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The killer-cell immunoglobulin-like receptor (KIR) proteins evolve to fight viruses and
mediate the body’s reaction to pregnancy. These roles provide selection pressure for
variation at both the structural/haplotype and base/allele levels. At the same time, the
genes have evolved relatively recently by tandem duplication and therefore exhibit very
high sequence similarity over thousands of bases. These variation-homology patterns
make it impossible to interpret KIR haplotypes from abundant short-read genome
sequencing data at population scale using existing methods. Here, we developed an
efficient computational approach for in silico KIR probe interpretation (KPI) to accurately
interpret individual’s KIR genes and haplotype-pairs from KIR sequencing reads. We
designed synthetic 25-base sequence probes by analyzing previously reported haplotype
sequences, and we developed a bioinformatics pipeline to interpret the probes in the
context of 16 KIR genes and 16 haplotype structures. We demonstrated its accuracy on a
synthetic data set as well as a real whole genome sequences from 748 individuals from
The Genome of the Netherlands (GoNL). The GoNL predictions were compared with
predictions from SNP-based predictions. Our results show 100% accuracy rate for the
synthetic tests and a 99.6% family-consistency rate in the GoNL tests. Agreement with the
SNP-based calls on KIR genes ranges from 72%–100% with a mean of 92%; most
differences occur in genes KIR2DS2, KIR2DL2, KIR2DS3, and KIR2DL5 where KPI
predicts presence and the SNP-based interpretation predicts absence. Overall, the
evidence suggests that KPI’s accuracy is 97% or greater for both KIR gene and
haplotype-pair predictions, and the presence/absence genotyping leads to ambiguous
haplotype-pair predictions with 16 reference KIR haplotype structures. KPI is free, open,
and easily executable as a Nextflow workflow supported by a Docker environment at
https://github.com/droeatumn/kpi.
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INTRODUCTION

Human chromosome 19q13.4 contains a ~150–250 kilobase
region encoding 16 genes of the natural kil ler-cell
immunoglobulin-like receptor (KIR) family. These genes are
~4–16 kilobases long and evolved via tandem duplication
during primate evolution (1, 2). The KIR receptors recognize
human leukocyte antigen (HLA) class I molecules and contribute
to natural killer (NK) cell functions via activating or inhibiting
signals. These receptor-ligand pairs coevolved under selection
pressures from reproduction and pathogenic defense (3), and it is
believed that KIR genes have undergone a balancing selection via
duplications and deletions into two broad categories of
haplotypes, in which one category tends to vary more at the
allelic level and the other tends to vary more at the structural
(gene content and order) level (4–6). A few dozen KIR full
haplotype sequences and approximately 2500 full- or inter-gene
sequences have been publicly deposited (5, 7, 8). Haplotype
structures are divided into two classes (9). Class ‘A’ contains
one haplotype and its deleted forms. Class ‘B’ haplotypes are
more structurally diverse and contain a variety of insertions and
deletions. Generally, the A haplotype occurs with 50-60%
frequency, haplotypes that are half-A and half-B occur with
30-40%, and the rest of the haplotypes are variants of the B
haplotypes. Except for some rarer deleted forms, KIR haplotypes
are structurally variable around 4 ‘framework’ genes (KIR3DL3,
KIR3DP1, KIR2DL4, KIR3DL2), with KIR3DL3 through
KIR3DP1 defining the proximal (or ‘centromeric’) region and
KIR2DL4 through KIR3DL2 defining the distal (or ‘telomeric’)
region, with the two gene-rich regions separated by the relatively
large and recombinant KIR3DP1-KIR2DL4 intergene region.

It is difficult to interpret the KIR region with high-throughput
sequencing reads for an individual human genome when the
structural arrangements are unknown; indeed, it is difficult even
when the structural haplotypes are known, since the read length
is too short to map unambiguously to the repetitive and
homologous KIR genes. As a consequence, the reads from KIR
region are ignored, as to the best of our knowledge, there are
currently no algorithms to interpret KIR from whole genome
sequencing (WGS). SNP (single nucleotide polymorphism)-
based KIR interpretation is more commonly applied. For
example, KIR*IMP is a web-application to predict genes and
haplotypes from microarray SNP genotypes (10). As an
algorithm whose raw data is microarray calls, KIR*IMP can
interpret KIR from genome wide SNP arrays, but it is not
applicable to interpret KIR from raw sequences.

