, and
DCs, and TNFα is a pro-inflammatory cytokine that activates
phagocytes and aids in DC maturation for induction of T
cell-mediated immunity. Taken together, macrophages have
been shown here to exert an early signaling cascade that is
dependent on SK1 and drives the recruitment of innate and
adaptive immunity to begin granuloma containment of C.
neoformans 1gcs1.

Sphingosine phosphate receptors became an important
function in granuloma reactivation since this family of five
receptors are heterogeneously distributed on immune cells and

respond to S1P gradients [for a detailed review of this topic please
see (280, 281)].

Certain medications can cause immunosuppression and
thus the prolonged administration of these medications is a
predisposing factor for developing cryptococcosis. However,
whether cryptococcosis develops as a result of the primary
infection or reactivation is still controversial. One medication
that causes a dramatic T cell depletion is FTY720 (Gilenya) used
to treat multiple sclerosis (282).

Upon administration, FTY720 is rapidly phosphorylated
into FTY720-P, becoming an analog of S1P and now able to
bind S1P receptors 1, 3, 4, and 5. Other FTY720 derivatives,
such as BAF312, is able to directly bind its receptors (1, 4,
and 5) without being phosphorylated. Bryan et al. found that
treatment with FTY720 but not BAF312 causes cryptococcosis
in mice, and the infection is a result of a reactivation from
the granuloma rather than a dissemination from the primary
infection (283).

Very interestingly, FTY720 treated mice exhibited altered
granuloma structure and impaired macrophage killing activity
compared to BAF312 treated mice, despite the observation that
both drugs caused similar lymphopenia. In addition, compared to
BAF312, FTY720 not only disorganized the ring of macrophages
at the granuloma site but these macrophages were mostly
M2 polarized. These phenotypes are linked to the specific
interaction of FTY720 to S1Pr3 (not targeted by BAF312), as
macrophages lacking S1Pr3 also displayed poor phagocytosis and
killing activity.

The observation that lymphopenia was present during both
treatments clearly suggests that this immune condition is
necessary but not sufficient to reactivate latent C. neoformans
during FTY720 treatment (283).

It is important to mention that a limitation of this study is
the use of C. neoformans 1gcs1 mutant. C. neoformans 1gcs1
mutant lacks the sphingolipid glucosylceramide. As a result,
the mutant goes in cell cycle arrest in neutral/alkaline pH; it
does not die when cells are exposed to these environments,
rather it just cannot replicate (111). On the other hand,
fungal glucosylceramides, including the species produced
by C. neoformans, are highly immunogenic and mice
develop antibodies against this fungal sphingolipid (284).
It is possible that this antibody production in mice is
counterproductive for the development of the granuloma,
although antibody production also occurs in humans (285),
whom are capable to develop lung granulomas. Due to
its immunogenicity, fungal glucosylceramide may alter
the initial lung innate immunity leading to the granuloma
formation, in addition to have a notable effect on restricting
fungal replication.

Nonetheless, the work using this cryptococcal mutant (30,
274) have laid the foundation for important animal studies in
the reactivation of C. neoformans, such as the recent work by
Bryan et al. (283) on the reactivation of the cryptococcal disease
under certain drug immunodeficiency. The fact that macrophage
function at the granuloma site must also be altered in addition to
lymphopenia, it may explain why only a small fraction of subjects
with AIDS develop cryptococcosis.
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CONCLUSIONS AND FUTURE
PERSPECTIVES

With the ever-increasing population of immunocompromised
individuals, improvements in treatment and vaccinations are
imperative for opportunistic infections, such as cryptococcosis.
These improvements begin with structuring proper animal
model systems to study the infection kinetics on the basic
research side before being implemented into the clinical side.
Work using the primary infection model purports invaluable
information for protective anti-cryptococcal immunity and more
research on certain host cell types, such as epithelial cells, γδ

T cells, and ILCs, is warranted. This is especially important
for investigators that look into protective immunity elicited by
vaccination strains, since a thorough understanding of these
models is at the forefront of transitioning from basic research into
human clinical trials.

Also, the reactivation model of cryptococcosis has been
widely understudied. The C. neoformans 1gcs1 mutant offers
an invaluable tool that opens up new possibilities, but caution
should be taken because the effect of glucosylceramide on

the host immunity is not fully understood. Nonetheless, the
observation that a drug (FTY720) used to treat reoccurring
multiple sclerosis resulted in C. neoformans reactivation, has
paved the way for a better understanding of the lung immunity
required for both the formation and the containment of the
lung granuloma.
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