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INTRODUCTION

Ending the current COVID-19 pandemic and preventing recurrence requires the development of
vaccines that provide long-lasting immunity to the causative virus SARS-CoV-2 and its emerging
variants where B cell epitopes can be mutated (1–3). We argue that to achieve this, a vaccine
must elicit CD4 and CD8T cell immunity in addition to the production of neutralizing antibodies
(nAB) by B cells. The rationale is based on the following findings for SARS-CoV-2 and the related
SARS-CoV virus which caused the 2002/2003 SARS pandemic:

ANTIBODIES ALONE MAY NOT PROTECT SUFFICIENTLY

Most current vaccine efforts primarily aim to promote nAB production. However, significant
evidence indicates that a robust antibody (AB) response alone is insufficient to avoid severe disease
and might even promote it under certain poorly understood circumstances (4). While often critical
for virus neutralization and disease control, B cell responses to the SARS-CoV-2 related virus
SARS-CoV have been of limited duration and breadth (5–7). Although AB and nAB against SARS-
CoV-2 are found in most cases of confirmed COVID-19 over time and can correlate inversely with
viral load, their correlation with protection is unclear owing to a paucity of data and the use of
heterogeneous serological assays with limited sensitivity and specificity (8). Signals in pre-COVID
samples also indicate confounding cross-reactivities. In addition, AB need not protect, might
worsen pathology, and high titers associated with more severe COVID-19 and worse outcomes
in several studies—reminiscent of findings in SARS (4, 9, 10). Some unprotected ICU patients
had SARS-CoV-2 specific AB, challenging their ability to protect (11). These findings point to
a complex role of AB in COVID-19 that may not always be beneficial. It is also possible that
mutational alteration of B cell epitopes could render emerging SARS-CoV-2 variants less sensitive
to B cell engaging vaccines targeting earlier variants (2). Moreover, nAB titers declined to near
baseline within 2–3 months during convalescence in many PCR-confirmed subjects particularly
with mild disease or asymptomatic infection (12–14). Altogether, variable and often low nAB titers
in convalescent patients, and in particular the very low titers or entire absence of nAB or AB
against SARS-CoV-2 in up to 33% of recovered patients point to a critical role for other immune
mechanisms in recovery from the disease (15–18).

THE CASE FOR T CELLS

Multiple lines of evidence support important roles for T cells in productive immune responses to
COVID-19. In most SARS patients, B cell and nAB responses were relatively short lived (1–2 years)
and prone to antigen escape, raising the possibility of re-infection. In contrast, T cell memory in
survivors was long-lived (>6–17 years) (4–7, 19). It is well-known that T cells can engage antigen
epitopes that are not targeted by B cells, including those derived from intracellular proteins, to
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provide broader protection which the virus can less easily
circumvent through mutation (6). T cells are especially necessary
to clear severe virus infections. Altogether, in addition to nAB,
eliciting broad and long-lasting antiviral immunity requires the
co-enrollment of CD4 and CD8T cells and the generation of
effective T cell memory (5, 6, 20–22).

The importance of T cells is further illustrated by the T
cell lymphopenia and exhaustion or dysfunction in both SARS
and COVID-19 which increase with disease severity (5, 16, 22–
28). T cells clonally expand in COVID-19, and convalescence
is associated with T cell recovery and memory formation.
Convalescent patients contain SARS-CoV-2 reactive CD4T cells
(up to 100% of patients) and CD8T cells (∼70% of patients),
including CD4 TFH cells capable of providing help to B cells
(29–32). Consistent with a role for T cells in helping B cells
in COVID-19, virus-specific T and TFH cell numbers correlated
with nAB and AB titers and deceased COVID-19 patients
lacked TFH cells and germinal centers in their draining hilar
lymph nodes correlated with reduced AB levels (32–37). T cell
reactivities in recovered patients covered multiple SARS-CoV-2
proteins and particularly targeted immunodominant epitopes in
the spike (S), membrane (M), and nucleoproteins (N), indicating
a benefit for including these proteins in vaccine designs rather
than only S as done in several current vaccines (32, 38). It has
been shown that S-protein specific CD4T cells correlate with
virus-specific AB titers, but differing approaches and populations
have yielded somewhat different antigen hierarchies and more
detailed studies are needed to identify the most beneficial
epitopes (39). Detection of SARS-CoV-2 cross-reactive CD8 and
particularly CD4T cells, probably elicited by endemic common
cold causing coronaviruses, in 40–81% of unexposed individuals
may contribute to the relative protection of most people against
COVID-19 (16, 19, 29, 30, 37, 40). Further supporting T
cell importance, in silico predictions and epidemiologic studies
suggest that COVID-19 vulnerability may depend on the HLA
haplotype of a person and its capacity to present SARS-CoV-
2 epitopes to T cells. In Italy, prevalence of the potentially
permissive alleles HLA-B∗44 and C∗01 correlates with COVID-
19 spread (41, 42).