Since a general solution for KIR structural interpretation from
raw genomic DNA is not currently available, this study
implements such an algorithm for the prediction of KIR genes
and full structural haplotypes from any type of raw full-region-
or-greater genomic sequence at population scale. In particular,
we systematically evaluated small markers for KIR genes and
then applied those markers to a synthetic KIR probe
interpretation (KPI) algorithm for the presence/absence of 16
KIR genes and 16 haplotype structures. Our approach leverages
recent bioinformatics innovations for short sequence (‘probe’)
genotyping, along recently published KIR reference haplotypes.
Frontiers in Immunology | www.frontiersin.org 2
The KPI algorithm first efficiently counts the occurrence of each
kmer probe in the raw sequences, and then uses multiple probes
per gene to call its presence/absence. Those 16 genotypes are
then used to generate haplotype-pair predictions. In the
experiments, we report 100% accuracy on a test set of synthetic
haplotypes for comparisons with known truth. We also report
that gene and haplotype-pair predictions for the WGS GoNL
cohort are family consistent and compare favorably with
reference frequencies in comparison to SNP-based predictions
using KIR*IMP.
MATERIALS AND METHODS

Overview
The workflow of KPI consists of three steps,

1. Discover the 25mer gene markers based on a multiple
sequence alignment analysis of 68 full-length haplotype
sequences.

2. Count the 25mer markers in the reads of genomic DNA per
individual to generate the individual’s 25mer genotype.

3. Predict presence/absence per gene from the marker genotypes
for each individual.

4. Predict haplotype pairs from the gene presence/absence calls
for each individual.

In the following, we first explain each step and then describe
the synthetic data and GoNL data used for the evaluation.

Step 1: Discovering 25mer Gene Markers
To discover gene marker 25mers, first a multiple sequence
alignment (MSA) was created with 68 publicly deposited full-
length haplotypes sequences (11). Briefly, each haplotype was
annotated at an average resolution of ~4kbp using a set of 15
120-base markers. This high-level annotation was aligned into a
MSA representing a structural alignment of all haplotypes. Then,
each subregion was aligned to base pair resolution. This resulted
in a full resolution, full haplotype MSA that accurately classifies
each allele into a haplotype-defined locus, and it aligns the alleles
precisely at each locus. The haplotype and gene annotations of
the MSA provided a list of full-length alleles for 16 genes:
KIR2DL1-5, KIR2DS1-5, KIR2DP1, KIR3DL1-3, KIR3DP1, and
KIR3DS1. Markers for each gene locus were chosen by selecting
all sequences of length 25 (25mers) present in every allele of the
gene but not elsewhere in the KIR haplotypes nor the rest of the
genome reference GRCh38. More details about the algorithm are
in Supplemental Figure 1. The marker sequences are in
Supplemental Data Sheet 1 and also checked in to GitHub at
https://github.com/droeatumn/kpi/tree/master/input in text and
fasta format.

Step 2: Count 25mer Markers
KMC 3, with workflows implemented in Nextflow (12) and
Apache Groovy (13) and a software environment implemented
as a Docker container, is used to create 25mer databases from
sequence or short-read data and match the markers across the
November 2020 | Volume 11 | Article 583013
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datasets. Using KMC 3, we generate the list of all 25mers from
the short reads of each individual and then match the 25mers in
the marker databases to report the hit counts of each 25mer
marker in the individual. Details are in Supplemental Figure 1.

Step 3: Individual Genotyping From 25mer
Markers
KPI calls presence/absence per gene by aggregating the presence/
absence genotypes of many small (25mer) markers, each specific
to one gene. 25mers with hit counts less than three are
considered sequencing errors and set to zero. If the mean hit
count of all the markers per gene is zero, then the gene is
predicted absent; otherwise, it is called present. Additional details
can be found in Supplemental Figure 1.

Step 4: Individual Haplotyping From
Genotypes
Haplotype-pair predictions were made by fitting the genotype to
all possible pairs of the 16 structural reference haplotypes defined
in Figure 1. The numbers and frequencies of the haplotypes are
from Jiang et al. 2012 (4) (Table 1); some of their haplotypes are
combined because Jiang et al. consider certain alleles as separate
haplotypes, such as full or deleted alleles of KIR2DS4. These 16
haplotypes represent 97% of all haplotypes in the Jiang
et al. report.

For the GoNL predictions, haplotype ambiguity was reduced
by family trio patterns and then further by the EM (Expectation-
Maximization)-based methods as described and used in Vierra-
Green 2012 (14). Haplotype frequencies were calculated from the
EM-reduced individual haplotype-pair predictions. These
haplotype frequency calculations are not possible on the KPI’s
haplotype-pair predictions because they can be ambiguous.

Synthetic Capture on Diploid Data
KPI was evaluated on a synthetic test set. There are six reference
haplotype structures with publicly deposited full-length
Frontiers in Immunology | www.frontiersin.org 3
sequences (Figure 1, top six rows). For each of these six
structures, one sequence was randomly chosen to represent
that structure, and it was paired with a random haplotype
sequence from the set of all sequences, with an equal
probability for each sequence. dwgsim (12) was used to
generate 10,000 2×150 pair reads per haplotype (~20×
coverage) with 1% error rate. This provided a simulated six-
person validation set of six diploid whole-region short-read
sequences, representing all fully sequenced haplotype
structures and paired to provide a variety of genotypes. The
sequences are included in Supplemental Data Sheet 2.

GoNL Family WGS and Immunochip
SNP Data
KPI was also run on a large real-world example. WGS was
obtained from The Genome of the Netherlands (GoNL) (13), a
FIGURE 1 | Reference haplotype definitions. Haplotype numeric labels (Jiang et al. 2012) are shown with their definition via gene counts. Following Jiang et al.
convention, some haplotypes (e.g., 7, 9) are distinguished by KIR2DS3/KIR2DS5 alleles instead of structural differences. In this study, some haplotypes (e.g., 1, 2)
are combined, as KIR2DS4 full/deleted alleles are not considered in KPI’s genotyping.
TABLE 1 | Reference haplotype names and frequencies.

Jiang et al. 2012 # informal names Jiang et al. 2012 freq.

1/2 cA01~tA01 55.2%
3 cA01~tB01_2DS5 10.9%
11 cA01~tB01_2DS3 1.4%
4/5 cB02~tA01 12.8%
6/10 cB01~tA01_2DS3 6.9%
25 cB01~tA01_2DS5 0.1%
7 cB01~tB01_2DS3_2DS5 2.6%
9 cB01~tB01_2DS3_2DS3 2.1%
8 cB02~tB01_2DS5 2.1%
17 cB02~tB01_2DS3 0.3%
12 cB04~tB03_2DS5 0.8%
18 cB04~tB03_2DS3 0.3%
13 cB01~tB05 0.7%
15 cB05~tB01 0.4%
16 cA01~tB05 0.3%
21 cB05~tA01 0.2%
sum 97.0%
November 2020 | Volu
The first column contains the numeric label assigned to haplotypes in Jiang et al. (2012).
Column 2 contains the informal names along with a reference frequency in column 3.
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genome sequencing project whose goal is to map the genetic
variation within the population of Netherlands in 250 family
trios (750 individuals). The project provided non-paired
sequencing of the whole genomes of the population, which was
done on the Illumina HiSeq 2000 platform. Coverage of the KIR
region were similar to the previously reported (13) whole-
genome average of ~10–15×. Two individuals from two
different families were removed from the GoNL project for
data quality reasons, giving a total of 748 individuals.

KPI’s GoNL predictions were compared with results from
microarray-based interpretation algorithm KIR*IMP. Illumina
Immunochip microarray SNP data was obtained from GoNL
(13). The data was prepared and executed following instructions
using KIR*IMP v1.2.0 on 2019-10-05.

To the best of our knowledge, there only exists one method to
predict KIR gene content from WGS sequences (15). However,
we were unable to obtain results with it for both evaluation data
sets. According to the authors, the current version is deprecated
and to be replaced soon (16).
RESULTS

The predictions were evaluated in the small synthetic test set,
where truth is known and a large real-world test set, where truth
is unknown except for family relationships. Predictions were
evaluated by comparing gene and haplotype-pair predictions to:
known truth in the synthetic cohort, and family consistency
(real-world cohort only), reference frequencies from Jiang et al.’s
family copy number study (4), and the Allele Frequencies
Database (17) in the real-world cohort. The real-world cohort
was also compared with predictions from microarray-based
algorithm KIR*IMP, although KIR*IMP was not considered
ground truth as it reports accuracies as low as 81% for some
Frontiers in Immunology | www.frontiersin.org 4
genes (10). Haplotype-pair predictions were considered to be
family consistent if each parents’ two haplotype predictions
contained at least one of the child’s two predictions and one of
the child’s haplotypes occurred in one parent and the other
haplotype occurred in the other parent.