In SARS, both cytotoxic CD8T cells and CD4 helper T cells
were required for virus clearance (20). In COVID-19, several
clinical studies have identified reduced CD8T cells as an early
prognostic indicator of severe or lethal disease and treatment
efficacy. CD4 help is needed for effective anti-viral responses by
both CD8T cells and B cells, including nAB production (5, 29,
30, 43). In particular, airway memory CD4T cells are critical for
SARS-CoV clearance (6). Although SARS-CoV-2 reactive CD4
and CD8T cells can be found in severe COVID-19 and can
correlate with AB appearance and lower viral loads, CD4T cells
in severe disease are often dysfunctional or deregulated compared
to mild COVID-19 (10, 23, 28, 30, 32, 37, 44, 45). Conversely,
recovering patients had increased virus specific and general CD4
TFH cells, and their SARS-CoV-2 reactive T cells expressed
reduced inhibitory markers and elevated effector molecules (25,
34, 44, 46, 47).

Supporting the importance of T cells in controlling COVID-
19, several studies reported durable T cell responses in

convalescent patients even lacking virus-specific AB. One study
found SARS-CoV-2 specific polyfunctional T cells with a stem-
cell like memory phenotype in convalescent patients that could
even be found in AB-seronegative family members and in
individuals with a history of asymptomatic or mild COVID-19
(16). Another study found SARS-CoV-2 specific T cells but not
AB in individuals that had been symptomatic within a week
post-contact with COVID-19 infected relatives. These T cells
persisted for at least 80 days and reached frequencies similar
to those found in patients, which were much higher than the
amounts in unexposed healthy donors and unlikely to reflect
cross-reactivity with other coronaviruses (48). A third study
found SARS-CoV-2 specific CD4 and CD8T cell responses in
56% of AB-negative subjects (40). Thus, as seen in SARS and
MERS, T cell immunity against SARS-CoV-2 can occur in the
absence of humoral immunity, might even be more prevalent in
certain populations, associates with recovery, can persist longer
and might serve as a more sensitive biomarker for exposure
(19, 48). The relative importance of humoral vs. T cell immunity
for protection however, remains to be determined.

T CELL FUNCTION NEEDS TO BE TUNED

APPROPRIATELY

Although T cells are required for effective virus control, excessive
immune responses and a resulting cytokine storm can worsen
disease and increase mortality in SARS and COVID-19. This
might involve defects in immunosuppressive Treg or γδ T cells,
or the presence of “pathologic” CD4T cells producing GM-CSF
and IL-6 (5, 23, 49, 50). In SARS, severe disease was associated
with increased virus-specific polyfunctional CD8 and CD4T cells
and TH2 cytokines (20). Encouragingly, strong TH2 skewing has
not been seen in COVID-19 to date and two leading SARS-CoV-
2 vaccine candidates elicited TH1 skewed responses in humans
(4, 30, 31, 51, 52). Anecdotally, COVID-19 patients enter the
hospital lymphopenic but begin to have increased respiratory
difficulties as their lymphocyte counts start to recover. Consistent
with this, SARS-CoV-2 reactive CD4 and CD8T cells capable
of producing effector and TH1 cytokines were found in patients
with severe COVID (37). Another study found that SARS-CoV-
2 specific T cells in acute moderate or severe COVID-19 were
more activated and proliferating than those in convalescent
patients, whose T cells had more memory-like phenotypes
(16). A third study suggests increased proportions of SARS-
CoV-2 reactive cytotoxic TFH cells with dysfunctional/exhausted
gene signatures and of clonally expanded cytotoxic CD4 TH