Synthetic Evaluation
Table 2 shows the results of the synthetic tests. The gene present/
absent calls were 100% accurate for all genes. Although the
haplotype predictions are ambiguous in half of the individuals,
all are consistent with the ground truth.

GoNL Evaluation
Table 3 shows a summary of the gene prediction results from KPI
andKIR*IMP on the GoNLdata set. A reference frequency range is
included from Allele Frequencies Net, selecting European cohorts
>= 500 individuals. Overall agreement between KIR*IMP and KPI
for the 16 genes (Table 3, column6) ranges from72% to100%,with
a mean of 92%. KIR*IMP differs from the reference haplotype
(Table 3, column 7) frequency range by >10% in four genes
(KIR2DS2, KIR2DL2, KIR2DL5, and KIR2DS3) compared with 0
genes for KPI (Table 3, column 8). Both KIR*IMP and KPI differ
from theKIR2DS1 reference by9-10%, although the two algorithms
agree in 98% of individuals for that gene.

Table 4 breaks down the differences between KIR*IMP and
KPI in a confusion matrix. In the cases where KIR*IMP calls
present (‘P’) and KPI calls absent (‘A’) (Table 4, column 2), the
largest discrepancies are found in the centromeric genes
KIR2DS2 (8%), KIR2DL2 (8%), and KIR2DL3 (6%). In the
reverse cases, when KIR*IMP calls absent and KPI calls
present (Table 4, column 3), the largest discrepancies are
greater and occur with the centromeric KIR2DS2 (20%),
KIR2DL2 (20%), and the paralogous (centromeric or
telomeric) KIR2DL5 (11%), and KIR2DS3 (19%).
TABLE 2 | Results of synthetic tests.

haplotype 1
structure

haplotype 2
structure

haplotype 1 GenBank
accession

haplotype 2 GenBank
accession

KPI haplotype
prediction

haplotypes consistent
w/ truth?

gene prediction
accuracy

cA01~tA01 cA01~tA01 GU182344 GU182340 cA01~tA01
+cA01~tA01

Y 100%

cA01~tB01 cA01~tA01 KU645197 GU182360 cA01~tA01
+cA01~tB01 or
cA01~tB01
+cA01~tB05

Y 100%

cB01~tA01 cA01~tA01 GU182351 NC000019.10 cA01~tA01
+cB01~tA01

Y 100%

cB01~tB01 cB02~tA01 GU182339 GU182353 10 possibilities,
including
cB01~tB01
+cB02~tA01

Y 100%

cB02~tA01 cA01~tA01 GU182341 KP420442 cA01~tA01
+cB02~tA01

Y 100%

cB02~tB01 cA01~tA01 GU182359 KP420439 9 possibilities,
including
cA01~tA01
+cB02~tB01

Y 100%
November 2020 | Volum
The first four columns detail the sequences from which the tests (n=6 haplotype-pairs) were generated. The fifth column is killer-cell immunoglobulin-like receptor probe interpretation’s
(KPI’s) haplotype predictions, some of which are summarized for display.
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Per-individual haplotype-pair predictions for the GoNL cohort
are included in Supplemental Table 1. Three lists of haplotype-
pairs areprovided: one for the initialfittingofall possiblehaplotype-
pairs that could explain the genotype (i.e., KPI’s output); another
that reduces those possibilities by family relationships; and one for
the EM-reduced final haplotype-pair predictions.

KIR*IMP makes one most-likely prediction for all
individuals. KPI’s predictions are sometimes ambiguous, with
most predictions (mode) having one haplotype-pair but a mean
of 2.3, standard deviation of 2.5, and a maximum of 14
haplotype-pair predictions per individual in the context of the
16 reference haplotypes. The KIR*IMP predictions are family
consistent 100% of the time compared with 99.6% for KPI.
However, the haplotype pair predictions between the two
algorithms are concordant only 58% of the predictions.
Frontiers in Immunology | www.frontiersin.org 5
Table 5 compares the haplotype predictions between
KIR*IMP and the EM-reduced haplotype pair predictions from
the KPI output. KIR*IMP fit 100% of its predicted genotypes into
15 of its reference haplotypes. KPI fit 97% of its predicted
genotypes into its 16 reference haplotypes. KIR*IMP made
predictions for two haplotypes (cA01~tB04 and cB04~tB03,
numbered 14, 18, and 12), totaling 0.47%, that are not in KPI’s
set of reference haplotypes. KPI’s haplotype-pair predictions are
too ambiguous to summarize in haplotype frequencies.

DISCUSSION

KPI was evaluated by Chen et al. as part of a larger effort (18). In a
cohort of 72 individuals with ground truth determined by LinkSeq
qPCR, Chen et al. report six mismatches in one sample (possibly
swapped), and apart from this 95.8% accuracy for KIR2DS3 and
100%accuracy for the15othergenes.As theynote, it isnowpossible
to interpret HLA binding alleles and the presence/absence of all
their KIR receptors from short-read high-throughput sequencing,
and this combination is a valuable advancement for research and
medicine. Indeed, they compare KPI favorably with respect to
clinical accreditation standards.

The findings by Chen et al. are consistent with the results of our
synthetic test, whose accuracy was 100% for all genes. One
drawback of the design of the synthetic test is that the haplotypes
used in the test were also included in the MSA that was used to
generate the per-gene probes. However, the main purposes of the
synthetic tests were to test the application of the markers to short
reads in a variety of genotypes and recover their original geno- and
haplo-types; this is value-added compared with simply
demonstrating sequences unique to a gene. The almost-perfect
results of the Genentech and synthetic experiments, along with a
GoNL results that had a 99.6% family-consistency rate and in line
with expected frequencies, provide evidence that KPI’s gene
predictions are very accurate.

The evidence also suggests that KPI’s haplotype results are
accurate, although often ambiguous: the accuracy in the
TABLE 3 | Summary of killer-cell immunoglobulin-like receptor (KIR)*IMP and KIR probe interpretation (KPI) gene predictions.

gene reference freq. KIR*IMP freq. KPI freq. KIR*IMP - KPI KIR*IMP & KPI agreement KIR*IMP - reference KPI - reference

2DS2 53-54% 39% 52% −13% 72% −14% −1%
2DL2 53-54% 39% 51% −12% 72% −14% −2%
2DL3 90% 96% 92% 4% 92% 6% 2%
2DP1 96% 99% 97% 2% 97% 3% 1%
2DL1 96% 99% 97% 2% 97% 3% 1%
3DP1 100% 100% 100% 0% 100% 0% 0%
2DL4 100% 100% 100% 0% 100% 0% 0%
3DL1 93%–94% 96% 96% 0% 100% 2% 2%
3DS1 38%–44% 33% 35% −2% 97% −5% −3%
2DL5 53%–56% 38% 47% −9% 87% −15% −6%
2DS3 30%–31% 10% 29% −18% 81% −20% −1%
2DS5 30%–36% 25% 27% −2% 96% −5% −3%
2DS4 92%–94% 96% 96% 0% 100% 2% 2%
2DS1 43%–44% 33% 34% −1% 98% −10% −9%
average 92%
N
ovember 2020 | Volume 11
Frequencies relative to Genome of the Netherlands (GoNL) cohort of 748 individuals. The abbreviated gene name is in column 1. Column 2 lists the reference frequencies from The Allele
Frequency Net Database. The predicted frequencies from KIR*IMP and KPI are in columns 3 and 4, respectively. The delta between KIR*IMP and KPI is shown in the column 5. Column 6
shows the agreement between KIR*IMP and KPI. Column 7 shows the delta between KIR*IMP and the reference. Column 8 shows the delta between KPI and the reference. Frequencies
with differences >10% are in bold.
TABLE 4 | Confusion matrix of killer-cell immunoglobulin-like receptor (KIR)*IMP
and KIR probe interpretation (KPI) gene predictions.