cells producing myeloid cell attracting chemokines; but under-
represented SARS-CoV-2 reactive suppressive Treg cells and
polyfunctional TH1 and TH17 cells in severe vs. mild COVID-
19 (44). Nevertheless, a clear cause-effect relationship between
T cell phenotype and disease severity remains to be firmly
established (39). Promoting T cell function promises improved
virus clearance but may be detrimental in some patients, and
a better understanding of the respective relevance of various
T cell subsets and phenotypes for mild vs. severe disease is
required (37).
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In any case, a vaccine needs to promote desired effector,
helper and memory T cell phenotypes and to tune T cell
reactivity into a productive but safe “window,” while avoiding
TH2 phenotypes, Treg cell deregulation, and excessive T cell
activation and exhaustion (39). To enable this, there is an urgent
need to chart the time course, reactivities, and phenotypes of
T cells against SARS-CoV-2 epitopes in healthy subjects and
patients with different disease courses. Supporting a role for
T cell reactivity and specificity in driving phenotype, a recent
study found that in convalescent patients, SARS-CoV-2 S-protein
specific CD4T cells were skewed toward a circulating TFH

phenotype, whereas M- and N-protein specific CD4T cells were
skewed toward a TH1 or a TH1/TH17 profile (16). Another study
found more multifunctional CD8T cells targeting M and N than
S in mild COVID-19 (32). Consistent with pathophysiological
relevance of these observations, details of the SARS-CoV-2 T cell
antigen hierarchy may differ with disease severity (39).

A NEED FOR DECODING REACTIVITIES,

PHENOTYPES, AND RECOGNIZED

EPITOPES OF SARS-CoV-2 REACTIVE T

CELLS

A recent review highlighted the importance of determining
how SARS-CoV-2 impacts the T cell repertoire, and how
the COVID-19 associated lymphopenia or disease predisposing
comorbidities impact it (53). As discussed there, the importance
of the T cell repertoire has long been recognized in other virus
infections. In Influenza patients, the presence of specific T cell
clones correlated with antiviral immunity, and an aging (thus
more restricted) repertoire associated with increased infection.
Influenza-epitope specific public T cell clonotypes that are shared
between individuals have been identified (54). Such repertoire
convergence is probably broadly relevant for virus infections,
because T cell receptor (TCR) β profiling has shown convergent
repertoire evolution in individuals infected with cytomegalovirus
(CMV) or vaccinated against Yellow Fever (53, 55, 56). Public
TCRs have also been used to identify smallpox vaccinated mice
with > 99% accuracy (53, 57). This suggests that generalizable,
convergent features of the T cell repertoire correlate with
protection. Clearly the most convergent feature is T cell reactivity
against certain antigenic epitopes. Hence it is possible that
decoded antigen epitopes for convergent T cell clonotypes can
be used for development of improved, T cell engaging vaccines
against SARS-CoV-2. If the different phenotype skewing of T
cells against different SARS-CoV-2 proteins confirms in other
studies, an optimized choice of antigens or even epitopes might
be able to instruct desired T cell phenotypes over undesired
ones. Decoded T cell reactivities could also be used as sensitive
correlates of protection, or to distinguish previously exposed
individuals from unexposed ones and act as a biomarker of herd
immunity even in AB seronegative individuals (16). Decoding
matched T cell clonotypes, phenotypes and antigenic epitopes in
COVID-19 patients will also answer the important questions as
to which characteristics of the T cell repertoire explain the higher
risk of the elderly, and how HLA genetic diversity contributes to

the SARS-CoV-2 specific T cell repertoire and immune response
(53). Such studies are now possible thanks to recent advances
in single cell sequencing technologies combined with large-
scale HLA tetramer or HLA reporter gene-based epitope library
screening technologies (38, 58–66).

Indeed, several recent studies reported initial results from
profiling B cell receptor (BCR) and TCR repertoires in
COVID-19 patients (27, 45, 67, 68). Consistent with the data
from other virus infections, they report convergent B cell
clonotypic responses closely associated with SARS-CoV-2 AB.
Somatic hypermutation analyses suggest a primary immune
response involving naive B cells. Higher somatic hypermutation
is associated with more severe disease, which also showed
skewed BCR gene usage (27). Moreover, SARS-CoV-2 T cell
responses were highly clonal in active disease and driven
by TCR clusters shared between patients particularly after
recovery, which showed characteristic clonotype trajectories
over the disease course. Reduced T cell clonal expansion and
skewed TCR gene usage in severe disease could indicate that
different immunodominant antigen epitopes drive distinct T cell
clonotypes and fates in mild vs. severe COVID-19 (27). A vaccine
therefore may need to exclude B cell and T cell epitopes driving
severe disease.