gene KIR*IMP:P
KPI:A

KIR*IMP:A
KPI:P

KIR*IMP:P
KPI:P

KIR*IMP:A
KPI:A

2DS2 8% 20% 32% 40%
2DL2 8% 20% 31% 41%
2DL3 6% 2% 90% 2%
2DP1 2% 0% 97% 0%
2DL1 2% 1% 97% 0%
3DP1 0% 0% 100% 0%
2DL4 0% 0% 100% 0%
3DL1 0% 0% 96% 4%
3DS1 1% 3% 32% 64%
2DL5 2% 11% 36% 51%
2DS3 1% 19% 10% 71%
2DS5 1% 3% 24% 72%
2DS4 0% 0% 96% 4%
2DS1 1% 1% 33% 66%
Frequencies relative to GoNL cohort size of 748 individuals. The abbreviated gene names
are in column 1. Column 2 lists the cases when KIR*IMP calls present (‘P’) and KPI calls
absent (‘A’). Column 3 lists the cases when KIR*IMP calls absent (‘A’) and KPI calls
present (‘P’). Column 4 is when they both call present. Column 5 is when they both call
absent. Discrepancies >10% are in bold.
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synthetic test was 100% and the GoNL family-consistency was
99.6, and the predictions allow EM predictions that align with
the expected population frequency from the literature.

KIR*IMP’s haplotype frequency estimations differ from
expectations in some areas. The evidence from comparisons
with frequency reports from Jiang et al. 2012 (Table 5, column
5) suggest KIR*IMP overestimated cA01~tA01 (haplotype
numbers 1 and 2) and underreported haplotypes containing
cB01 or cB02 centromeric regions combined with the tA01
telomeric region (cB01~tA01 and cB02~tA01) in the GoNL
cohort. This discrepancy can also be seen in the predicted
genotype frequencies, where KIR*IMP relatively under calls the
presence of KIR2DS2, KIR2DL2, and KIR2DS3 by ~20% and
KIR2DL5 by ~10% compared with KPI and the historical
European frequencies from Allele Frequency Net database
(Table 5, column 6); all four of those genes are in cB01, and
KIR2DS2 and KIR2DL2 are also in cB02. GoNL genotyping was
done on the Immunochip, which is the best option according to
the KIR*IMP manuscript. With that chip, they report accuracies
of 100% for KIR2DS2, 98% for KIR2DL2, 82% for KIR2DL5, 81%
for KIR2DS3, and 95% for KIR2DS5 in their Norwegian-German
validation cohort. Although the family consistency rate is 100%
for KIR*IMP and 96.6% for KPI, their haplotype-pair predictions
only agree in 58% of individuals. Without ground truth available,
without any reason to expect this cohort to deviate from
expectations, and considering KIR*IMP’s self-reported
accuracy, the evidence suggests that KPI’s predictions are more
accurate than KIR*IMP’s in this cohort and specifically that
KIR*IMP under called the presence of genes KIR2DS2, KIR2DL2,
KIR2DS3, KIR2DL5 and haplotypes cB01~tA01 and cB02~tA01.
As reviewed recently by Wright et al., this may be particularly
relevant in the context of hematopoietic stem cell transplantation,
where some case/control studies claim an important role for these
regions (19). There are several potential reasons KIR*IMP’s
Frontiers in Immunology | www.frontiersin.org 6
predictions may be less accurate than KPI’s. The reference
haplotypes used for marker discovery for KIR*IMP were defined
by copy number genotyping and family relationships; KPI defined
its haplotypes using aMSA of full haplotype sequences. KIR*IMP’s
input is restricted to a few hundred single nucleotide
polymorphisms, whereas KPI can use the entire genomic range of
KIR sequences of length 25, which provides the potential for more
information per marker and a broader base of markers. KIR*IMP
uses a small number of SNPs to call one ormore genes, whereasKPI
uses dozens-to-thousands of 25mers to call a single gene,One of the
steps of KIR*IMP’s workflow is to align and phase all the SNPs to
one ‘A’ haplotype, which may be a limitation for genes not on that
haplotype; all the gene and haplotypes we found to have lower
accuracy rates are not located on the ‘A’ haplotype. KPI has no
alignment or assembly steps. It is also important to note that the
primary purpose for the comparison with KIR*IMP was not to
evaluate the potential success of predicting KIR genes and
haplotypes using SNPs vs sequence reads, but rather to compare
the two algorithms.Althoughboth algorithms predict the presence/
absence of KIR genes and structural haplotypes, their solution
domains are very different: microarray SNP panels vs raw
genomic DNA reads. Both algorithms report the lowest accuracy
rates forKIR2DS3 and a ~10% lower frequency rate forKIR2DS1 in
GoNL compared with reference frequencies.

The 85% family consistency rate of the EM-reduced
haplotype predictions suggest that KIR haplotype ambiguity
cannot be accurately reduced at the individual level via
expectation-maximization. However, since the EM-reduced
haplotype frequencies are in line with references, it is possible
the predictions might aggregate to population-level in a
maximum-likelihood manner and therefore perhaps may still
be useful for some population genetics purposes.

Traditional lab-based SSO presence/absence genotyping relies
on a single short-sequence strategy, an approach that can be
TABLE 5 | Comparison of killer-cell immunoglobulin-like receptor (KIR)*IMP highest probability and EM-reduced haplotype prediction frequencies.

hap reference frequency KIR*IMP KPI w/ EM KIR*IMP - KPI w/ EM - KIR*IMP -
# reference reference KPI w/ EM

1 55.20% 71.86% 59.70% 16.70% 4.50% 12.17%
2
3 10.90% 12.57% 9.60% 1.70% −1.29% 2.95%
11 1.40% 1.47% 0.60% 0.00% −0.82% 0.85%
4 12.80% 7.49% 15.30% −5.30% 2.55% -7.83%
5
9 2.10% 3.41% 2.90% 1.30% 0.78% 0.52%
7 2.60% 0.33% 3.60% −2.20% 1.00% −3.24%
6 6.90% 1.80% 5.90% −5.10% −1.08% −4.05%
10
8 2.10% 0.60% 0.50% −1.50% −1.65% 0.12%
17 0.30% 0.00% 0.00% −0.30% −0.23% −0.03%
14* 2.40% 0.40% 0.00% −2.00% 0.00% 0.00%
18* 0.30% 0.07% 0.00% −0.20% 0.00% 0.00%
12* 0.80% 0.00% 0.00% −0.80% 0.00% 0.00%
mean 97.00% 100.00% 98.10%
Novem
ber 2020 | Volume 11 | A
The table shows the comparison of the predictions between both methods as well as with reference European frequencies from Jiang et al. 2012 (column 2), which is the source of the
haplotype numbers (column 1). KIR*IMP’s haplotype frequencies for the 1496 GoNL haplotypes are in column 3; some haplotypes are combined, as the haplotype numbers distinguish
KIR2DS4 alleles. Column 4 contains frequencies for EM-reduced KIR probe interpretation (KPI) haplotype predictions Column 5 compares KIR*IMP frequencies with the reference, as
column 6 does for EM predictions. Finally, column 7 compares the frequencies of KIR*IMP and the EM-reduced predictions. Haplotypes with a predicted frequency of 0 in both KIR*IMP
and KPI are not shown. Haplotypes 14, 18, and 12 are in KIR*IMP’s set of reference haplotypes, but not KPI’s.
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applied similarly to synthetic analysis of large amounts of WGS.
In this virtual context, primer locations are not needed, and kmer
searching is efficient and accurate at populations scales. To
develop this synthetic SSO-like (kmer) library, we leveraged
the information from a multiple sequence alignment of all full-
length haplotypes that are available for this study. We believe this
is a more accurate approach than using IPD-KIR reference
alleles, because the IPD-KIR reference alleles do not require
the haplotype location to be known. In addition, fusion alleles are
assigned in IPD-KIR to one of the two parent genes, and
therefore large sequences of some alleles are not really from
the gene in which they are classified. We used 25 for our ‘k’ (i.e.,
sequence size) because BLAST searching indicated this to be a
conservative minimum length needed to distinguish a small set
of test markers to the KIR region. We did not experiment with
any k size other than 25, since the choice gives a reasonable
number of significant markers and their lack of off-KIR hits as
tested in the GoNL populationWGS confirms the effectiveness as
gene/intergenic markers. The only fundamental benefit to
shorter markers would be in the case when there were no
longer markers; however, 25mer markers were found for every
gene. The only fundamental benefit to longer markers would be
if the markers were not unique to the region; however, all the
markers are unique to their region. Many of the 25mers overlap
each other, effectively simulating a single longer marker. Similar
to the reasoning about probe length, probe mismatches would
only need to be relaxed if a locus did not have anymarkers. Since at
least one marker was discovered for each gene, mismatches did not
need to be incorporated. Having thus obtained the region markers,
we then used the most common (‘peak’) hit count from each gene/
intergene’s library of sequences to make the PA genotype calls
(Supplemental Figure 1). This adds a certain amount of allelic
flexibility in the algorithm because the ultimate call is an average of
all themarkers for that gene; if somemarkersmiscall, the overall call
for the gene will be unaffected if the majority of the other markers
are accurate. Since KPI decomposes the genetic information into
25mers, it works with any collection of DNA reads, as long as the
KIR region is included. It works with fasta, fastq, single, paired,
short, and long reads. Since the markers are not unique to exons, it
will not work with cDNA or exon only reads.