Additional recent studies have decoded blood T cell
clonotypes and recognized antigen epitopes restricted by HLA
class I or II in mostly convalescent COVID-19 patients and
controls (19, 32, 38, 40, 67, 69, 70). Taken together, the
studies show that anti-SARS-CoV-2 T cell responses target
immunodominant epitopes broadly spread across the viral
proteome mostly beyond the S protein, involve convergent
and shared T cell clonotypes among patients and persist
for several months post-recovery. Epitope localization outside
regions with high mutational variation could suggest that T
cell vaccine responses may not be prone to virus escape
(69). An increased diversity but not intensity of SARS-CoV-
2 T cell responses is associated with recovery from mild vs.
severe disease (40). This may suggest that development of
protective immunity requires recognition of multiple virus
epitopes, arguing for including multiple SARS-CoV-2 antigens
in vaccine design. However, in another study, responses
appeared larger with a broader epitope coverage in severe
patients (32, 39). Interestingly, several studies suggest shifted
SARS-CoV-2 epitope hierarchies between COVID-19 patients
and unexposed individuals harboring SARS-CoV-2 reactive
T cells (19, 30, 32). In one study, unexposed individuals
had cross-reactive T cells to 31% of identified HLA-I and
70% of HLA-II restricted epitopes (40). This may reflect
previous infections with various betacoronaviruses or other
crossreactivities whose physiological relevance remains to
be elucidated.

These results revise the previously reported T cell antigen
hierarchies dominated by S, M, and N to include ORF1 and
other proteins. They emphasize the benefit of targeting T cells
for development of broadly protective vaccines and highlight
the need to include antigens beyond S, although broader studies
covering more HLA haplotypes and including CD4T cells are
needed to identify the most promiscuous epitopes across large
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human populations, including N81−120 (19, 32, 39). The precise
impact of virus reactive T cell clonotypes and their epitope
specificity and phenotype on disease course, and their prognostic
relevance remain to be elucidated. Pointing to the latter, profiling
a subject’s TCR repertoire worked as a diagnostic for past or
current COVID-19 even in absence of virus-specific AB (67).

CURRENT VACCINE CANDIDATES

ENGAGE T CELLS TO A LIMITED EXTENT

Several recent publications provide glimpses into how the most
advanced current candidate SARS-CoV-2 vaccines engage T
cells. All target the S-protein or its receptor-binding domain
(RBD). In clinical trials, most candidates elicited robust nAB
responses similar to or exceeding those in convalescent serum
within the limited follow-up periods reported (51, 52, 71, 72).
A human adenovirus based vaccine targeting S had limited
immunogenicity due to high pre-existing anti-adenovirus nAB
in many subjects (73, 74). Among all candidates, T cell
responses were variable with frequencies of 100/106-856/106

IFNγ-producing, virus-specific peripheral blood derived CD4
and CD8T cells in ELISPOT assays. A chimpanzee adenovirus
based vaccine targeting the S protein elicited S-specific T cell
responses lasting at least 56 days in many subjects (71). In
contrast, the human adenovirus based vaccine elicited more
limited virus-reactive T cells in ≤ 90% of subjects after
28 days (73, 74). One mRNA vaccine targeting the RBD
caused RBD-specific CD8T cell responses similar to, and TH1-
skewed CD4T cell responses exceeding memory responses
to CMV, EBV, influenza & tetanus toxoid in > 80% of
participants within 29 days, which correlated with nAB titers
and varied among individuals (52). Similarly, another mRNA
vaccine targeting S elicited TH1-skewed S-protein specific CD4T

cell but low CD8T cell responses within 43 days in most
subjects (51).

For all candidates, it remains unclear whether the T cell
responses are high enough for robust and lasting protection.
Because they only target S, all fail to leverage the majority of
SARS-CoV-2 T cell epitopes that are clearly targeted in naturally
infected individuals. Thus, a strong need remains for vaccines
leveraging all T cell epitopes, and for large phase 3 trials to
demonstrate durable efficacy in diverse human populations.

CONCLUSION

Altogether, the data reviewed here point toward an important
need to design COVID-19 vaccines which co-engage T cells
in addition to B cells. They also highlight the benefit of
decoding matched T cell reactivities, phenotypes and antigenic
epitopes in the context of the major human HLA haplotypes for
development of both vaccines and TCR based diagnostics for this
devastating disease.
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