One limitation of the method is that the markers do not mark
DNA segments longer than one gene. Perhaps this is primarily due
to the frequent recombination between haplotypes. Although
recombination has been reported in multiple loci, the hotspot in
between the centromeric and telomeric regions is particularly
strong, and, in general, any pairing of the two can be expected.
Weevaluated singlemarkers forhaplotypes, butwedidnotfindany.
This is particularly relevant in light of the observation that
haplotyping from genotypes seems to have limited accuracy
under maximum likelihood assumptions (Table 5). It is possible
that an algorithm that uses applies multiple markers in a
hierarchical or combinational manner may be more successful.
For future work, we plan to further evaluate KIR2DS3 (95.8%
accuracy in the Chen et al. evaluation) and evaluate the
genotyping in diverse populations. It is possible that population
robustness is a weakness of the method, although the fact that
Frontiers in Immunology | www.frontiersin.org 7
almost half of individuals in the discovery cohort are African or
African American provides some optimism.

For the WGS data set, KPI averaged less than 1 h of
computing time per individual, with 32 cores of CPU and 32G
RAM. The majority of the time is spent using KMC 3 to build the
kmer database. kmer counting is an active area of research. Since
KPI can easily be altered to use any such application, it has
potential for future efficiency improvements.

The markers discovered in this study were enabled by a full-
haplotype MSA, as described recently by Roe et al. (11). That
manuscript makes observations about the composition and order
of sequences within KIR haplotypes, and it reports the
implications for our understanding of the relationship between
haplotypes, loci, and genes. Here, we have leveraged that basic
understanding for practical use by developing a free and open
interpretation application, evaluating a SNP interpretation
algorithm, and contributing KIR interpretation to an
important population genetics resource for Netherlands and
many types of human genetic researchers. We described how
the gene markers were discovered from the MSA, and we
demonstrated their use to predict genes and haplotype-pairs at
high accuracy (97%+) with population scale from any kind of
sequence data that includes the full KIR region, including WGS.
It was tested on synthetic ground-truth sequences and a large
cohort of family WGS. In addition, we compared our algorithm
to the leading SNP-based interpretation algorithm. KPI is free
software with a GPL3 license and is implemented as a Nextflow
workflow backed with an optional Docker environment. It is
available at https://github.com/droeatumn/kpi.
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SUPPLEMENTAL FIGURE 1 | Algorithm details. Data sheet 3 is a Microsoft
Word document containing the commands to query the markers per genome and
details as to how each region was genotyped.

SUPPLEMENTAL DATA SHEET 1 | Zipped text file containing the marker
DNA sequences of length 25. The gene markers (column 2) are unique
to their label (column 1), but the intergene and haplotype sequences
are not.

SUPPLEMENTAL DATA SHEET 2 | Raw reads from synthetic evaluation,
whose results are in Table 2. Each of the six simulated individuals have a pair of
fastq files for each parental haplotype.

SUPPLEMENTAL TABLE 1 | Individual gene and haplotype-pair predictions.
Columns A and B contain the family name and relationship. Column C
contains KPI’s haplotype-pair predictions, represented by a haplotype list.
Each pair is separated with a ‘|’. For example, ‘cA01~tA01+ cA01~tB01_2DS5|
cA01~tB01_2DS5+cA01~tB05’ means the prediction is either haplotype-
pairs cA01~tA01 and cA01~tB01_2DS5 or haplotype-pairs cA01~tB01_2DS5
and cA01~tB05. The haplotype list in column C represents all possible
haplotype-pairs fitting the presence-absence genotypes. Column D is a count
of the number of haplotype-pair predictions in column C’s haplotype list.
Column E is the haplotype list in column C reduced by family relationships,
and column F indicates whether or not it is different from the original haplotype
list in column C. Column G is the original haplotype list in column C reduced by
EM; its results should not be used as they have limited accuracy. Columns H-W
are the gene presence-absence predictions.
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